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Abstract—High-level synthesis (HLS) allows developers to be
more productive in designing FPGA circuits thanks to familiar
programming languages and high-level abstractions. In order
to create high-performance circuits, HLS tools, such as Xilinx
Vivado HLS, require following specific design patterns and tech-
niques. Unfortunately, when applied to network packet processing
tasks, these techniques limit code reuse and modularity, requiring
developers to use deprecated programming conventions.

We propose a methodology for developing high-speed net-
working applications using Vivado HLS for C++, focusing on
reusability, code simplicity, and overall performance. Following
this methodology, we implement a class library (ntl) with
several building blocks that can be used in a wide spectrum
of networking applications. We evaluate the methodology by
implementing two applications: a UDP stateless firewall and a
key-value store cache designed for FPGA-based SmartNICs, both
processing packets at 40Gbps line-rate.

I. INTRODUCTION

Writing reusable and modular code is an important program-

ming principle because it shortens development times, simplifies

testing, and reduces bugs. In FPGAs, the increasing adoption

of high-level synthesis (HLS) promises more opportunities

for reuse than with traditional hardware definition languages

because HLS tools abstract low-level hardware details. These

tools allow developers to adapt code and extend functionality

on different FPGAs and even target different performance goals.

The tools achieve this through automatic pipelining and by

providing internal scheduling. With the rapidly rising deploy-

ment of FPGAs in datacenters [1]–[5], increasing developer

productivity is an important goal.

Network packet processing is one important domain that

can benefit from HLS. Packet processing applications are in

critical need of high-performance FPGA-based accelerators,

due to rising network speeds and stagnating CPU performance.

I/O intensive network functions such as load balancers, fire-

walls, and cryptographic gateways can benefit from hardware

offloading and are a promising target for HLS [6]–[11].

In practice, however, optimizations and heuristics for HLS

tools may require designers to write code and organize modules

in ways that hinder encapsulation and reusability for networking

applications. This limitation stems, in the case of Xilinx Vivado

HLS [12] (C++ version), from its traditional target use-cases:

computationally intensive algorithms supporting a restricted
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C++ dialect, focusing on, e.g., image processing, scientific

computations, and machine learning. As other, similar tools, it

supports basic data structures such as arrays and queues, which

use simple methods that can be inlined, but it lacks support

for more complex data structures [13]. Unfortunately, packet

processing applications typically use advanced data structures

such as hash tables, CAMs, and priority queues. Furthermore,

current packet processing designs in Vivado HLS follow a

dataflow programming methodology [14] to expose pipeline

and task parallelism and use low latency streaming interfaces.

Existing application examples written in Vivado HLS [7], [14],

[15] use static variables for keeping state, and use functions

rather than classes, thus severely limiting the ability to reuse

modules and data structures across projects.

In this work we set out to increase code reusability for

packet processing applications written in Xilinx Vivado HLS.

We present our proposed methodology and design patterns that

enable code reuse. We use modern (post C++11) techniques

with object-oriented and template programming to write mod-

ular and generic code, while still enabling HLS optimizations

to generate line-rate capable designs. Our methodology allows

creating reusable building blocks that can be quickly assembled

into complex applications, while optimizing the resulting

design for high throughput and low latency (Section III). We

describe several building blocks common in packet processing

applications, such as header manipulations, hash tables, and

schedulers (Section IV). We implement these building blocks

as part of a new library for Vivado HLS called ntl1. Even

though we target Vivado HLS for C++, the ideas in this work

are applicable to other HLS tools as well.

We evaluate our proposal and the ntl library by implement-

ing two networking applications: a key-value store cache and

a UDP-based firewall for FPGA-based SmartNICs, showing

that our methodology can simplify the implementation of

high-performance networking applications using HLS. When

comparing modules targeting the same line-rate behavior

written using ntl against a high-performance framework for

FPGA network processing (P4/SDNet), ntl improves latency

by 8.4× and reduces area by 6.5− 16.1× (Section V).

II. BACKGROUND: VIVADO HLS DATAFLOW OPTIMIZATION

Many packet processing applications can be modeled as

a dataflow graph [16], passing packets between processing

1Networking Template Library: https://github.com/acsl-technion/ntl
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elements along a directed graph. This model maps well to

hardware and is expressible in Vivado HLS, which offers

specific optimizations that extract a dataflow graph from func-

tion definitions, synthesizing processing elements for function

invocations and connecting them with FIFO buffers.

The Xilinx application note for protocol processing sys-

tems [14] instructs developers to create pipelined designs using

the dataflow optimization, building elements as functions, and

composing elements by calling them within other functions.

