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Abstract—Centaur is a GPU-centric architecture for build-
ing a low-latency approximate k-Nearest-Neighbors network
server. We implement a multi-GPU distributed data flow
runtime which enables efficient and scalable network request
processing on GPUs. The runtime eliminates GPU management
overheads from the CPU, making the server throughput and
response time largely agnostic to the CPU load, speed or the
number of dedicated CPU cores.

Our experiments systems show that our server achieves
near-perfect scaling for 16 GPUs, beating the throughput of a
highly-optimized CPU-driven server by 35% while maintaining
about 2msec average request latency. Furthermore, it requires
only a single CPU core to run, achieving over an order of
magnitude higher throughput than the standard CPU-driven
server architecture in this setting.
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I. INTRODUCTION

High-concurrency memory-demanding server applications

are ubiquitous in high performance computing systems and

data centers [12]. They pose three distinctive requirements

to developers: low, strictly bounded response time for client

requests, high throughput for higher server efficiency, and

large physical memory to keep the data set resident to

achieve these performance goals. Fulfilling all these require-

ments together is a significant challenge.

GPUs are a compelling platform to boost system compute

capacity and to meet the challenging requirements of net-

work servers at a fraction of operational and energy costs.

Recent works have shown that GPUs may greatly improve

performance and power efficiency for server applications [9],

[11]. The abundance of inter-request and intra-request par-

allelism enables efficient use of GPUs as a Multiple-

Instruction-Multiple-Data multi-tasking platform [53]. As

GPUs are increasingly deployed in data centers and public

clouds [42], [22], [10], broadening the range of applications

that can benefit from using them is particularly appealing.

The question we address in this paper is how to design

a scalable GPU-accelerated network server which can ac-

commodate large data sets while maintaining low latency

and high throughput. More specifically, we focus on the

design of a low-latency approximate k-Nearest Neighbors
(k-NN) server [27]. k-NN is a class of machine learning al-

gorithms forming the core of many latency-critical informa-

tion retrieval systems operating on large multi-dimensional

datasets. These include content-based image retrieval and

similarity search, e.g., Google images, and recommender

systems for ads such as Yahoo! Gemini. In these systems, the

processing time of the k-NN remains the main bottleneck,

in particular for larger data sets in higher dimension.

Prior works showed that accelerating k-NN computations

on GPUs may bring substantial speedups [19], [31], [20],

[32]. These works mostly considered efficient paralleliza-

tion and implementation of a stand-alone version of k-

NN algorithms on GPUs. This paper, however, is different

in that it deals with the challenges of integrating GPU-
accelerated algorithms into a realistic low-latency network
service performing interactive k-NN searches.

The common structure of the approximate k-NN search

algorithms is as follows. The dataset is pre-processed into

clusters offline. At runtime, each query is processed in three

stages: (1) filter: find the subset of w clusters which

are likely to hold the matching items; (2) search: search

the candidate clusters exhaustively; (3) reduce: return top

k matches. This structure is representative of many k-NN

algorithms [27], [18], [17].

The combination of the following three aspects of this

algorithm makes building such a service on GPUs partic-

ularly challenging. First, the algorithm requires fast access

to the entire data set because the clusters in the search
stage are chosen depending on the outcome of the filter
stage. Second, the dataset must be resident in GPU memory

to benefit from GPU acceleration. Therefore, to scale to

large datasets one must use multiple GPUs by splitting the

clusters into shards and distributing them across the GPUs.

With today’s GPUs it is possible to scale up to 512GB per

server using 16 GPUs. Last, both filter and search are

computationally demanding, therefore it is essential to run

them on the GPU to achieve low latency for each request.

The main design challenge is to efficiently execute the

filter-search-reduce pattern over multiple GPUs for

a stream of queries. Each filter stage starts in one GPU

and produces the candidate clusters. It is then followed by

the search stage invoked on one or more other GPUs

where the candidate clusters are stored. Running such com-

putations requires close coordination of data transfers, ker-

nel invocations and multi-GPU synchronization. Moreover,

handling multiple independent queries arriving at the server

requires careful pipelining to achieve full system utilization.