Rather than executing complete tasks, functions are expected

to take a small step toward their goal and return immediately,

expecting to be called repeatedly. This allows the compiler to

optimize them for high throughput.

State and internal interfaces are implemented using static

variables. For example, a function may implement a state

machine element with the current state as a static variable.

Each invocation calculates the next state and updates the

variable, returning immediately. This model matches the non-

HLS semantics of C and C++, i.e., as software: a static variable

keeps its state between function invocations.

Unfortunately, Vivado HLS’s dataflow optimization has

several limitations [12]: it forbids bypassing elements or

creating feedback loops and requires each variable to have

a single producer and consumer. Defining the I/O FIFOs

of each element explicitly through hls::stream objects

and disabling strict checking through a compiler flag allows

implementing feedback loops, but the requirement to express

state as static variables prevents element reuse across modules.

For example, under the dataflow optimization, an element may

be reused by invoking its function more than once. However,

if the function uses static variables, multiple instantiations

share these variables, breaking the dataflow optimization. One

may still create multiple instances of a given HLS function

after compiling it to RTL. However, this approach requires

adding glue logic that could introduce bugs, complicate the

development process, and hinder code reuse in other projects.

III. DESIGN

A. Design considerations for packet processing

Our goal is to form a methodology for creating reusable

packet processing components. Such applications are commonly

implemented as dataflow graphs, passing packets and headers

between concurrent processing units to exploit inter-packet

parallelism and achieve high throughput [6], [7], [14].

Packets of various sizes are typically passed using fixed-

width buses over multiple cycles, matching an external link

bandwidth. Consequently, processing units typically have to

keep state, even when packets are independent.

Packet processing applications are commonly split into

data plane and control plane parts. The data plane aims for

line-rate processing and low latency, while the control plane

handles configuration and management tasks that are not on

the performance critical path.

class map {
public:

template <typename InputStream, typename OutputStream,
typename Func>

void step(InputStream& in, OutputStream& out, Func&& f)
{

#pragma HLS pipeline
if (in.empty() || out.full()) return;
out.write(f(in.read()));

}
};

(a) Map higher order function definition.

template <typename In, typename Out, bool out_every_flit>
class fold {
public:

stream<Out> out;

explicit fold(const Out& initial) :
_initial(initial), _current(initial) {}

template <typename Func>
void step(stream<In>& in, Func&& f) {

#pragma HLS inline region
if (in.empty() || out.full()) return;

auto flit = in.read();
auto next = f(_current, flit);
if (out_every_flit || last(flit)) out.write(next);
_current = last(flit) ? _initial : next;

}
private:

const Out _initial; Out _current;
};

(b) Fold definition suitable for packet processing.

template <typename T, typename Counter = ap_uint<16> >
class counter : public fold<T, Counter> {
public:

typedef fold<T, Counter, true> base;
counter() : base(-1) {}

void step(typename base::in_t& in)
{

#pragma HLS pipeline
base::step(in, [](const Counter& cnt, const T& t) {

return Counter(cnt + 1);
});

}
};

(c) Count the flits in each packet using fold.

Fig. 1. Dataflow element examples using higher-order functions.

B. Design Methodology

To create reusable code, we build packet processing appli-

cations as a dataflow graph of reusable C++ classes, and use

higher-order functions to customize them. These classes can

further be composed through aggregation.

Dataflow element pattern: Using the dataflow optimization

requirements, we define a pattern for expressing processing

elements. Each basic element is defined as a C++ class, with a

step method that synthesizes into the basic element’s hardware

counterpart. The step function only uses hls::stream
arguments or hls::stream member variables for I/O.

Classes keep state as member variables, and only the class

at the top of the hierarchy needs to be instantiated as a static

variable of HLS’s top function. This allows code reuse while

also enabling Vivado HLS to perform dataflow optimizations.

A class may include methods other than step, but they
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must be inlined into their calling function. These methods

are forbidden from accessing the class state by the Vivado

HLS dataflow optimization requirements. They can only use

hls::stream member variables to communicate with the

step function. We use such inline methods to simplify the API

of more complex elements (e.g., the hash table in Section IV-C).

Higher-order functions: Many data manipulation oper-

ations can be described as different applications of higher-

order functions such as map or fold over the same generic

interfaces [17]. We apply the same principle to packet streams

and show two examples of such processing elements.

A map element (Figure 1a) receives a sequence of inputs

from an input stream and applies a given function to all input

items, writing the results to an output stream. A fold element

(Figure 1b) computes a scalar value from a stream. It is stateful,

updating its internal state using a provided function.

When handling packet streams rather than scalar values in

streams, each packet is composed of multiple flits. A common

pattern we implement in our projects maintains a per-packet

state, resetting it after each packet and updating the fold output

once per logical packet rather than per physical input word.

Figure 1c shows an example counter unit, which uses fold.

The counter’s step method includes one explicit port: an input

stream to count. In addition, the counter exposes an output

port as the member variable out. The class generates a stream

of counter values and not a scalar value to allow its use in

dataflow optimized caller functions.

Dataflow subgraph pattern: More complex elements can

be built using several basic ones. Our design pattern for this

case instantiates the latter as private member variables and calls

their step methods from the step method of the containing

element. The container step method is inlined into its caller

to facilitate the dataflow optimization, as suggested in [14].

Streams connecting the internal components are instantiated

as additional private members of the composite class.

Figure 2 shows an enumerate element, which associates

each input flit with a running counter. Designers may integrate

multiple instances of such elements into larger dataflow graphs.

We envision a rich combinator library that makes it easy

to reuse existing elements and to describe complex dataflow

graphs as a series of combinator applications, as done, for

instance, in reactive programs [18], [19].

C. Control plane

Packet processing applications use their control plane to

configure high-level behavior and for monitoring purposes. It

encompasses operations such as configuring flow tables, reading

statistics registers, and accessing debugging information. The

control plane does not need to process at line rate, and can be

managed, for example, from a CPU via an AXI4-Lite interface.

Vivado HLS can generate such interfaces from a top function’s

input and output arguments. In many cases, the control plane

hardware must implement some transactional interface, to

configure lookup table entries, for example. However the

generated AXI4-Lite interface cannot easily detect a write

transaction.

template <typename T, typename Counter = ap_uint<16> >
class enumerate {
public:

typedef std::tuple<Counter, T> tuple_t;
stream<tuple_t> out;
void step(stream<T>& in) {

#pragma HLS inline
dup.step(in);
_counter.step(dup._streams[0]);
zip.step(_counter.out, dup._streams[1]);
link(zip.out, out);

}
private:

dup<T, 2> dup;
counter<T, Counter> _counter;
zip<tuple_t, Counter, T> zip;

};

(a) An enumeration unit that associates an increasing number with each
flit in a packet, composed of multiple elements.

Enumerate
zipcounterdup

(b) Enumeration element block diagram.

Fig. 2. Enumeration example, composing multiple elements.

template <typename T> struct gateway_registers {
ap_uint<31> opcode; ap_uint<1> go;
T data; ap_uint<1> done;

};

template <typename T> class gateway {
public:

template <typename Func>
void step(gateway_registers<T>& r, Func&& f) {

if (r.go && !axilite_gateway_done) {
if (f(r.opcode, r.data))

axilite_gateway_done = true;
r.done = 1;

}
} else if (!r.go && axilite_gateway_done) {

axilite_gateway_done = false;
r.done = 0;

}
}

private:
bool axilite_gateway_done;

};

Fig. 3. Control plane gateway protocol implementation. The r parameter is
exposed through AXI4-Lite.

To implement a higher level transactional interface on top of

an AXI4-Lite interface, we design a simple gateway interface

(Figure 3). The gateway includes registers for the chosen opcode

and associated data (parameterized by the data type T), as well

as “go” and “done” bits to control and expose the transaction

state. The gateway step function is parameterized with a

callable type Func, which it invokes for new transactions. The

function may return false to indicate it has not finished the

transaction, requiring more cycles for completion. In such cases

it is up to the callable to maintain its state between calls, e.g.,

using a closure that captures references to its necessary state.

With a large design, this approach can simplify the resulting

AXI4-Lite unit. Vivado HLS generates a single decoding

unit containing all the registers exposed through the bus and

connecting it to any unit in the design with control registers. By
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TABLE I
MAIN BUILDING BLOCKS OF NTL .

Name Description

map<In, Out, Func> Apply Func on each input flit.
fold<In, Out, Func> Aggregate the input stream using Func.
dup<T, N> Duplicate a stream to N outputs.
zip<Out, In1...> Combine a flit of each input stream.
link<In, Out> Connects two streams.

stream<T, Tag> Specialized stream interface.
pack_stream<T> Stream with automatic (de)serialization.
pfifo<T, Depth> Stream with a full-threshold.

pop_header<Bytes> Pop a fixed-width header.
push_header<Bytes> Push a fixed-width header.
push_suffix<Bytes> Push a fixed-width suffix.

array<T, Size> BRAM array w. control-plane interface.
hash_table<K, V, Size> BRAM hash-table data structure.

scheduler<N> DRR scheduler with N entries.
gateway<T, Func> Transactional AXI4-Lite interface.

using a single gateway interface to multiplex several different

transactions, we simplify the decoding unit and distribute it

among the various elements, reducing routing congestion.