More fundamentally, as the number of GPUs increases

to scale to larger data sets, the multi-GPU scaling becomes

bounded by the CPU throughput due to GPU management

overheads. Figure 1 shows the effect of changing the num-

ber of CPU cores dedicated to GPU management on the
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Figure 1: The throughput of 6-GPU k-NN server for CPU-driven
and Centaur-based GPU-centric design, as a function of the number
of dedicated CPU cores. Centaur performance is agnostic to CPU
availability. Higher is better.

throughput of a k-NN server that uses 6 GPUs (3xNVIDIA

K80 GPUS). Without enough CPUs (10 in this case) to

drive the computations the throughput is low, leaving GPUs

underutilized. As we show analytically in Section III, such

poor multi-GPU scaling of low-latency k-NN computations

is inherent to the traditional CPU-centric server design.

In this paper we propose a novel GPU-centric k-NN

server architecture we call Centaur, which scales well

with the number of GPUs and provides millisecond-range

query latency without relying on the main host CPU. The

performance of the server is largely agnostic to the number
of CPU cores (Figure 1). Moreover, we prove theoretically

(Section IV-C) that the GPU-centric system design enables

linear weak scaling for any number of GPUs.

A key principle of Centaur is that the system refrains
from using the CPU for inter-GPU data transfers, multi-
GPU syncrhonization or GPU kernel invocation. Instead,

all the GPUs run persistent kernels [23] which continuously

execute an event loop, waiting for pre-defined external evens

to trigger actual computations. These kernels are inter-

connected to form a data flow graph using a new gpipe
programming abstraction. As common in a data flow model,

the computations are self-scheduled, such that each kernel

invokes its computations after receiving all the expected

inputs. To allow the system to interact with clients over

the network, some kernels implement an in-GPU network

server using GPUnet [46] GPU-side networking layer which

provides the standard socket interface.

Gpipe is a communication and synchronization primitive

akin to UNIX pipes that enables GPU threadblocks to

interact directly with each other, regardless whether they

are running in the same or different GPUs. It implements a

lockless producer-consumer queue which requires no atomic

operations, therefore it correctly works for connecting GPU

kernels across PCIe bus.

The host CPU sets up the system by carefully allocating

GPU cores to kernels to maximize GPU utilization. Centaur

runs without CPU involvement after the setup.

Such a design enables exploiting multiple levels of par-

allelism in server workloads (1) intra-request, by running

the stage logic in multiple GPU threads, (2) inter-request,

by allowing concurrent processing of multiple requests in

different filter-search-reduce pipelines and differ-

ent stages of the same pipeline, and (3) communication -

computation overlap via gpipes and GPU-side network API.

We implement a k-NN server using one of the available

approximate k-NN algorithms as the building block [28].

We choose this algorithm for the convenience of implemen-

tation, however we believe that our results will hold for other

algorithms that share the same filter-search-reduce
computing structure, such as [18], [17], [21].

We prototype the Centaur k-NN server for NVIDIA

GPUs, and run an image similarity search service on the

top. We use a 1M subset of the ANN SIFT1B [28] image

dataset, split approximately evenly into 8K shards across

all the server GPUs. Centaur achieves perfect throughput

scaling with up to 9 GPUs and 91% efficiency with 16 GPUs

(eight NVIDIA K80 boards) running in Amazon EC2. In

contrast, the highly-optimized traditional host-centric design

fails to scale linearly beyond 4 GPUs, and levels off entirely

for 9 GPUs. Thus, with 16 GPUs, Centaur outperforms the

baseline by 35%, serving about 85K queries/sec at 2 msec
end-to-end average latency measured from a remote client.