D. Integration with Vivado HLS

The patterns described in the previous sections make code

reuse and encapsulation in Vivado HLS possible. We rely on

C++ features to express general designs with template parame-

ters that can be later set to the specific project requirements.

Parameters such as bus widths, data types, or even functions and

algorithms can be used. As tools resolve these parameters at

compile-time, they are well suited to Vivado HLS requirements,

as opposed to dynamic approaches such as polymorphic classes.

However, some forms of generalizations are not well-supported

in Vivado HLS. For example, using an array of processing

elements can sometimes trigger dataflow violations due to

multiple methods accessing the same member variable, even

though each method is accessing a different array cell. We

work around this limitation using the Boost preprocessing

library [20], but this can make code reuse more difficult.

Vivado HLS’s dataflow optimization typically uses a strict in-

terpretation of its single-producer-single-consumer rule that can

sometimes be overly limiting. For instance, when synthesizing

processing elements from C++ methods, Vivado HLS interprets

different method invocations of a single object as a violation

of this rule, even when each method uses different member

variables. We trigger these rule violations when implementing

inlined accessor methods to our elements. Luckily, a compiler

flag can disable this strict interpretation of dataflow rules, as a

workaround. We expect that improved compiler analysis will

eliminate such false violations in the future.

IV. LIBRARY BUILDING BLOCKS

While implementing networking applications in our group,

several building blocks emerged, which we collected into the

ntl library (Table I). The methodology described above allows

implementing templated versions of these blocks that can

be used in different applications and instantiated in different

versions inside a single application.

A. Specialized streams
Vivado HLS uses the hls::stream template class to

describe various FIFOs and streaming interfaces. However, the

semantics of a hls::stream can vary depending on the

underlying FIFO or interface it requires, and, in some cases,

the developer may need a more complex FIFO abstraction.
Depending on its chosen implementation, hls::stream

provides both blocking and non-blocking operations. Blocking

operations may stall the element’s state machine until the stream

is ready to provide an output or accept an input, whereas non-

blocking operations are asynchronous. Non-blocking writes

are normally needed with FIFOs to prevent a deadlock, as

a blocking write may cause the element to stop processing

completely, including processing that could free space for

the write to proceed. However, hls::stream objects that

represent an AXI4-Stream output interface forbid non-blocking

write operations, as these would create a dependency between

the AXI4-Stream interface’s TVALID output and its TREADY

input, violating the AXI4 specifications.
We identified several alternative stream classes that cover

the requirements of most packet processing applications (for

instance, a programmable threshold FIFO, explained below).

Users of these classes can use type polymorphism to write

generic code that works with any of them (see Figure 1a).
Furthermore, to prevent mistakes, we wrap hls::stream

with specialized wrappers according to its use. All wrappers

implement the same stream concepts: an input stream has a read

and empty methods, and an output stream has a write and full

methods. The wrappers have two template type parameters. The

first is the type of the values the stream contains, and the second

is a tag that selects the read/write methods using template

specialization: an ap fifo interface, AXI4-Stream input, or

AXI4-Stream output. Code that uses the specialized stream

wrappers can work with the different interfaces transparently,

as the underlying implementation chooses blocking or non-

blocking operations according to the chosen interface.
Using the same interface, more complex stream classes can

be defined. For example, we implement a pack_stream
template that automatically packs and unpacks values to a raw

bitstring representation. Even though Vivado HLS provides a

data_pack directive that can be used to pack struct fields

automatically, it leaves the decision of field ordering and

padding to the compiler, with limited user control. Using the

packing stream template, we can let developers write their own

serialization and deserialization functions.
Example: Programmable threshold FIFO: Vivado HLS

can automatically pipeline complex computations in processing

elements. However, dependencies between pipeline stages

can reduce the throughput. A common dependency in our

methodology occurs between a check that an output stream is

full and the actual write to that stream. If the compiler cannot

schedule the two operations in the same cycle, it will increase

the pipeline’s initiation interval to the number of cycles between

the two, resulting in artificially lower performance.
Our solution in the ntl library is to provide an alternative

stream class that replaces the stream check with a credit-based
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Producer

Producer index

Consumer index

Data FIFO

CI updates

Consumer

Consumer index

Fig. 4. An HLS FIFO with a programmable threshold. The custom logic and
state are inlined into the producer and consumer modules. The producer keeps
a local copy of the consumer index to enable a local credit check.

push_header<size>header
packet output

Fig. 5. The push_header element receives two stream interface inputs
for the packet payload and the new header. It reorders the output to place
the header before the payload in the output stream. The template class is
parameterized by the header size to simplify the resulting RTL code.

mechanism. The programmable FIFO uses credit registers both

at the producer and the consumer side, counting the number of

elements they have seen (Figure 4). It uses a separate stream to

pass credit updates between the two. Its modified full method

checks whether the number of credits at the producer is below

the given threshold, and the write method updates the producer’s

credits.