We also demonstrate that Centaur’s performance is in-

sensitive to CPU load, speed, and number of available

CPU cores. It maintains the same throughput even with a

single CPU core and runs up to 40× faster than the host-

centric baseline running on one core. This property of the

GPU-centric architecture allows significant cost reduction

in multi-GPU servers enabling allocation of a single CPU

core instead of using one-CPU-core-per-GPU as commonly

suggested in state-of-the-art systems 1.

Prior works on GPU OS abstractions [41], [30], [46], [14],

[44], [43] and GPU servers [25], [11], [9] have already

demonstrated the benefits of turning GPUs into first-class

system processors, relaxing the GPU tight dependence on

the CPU. Centaur adopts the same concepts applying them

to multi-GPU servers.

We believe that with the hardware trends toward fast inter-

GPU communications via NVLINK [16], growing avail-

ability of large-scale multi-GPU nodes [1] and emerging

multi-GPU architectures which rely on wimpy low-power

processors alone [4], the benefits of GPU-centric design will

become even more pronounced in the future.

This paper makes the following contributions:

• A novel GPU-centric multi-GPU server design for scalable

k-NN server based on distributed data flow model,

• A theoretical scalability analysis of the CPU-centric (tradi-

tional) design highlighting its inherent limitations,

• A Gpipe abstraction for inter-kernel communication and

synchronization,

• A comprehensive performance and scalability evaluation of

the low-latency GPU-centric k-NN server on 16 GPUs.

1See, e.g., http://timdettmers.com/2018/12/16/deep-learning-hardware-
guide.

245



II. BACKGROUND

We use NVIDIA CUDA terminology because we imple-

ment Centaur on NVIDIA GPUs, but most other GPUs that

support the cross-platform OpenCL standard [49] share the

same concepts.

Persistent GPU kernels. Traditionally, GPUs are used as

co-processor, where the main program that runs on the CPU

and invokes GPU kernels to execute individual functions.

Another approach is to use persistent kernels [23], which

run in an event loop on the GPU. These kernels process task
execution requests without the need to invoke GPU kernels.

The requests are fed and retrieved via a communication

channel implemented in GPU global memory.

GPUDirect. GPUs and other peripheral devices may com-

municate directly via PCIe bus. In particular, NVIDIA

GPUDirect [37] technology enables NICs to read/write

from/to GPU memory without the CPU involvement.

GPUDirect reduces latency and CPU overhead by eliminat-

ing redundant copies otherwise necessary to transfer data

between the GPU and the NIC.

GPUnet. GPUnet [30] is a GPU-side networking layer that

provides high-level networking APIs for GPU kernels. It

enables the use of socket abstractions within GPU kernels,

simplifying the development of GPU network server appli-

cations. GPUnet allows direct communication between the

GPU and the NIC.

III. SCALABILITY OF CPU-CENTRIC SERVER

ARCHITECTURE

Our goal is to analyze the system scaling to more GPUs,

while taking into account the GPU management overheads

and the computing structure of the k-NN algorithm.

We first analyze the throughput assuming that network

requests are fed to the GPUs one by one. Here we conclude

that multi-GPU scaling in k-NN servers is bounded by the

CPU capacity to manage those GPUs.

We then compute the response latency and the server

throughput assuming the common practice of batching mul-

tiple requests to amortize the overheads. We show that larger

batch size significantly affects respon. latency, whereas small

batches result in load imbalance with more GPUs.

Conventional multi-GPU k-NN server design. We assume

that filter, search and reduce are implemented each

as an individual GPU kernel. We further assume that the

dataset is split into shards and distributed among the GPUs.

The search kernels are invoked on the GPUs which store

their respective clusters.