As the new full method does not access the underlying

data FIFO, the compiler does not infer a dependency between

fullness checks and writes. Thus, we replace the compile time

dependency check of Vivado HLS with a runtime check, elim-

inating the unwanted dependency and improving throughput.

When correctly configured, this design does not allow overflows.

Timely processing of credit updates from the consumer is

necessary for the correct operation of the programmable FIFO,

so updates cannot be restricted to the same conditions the

FIFO user may check before calling the write or full methods.

Therefore, we require the producer to call a step function of

the programmable FIFO to read and process the credit updates

on every invocation of the producer unit.

B. Header manipulation elements

Packet interfaces transmit data as a stream of fixed width

flits, possibly fragmenting network headers across several flits.

We design reusable elements to push/pop fixed-size headers

to/from a packet stream.

Popping a header involves buffering the header octets and

reordering the output payload to align it to flit width. The unit

also sends the stripped header on a separate output stream, to

allow independent processing of the header and the payload.

Similarly, pushing a header requires buffering octets to realign

the input payload while accommodating the header (Figure 5).

A similar element pushes a fixed size suffix at the end of the

packet, shifting it to align with the packet’s current length.

C. Random access data structures

We implement two generic BRAM-based tables for data

plane processing with slightly different semantics: an array and

a hash table. Both allow lookups and updates at a high rate,

hash_table<Key, Value, Size>
lookups
results

commands
responses

(a) Hash table element interfaces.

template <typename Key, typename Value, unsigned Size>
class hash_table {
public:

/* Lookup interface */
stream<Key> lookups;
/* Lookup responses */
stream<optional<Value> > results;
void step();
/* Inlined accessor methods */
int add_entry(const Key& key, const Value& value,

bool& result);
int delete_entry(const Key& key, bool& result);

private:
/* Updates interface values (see below) */
typedef command_template<Key, Value> command;
/* Helper method for implementing updates */
int execute_command(const command& cmd, bool& resp);
bool command_sent;
/* The hash table */
hash<Key, Value, Size> _table;
/* Internal update interface streams */
pack_stream<command> commands;
pack_stream<bool> responses;

};
template <typename Key, typename Value>
struct command_template {

enum command_enum { HASH_ADD, HASH_DELETE } cmd;
Key key; Value value;

};

(b) Hash table class interface.

Fig. 6. Hash table element.

and both offer a control plane interface for setup (designed

using the methodology described in the previous section).

The hash table class (Figure IV-C) provides a data plane in-

terface for lookups and matching results and a control interface

for updates. The lookup/result interface follows the dataflow

element pattern, and the class exposes inline methods for callers

to update or erase elements (add/delete_entry). These

methods send formatted commands to the class’s internal

commands stream. The unit’s step function reads the

commands and writes a response to the responses stream.

As this is an asynchronous process, the accessor functions may

return a busy indication and be called again later to test that the

response has arrived. The command_sent member variable

tracks the state of this interface.

As an optimization to save logic resources on the device,

arrays expose their internal data structure to the user without

a stream, through an inline operator[] method (subscript

operator). To comply with Vivado HLS dataflow optimization

rules, only a single unit may call the method. This makes it

difficult to implement control plane accesses to the array. We

solve this issue by sending commands from the control plane

gateway to the element that contains the array. The element

calls another inline method of the array that handles incoming

commands from the gateway.

D. Customizable scheduler element

Several applications we examined used a scheduler to allocate

resources such as network bandwidth or computational power.
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scheduler<Size>
request(ID) next(ID, quota)
yield(ID, remainder)

Fig. 7. A DRR scheduler element. The scheduler has two input streams:
requests for scheduling and yield commands. It outputs a stream of the next
scheduled task. We omit the Control plane interface for programming quotas.

We design a scheduler (Figure 7) as an abstract building block

well suited for both use cases. Our scheduler implements the

deficit round robin (DRR) algorithm [21], but in the future it

could be easily extended with other algorithms as well.