For every request the execution flow is as follows:

1) Invoke the filter kernel,

2) Invoke W search kernels, one for each GPU which

stores the respective cluster found by filter. W is the

parameter of the algorithm [28],

3) Invoke the reduce kernel,

For maximum throughput, the server follows the state-

of-the-art Staged Event-Driven Architecture (SEDA) [52]

whereby few CPU threads are multiplexed among multiple

concurrent incoming requests. Therefore, all the GPU invo-

cations are asynchronous, and are monitored by periodically

querying for completion while concurrently handling other

incoming requests.

We assume that the bulk of the dataset, i.e., the clusters

in the search stage, are distributed randomly among the

GPUs. This is a valid assumption: there is usually no way

to predict which set of clusters gets accessed in a specific

query, precluding locality optimizations – the very reason

why approximate k-NN algorithms are necessary.

For simplicity we ignore the cost of data transfers between

GPUs, thus producing an optimistic estimate.

A. Multi-GPU Server without batching

The server throughput is given by:

Tmax = min{TC , TG(NG)}, (1)

where TC is the CPU throughput necessary to manage

GPUs, e.g., kernel invocation, and TG(NG) is the total GPU

throughput achievable for this application for NG GPUs.

Intuitively, if the CPU cannot keep up feeding the GPUs

with new kernels, the system throughput will be constrained

by the CPU.

For a perfectly scalable system the throughput with NG

GPUs is:

TG(NG) = NGTG(1). (2)

The CPU single-core throughput is given by:

TC =
1

(Oq +Ok)K(NG)
(3)

where Ok and Oq are the overheads of kernel invocation

and completion status query respectively, and K(NG) is

the number of kernel invocations for this workload with

NG GPUs. For simplicity we optimistically assume that

each status query always retrieves a completed task, but in

practice multiple queries per task might be necessary.

For a given input request, we necessarily invoke one

filter kernel and one reduce kernel. The number of

search kernels depends on the input: it is 1 if all the W
clusters are located on the same GPU, and W if they are in

multiple GPUs. Assuming random cluster distribution, the

average number of kernel invocations is equivalent to the

expectation of a number of non-empty bins out of NG bins

if we randomly assign each of the W balls to a bin. Then,

K(NG) = 2 +NG

(
1−

(
1− 1

NG

)W
)

(4)

Note that this expression converges to 2+W in a limit

when NG →∞.
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(a) CPU management scaling.
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(b) GPU performance scaling.
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(c) System scaling is capped by the CPU

Figure 2: Scalability of a CPU-driven server. W is the number of search kernels, i.e., the number of concurrently invoked GPUs.

Combining Eq 4 and Eq 3 yields the expression for the

expected CPU management throughput. This, in turn, allows

us to compute Tmax – the maximum server throughput as a

function of NG and W .
The graphs in Figure 2 are obtained by using Eq 3, Eq 2

and Eq 1 respectively, while assigning values measured in a

real system for the kernel overheads and k-NN throughput on

NVIDIA K80 GPU. Specifically, Ok = 5μsec, Oq = 3μsec
and TG(1) = 15Kreq/sec.

As expected, the throughput saturates when the CPU is no

longer able to feed GPUs. Moreover, it even drops for larger

values of W and more GPUs, because the chances that the

search will run on fewer than W GPUs is decreasing:

most search kernels are executed on different GPUs,

increasing the overall GPU invocation overhead.
Takeaway: multi-GPU scaling of the conventional CPU-

centric design for the k-NN algorithm is inherently limited by
the CPU management throughput, and requires more CPUs
to support more GPUs.

B. Multi-GPU server with batching
One approach to reduce the GPU management overhead

is to process incoming requests in batches. As a result,

the GPU runs larger kernels and the invocation overheads

are amortized. The downside is that batching significantly

increases the response latency, which makes it unsuitable

for low-latency servers, as we show below.
Assume that the batch size is B requests, and the system

receives the requests at the rate equal to its maximum

throughput TG(NG). We denote by tW (B) the mean waiting

time of a request for batch aggregation, and by tC(B) the

average computation time of a batch. Then, the mean total

service latency is given by:

tS(B) = tW (B) + tC(B). (5)

The average waiting time per request is:

tW (B) =
1

B

B−1∑
n=0

n

TG
(6)

Each request has to wait for the whole batch to finish

before it can advance to the next stage. Thus,

tC(B) = � B

Bconcurrent
�ts, (7)
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(b) Utilization of 16 GPUs vs. batch size

Figure 3: Server performance analysis with batching for W = 2

where Bconcurrent requests are processed by the GPUs

concurrently, and ts is the time to serve a sub-batch.