The scheduler receives requests to schedule different entities

(flows, threads, etc.) and enqueues them. It allocates a quantum

(e.g., a number of bytes to transmit, or a timeslice) to an

entity and sends its allocation to an execution unit. When the

execution unit finishes the quantum, or there is no more work

for the current entity, the execution unit notifies the scheduler

while reporting the remainder of the quantum, and reads the

next entity and its quantum.

We implement the scheduler as a dataflow element, with

a gateway instance for programming its quotas and other

configuration parameters from the control plane.

V. EVALUATION

Applications such as network address translation (NAT), load

balancing, or stateful firewall, can use several ntl elements:

hash-table elements for per-flow state, gateways for configu-

ration, header manipulation elements for (de)parsing packets,

and map and fold elements for glueing other elements together.

We evaluate the efficiency of our proposed HLS development

methodology and library using a firewall and a key-value cache.

As our target platform we use a Mellanox Innova Flex

card [22] which has a Xilinx Kintex UltraScale XCKU060

FPGA (xcku060-ffva1156-2-i) and is attached to a host via PCIe.

We use Xilinx Vivado HLS 2018.2. Our code and methodology,

however, is easily portable to similar SmartNICs as it relies on

Vivado HLS for everything but the vendor specific code and

DDR memory management unit (MMU). The vendor provided

FPGA shell dictates a specific clock rate (216.25 MHz), so we

target this clock rate in both applications.

A. UDP firewall

Our first example is a UDP firewall that receives a stream

of packets, parses their headers to find IP and UDP fields, and

uses a hash-table to classify the packets based on their source

and destination IP addresses and UDP ports. Data is received

over the card’s 40 Gbps network port, and filtered packets are

sent to the host CPU over PCIe.

The ntl-based HLS implementation uses a duplication
building block to buffer incoming packets before processing

them. Its parser is based on the enumeration element (Figure 2),

and a fold instance (Section III-B). The fold instance uses the

flit count from the enumerator together with the provided flit

to extract the necessary header fields. The rest of the firewall

pipeline uses a map instance to extract the hash key from

each packet header, and a hash table instance. We use another

TABLE II
FIREWALL APPLICATION PERFORMANCE, AREA, AND LINES OF CODE.

II Latency LUTs FFs BRAM LoC

HLS 3 25 cycles 5296 7179 12 218
HLS legacy 3 16 cycles 4087 4287 12 593
P4 2 211 cycles 34531 49042 193 92

ntl building block (zip with) to merge streams that influence

the forwarding decision and apply a lambda function on their

values. In addition, the firewall uses a control plane gateway

for the UDP port table configuration.

We compare the ntl-based HLS implementation against a

legacy HLS implementation which contains hand-written mod-

ules (only few of these reusable) and follows the recommended

coding standards from Xilinx. Furthermore, we compare to

a P4 implementation compiled using Xilinx SDNet 2018.2.

The legacy HLS implementation has a functionally equivalent

design. We develop it based on the ntl version, but refactoring

it to compile with C++98 rather than C++11 and using static

variables to describe stateful elements. This results in many

fewer reusable elements than in the library version of the code.

The P4 implementation describes an identical parser and flow

table and uses the same conditions in its control flow.

Table II compares code complexity across variants by

counting the lines of code using the cloc tool [23]. The

ntl-based application is 2.7× shorter than the legacy HLS

implementation due to two reasons: first, the ntl library (1098

LoC) contains elements that the legacy implementation must

customize and duplicate (though we could use the ntl elements

as starting points). Second, by using higher-order functions,

the ntl version allows writing more succinct code even when

the application requires custom functionality.

The HLS implementation requires only twice as many lines

compared to the P4 implementation, not counting the ntl
library code that the developer does not need to change (see

Table II). This difference is not surprising because P4 is

a domain specific language and it provides simpler syntax

for building parsers and connecting elements. However, a

general-purpose tool such as HLS allows fine-tuning the design

for better performance and, as we show next, implementing

algorithms that are not expressible in P4.

We compare the performance of the resulting FPGA circuits

in Table II. It shows that all implementations can process 64-

byte packets with 3 cycles between packets (P4 achieved higher

rate than targeted), providing throughput of 72 million packets

per second (Mpps), enough to sustain line rate (59.5 Mpps).

However, the ntl-based implementation delivers 8.4× lower

latency than the P4 version while also saving resources (6.5×
lower for LUTs and 16.1× lower for BRAMs). The legacy HLS

implementation achieves the same throughput and somewhat

lower latency than the library-based version. Its area use is

smaller, but both HLS versions use an order of magnitude less

resources than the P4 version.
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Fig. 8. Key-value store in-NIC cache block diagram. Top: egress pipeline handling packets sent from the host towards the network. Bottom: ingress pipeline
for packets received from the network. Reusable elements are color coded.

B. Key-value store cache

To show our framework with a more complex application,

we develop a prototype of a multitenant key-value store cache.

We augment memcached [24] with a transparent write-through

cache on the SmartNIC (similarly to previous work [25], [26])2.

The design exposes the accelerator services to software using

the NICA framework [27].

The accelerator on the FPGA parses incoming GET requests

encoded using UDP packets and responds directly to the client

for cache hits, while forwarding cache misses to the host CPU.

The cache is filled transparently by snooping on the host CPU

GET responses on the TX path. To keep the cache coherent

with the host, incoming SET requests invalidate their respective

cache entry (if present).

Figure 8 shows the block diagram of the key-value store

cache. Network packets are first classified to determine whether

they belong to the accelerator. Unrelated packets are forwarded

directly to the host. The classifier uses a similar design to the

UDP firewall, utilizing the hash table template class. In addition,

the UDP parser and de-parser use the header manipulation
classes to split header and data to different streams, which

allows them to be processed at different rates.

Ingress packets targeting memcached are then processed

with an application-layer parser and generate DRAM read

commands for GET requests and DRAM write commands for

SET requests. Some operations, especially parsing and hashing,

require deep pipelines to meet the necessary throughput, and

utilize the programmable FIFO building blocks.

We generate memory access commands using a stream

interface that is bound in a Verilog wrapper to an AXI4-MM

interface of the DDR controller. We chose not to use Vivado

HLS’s automatic AXI4-MM generated interface because it

could only generate a limited number of outstanding requests,

limiting the application performance for small requests. DRAM

responses are processed to decide whether the access is a hit

or a miss and handled accordingly. Hits generate a response

that is sent out over the network, while misses cause a buffered

copy of the request to be passed to the host. SET requests are

always passed to the host. The DRAM cache structure is a

2Here we do not compare ntl and P4 as P4 expresses all operations as
packet manipulations and is insufficient for implementing the cache.

TABLE III
KEY-VALUE STORE CACHE PERFORMANCE AND AREA

Module LUTs FFs BRAM HLS LoC RTL LoC

Infrastructure 44347 57448 565 6643 1736
Key-value cache 15383 15256 73 975 0
Vendor shell 170179 213942 309 - -

hash table that uses the keys as hashes and stores the values

inline. We support keys and values of up to 16 bytes.

Our design supports multiple tenants, each associated with

a traffic class; an administrator can prioritize the different

classes from software. The UDP parser tags requests and

responses with a tenant ID, and each tenant has a separate

memory area for storing key-value pairs. We instantiate two

elements of the DDR scheduler class, one for the network

interface and one for the host interface. Furthermore, each

tenant has separate configuration and statistics registers; these

are implemented using an instance of the array template class

(a gateway interface provides software access).

The main building blocks required to provide arbitration,

buffering and packet reassembly for multiple tenants are very

similar to those in related work on multi-tenant key-value

stores written in RTL, for instance Multes [28]. For this reason,

using HLS-based modules, such as the ones in ntl, will be

beneficial to emerging cloud-based FPGA designs that offer

network-facing multi-tenant services.

We synthesize the accelerator for 64 tenants, a table with 1024

entries, and 4 traffic classes. As Table III shows, the resource

requirements are modest. More importantly, thanks to the ntl
library, the number of lines of code necessary for expressing

the key-value cache is small (similar order of magnitude to

the UDP firewall). This shows reduced development effort. In

terms of performance, the accelerator processes GET requests

with 16-byte keys and values at line rate (40.3 Mtps), showing

that our design methodology results in code that HLS tools

can optimize and that yields high throughput designs.

VI. RELATED WORK

The Xilinx methodology for packet processing [14] has been

successfully applied in projects such as a TCP/IP stack [7]

and memcached server [6], [15]. This methodology uses a
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dataflow design, but its use of static variables for holding state

severely limits code reusability. In this work we extend this

methodology for better code reuse by using C++ classes to

wrap processing units, allowing multiple instantiations of the

same unit.

In [13] the authors present an architectural template for

using complex data structures in HLS. Each data structure unit

is composed of multiple specialized method units (SMUs), a

dispatcher unit, and a collector unit. Some of our data structure

building blocks, e.g., the array and the hash table, follow

a similar pattern, although we use custom dispatchers and

collectors to save resources. Unlike [13], our methodology

allows the pipeline and all building blocks to be expressed in

HLS, resulting in less RTL glue logic overall.

Silva et al. [29] present an HLS design methodology for high

performance, low area, and code modularity using modern C++

features, with example packet processing applications, among

others. We share several aspects of the methodology, but we

focus on packet processing requirements such as dataflow, and

provide a class library for networking elements.

Emu [10] is a framework for hardware networking ap-

plications that uses high-level synthesis from C# with the

Kiwi [30] HLS tool. Kiwi supports a different dataflow model

than Vivado HLS, using concurrent threads to describe the

different processing units, so it uses different design patterns.

Nonetheless, we share Emu’s goal of implementing a library

for common networking elements with HLS.

Researchers have developed domain-specific languages

(DSLs), such as P4 [31] or ClickNP [8], intended for packet

processing and networking applications running on specific

hardware devices, including FPGAs [9], [11], [32]. These

restrict the capabilities of the packet processing steps in the

pipeline, especially when it comes to expressing complex data

structures, to ensure that the resulting behavior is mappable to

the underlying programmable networking hardware. Conversely,

our work uses a general-purpose HLS tool, allowing users to

write packet processing applications with rich functionality.

Several projects separate the definition of the dataflow graph

and its processing elements. Floem [25], for instance, compiles

a DSL for CPU-based SmartNIC programming, combining a

Python-based dataflow model and elements programmed in

C. Similarly, Maxeler MaxJ [33] provides an HLS platform

for dataflow programming, using an extended Java language

variant. MaxJ divides programs into one or more kernels and

a manager that links them, rather than aggregating kernels into

higher level kernels. Unlike the above, we use C++ and HLS

as a single language and a single abstraction to develop both

the dataflow graph and the individual elements.

Vivado HLS includes an image and video processing library

based on OpenCV [12]. This library is designed for dataflow

processing of images, passing images as streams for a pipelined

operation, and providing building blocks such as filters and

transformations. Even though it targets a different application

domain than our work, both use dataflow optimized designs.

However, OpenCV HLS library functions do not keep state

between invocations, so their building blocks are functions

rather than classes. In addition, they do not use higher-order

functions to customize generic algorithms or patterns.

Previous works used higher order C++ functions for

HLS [17], implementing parallel dataflow algorithms focusing

on HPC designs [34], image processing [35], and using C++

meta-programming to provide recursion [36]. We apply similar

techniques for packet processing.

VII. DISCUSSION AND FUTURE WORK

Developing a large and feature-rich application, such as

the key-value cache, has allowed us to better understand and

enhance our methodology. Some patterns have appeared several

times in the design, which demonstrated that they were good

candidates for the ntl library. These patterns appear across

many networking applications. For example, both the generic

flow classifiers and our application-specific accelerators buffer

packets until their fate is decided, and we use a common pattern

for that. In addition, the designs share common parts in both

their RX and TX pipelines (ingress and egress). Implementing

these as a shared class, instantiated per pipeline, accelerates

development and reduces errors.

We found that it was not feasible to build our example

applications with HLS alone. We had to use Verilog and external

IP for things like the MMU and interaction with the Vendor

provided shell. We designed the MMU as a separate unit

to simplify the application design, allowing it to use virtual

addresses. Vivado HLS can generate AXI4-MM masters, but

not slaves, so we chose to implement the MMU in Verilog.

Since we have changed the HLS design to use AXI4-Stream

interface to DDR, in future projects it will be possible to

implement the MMU in HLS and use Verilog only for the glue

logic connecting the HLS interfaces with the DDR.

Looking forward, we envision translating our methodology

to toolchains beyond Vivado HLS. For instance, SYCL [37] is

a standard for heterogeneous development with modern C++,

based on OpenCL, with implementations for FPGAs under

development [38]. We share SYCL’s goal of using modern

C++ for FPGA development, and the desire for single-source

compilation of heterogeneous applications. SYCL may provide

the same building blocks we use for dataflow programming,

with its pipes abstraction. Our prototyping platform (a Mellanox

Innova Flex card) does not currently support OpenCL, so we

implement our library over Vivado HLS and leave a SYCL-

based implementation for future work.

VIII. CONCLUSION

High-level synthesis promises faster development for FPGA

designs but often suffers from poor code reusability due to the

requirements for optimizations such as dataflow pipelining. We

show how to create reusable and customizable building blocks

for the network packet processing domain while generating

high-performance efficient FPGA circuits with HLS tools. We

validate the usability of our methodology by implementing

two 40Gbps applications. While they perform different tasks

(key-value caching vs. firewall), these two applications share

numerous ntl building blocks, simplifying development.
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