We omit the rest of the derivation for the lack of space,

but the intuition is that batches delay execution significantly,

and larger batches on fewer GPUs even more so as their

constituent requests cannot be processed in parallel.

Figure 3a shows the latency as a function of the batch size

for different number of GPUs. As expected, large batch size

causes the request latency to grow. For example, the batch

of 2048 requests as used in prior works [26] invoked with

W = 2 and 16 GPUs leads to 25msec request latency. Recall

that it is an optimistic estimate that ignores data transfer

overheads. In fact, this result is not far from the actual value

we observed: 32msec on 16 GPUs with batches of 1000

requests (see §VI-H).

Unfortunately, this latency is too high when using the

system for real interactive services. As shown in prior

works [29], [33], the end-to-end latency of more than 50

milliseconds negatively affect user engagement and service
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revenue. Since about 90% of the time is spent in frontend

servers [47], the k-NN computations are left with the latency

budget of few milliseconds.

Small batches cause load imbalance. Reducing the batch

size might reduce latency, but it hurts throughput. Specifi-

cally, small batches suffer more from load imbalance among

GPUs running the search stage leading to the tail ef-

fect [15]. Intuitively, requests in a batch must be invoked on

multiple GPUs and cannot proceed until they all complete.

The smaller the batch, the more pronounced will be the

effect of the momentary load imbalance between the GPUs.

This intuition matches the theoretical analysis below. We

calculate the utilization of all the GPUs as a function of the

batch size: a batch B produces BW queries for the search
stage. These queries are distributed randomly between NG

GPUs, with BW
NG

queries per GPU on average.

Given a batch B, bi is the number of queries destined

to the ith GPU. bi is a multinomial random variable (with

n = BW , k = NG, pi =
1

NG
).

Since all the GPUs wait for the largest batch to finish, the

utilization of GPUi is:

Ui =
bi

max
i

(bi)
(8)

Hence, the average utilization of all GPUs for this batch:

U = E

⎛
⎝ 1

NG

∑NG−1
i=0 bi

max
i

(bi)

⎞
⎠ =

BW

NG
E

⎛
⎝ 1

max
i

(bi)

⎞
⎠ (9)

We numerically evaluate this function while varying the

batch size and show it in Figure 3b for 16 GPUs. Note that

reducing the batch size below 1000 results in poor system

utilization and consequently lower throughput.

Takeaway: large batches increase the service latency,
making it a poor choice for interactive network services.
Small batches improve latency over large batches, but lead to
low GPU utilization due to load imbalance. Today’s solution

is to dedicate more CPU cores to GPU management to scale
to more GPUs, which is costly and inefficient.

Centaur aims to offer a more efficient alternative by

focusing on the root cause of the problem: CPU management

overhead. It suggests a design which minimizes the CPU in-

volvement, allowing requests processing one-by-one without

batching, while achieving low latency, high throughput and

multi-GPU scaling.

IV. DESIGN

At a high level, Centaur provides a runtime for multi-GPU

execution of data flow graphs each representing one k-NN

query, without using the CPU for task invocation and data

transfers.

The runtime comprises three main components:

Worker threadblock and affinity-aware scheduler. Each

task is executed by a generic GPU worker threadblock

implemented as a persistent kernel. The number of threads

is determined by the application task this worker is assigned

to execute.

Workers are interconnected via gpipes which work akin

to UNIX pipes as we explain later. The worker may receive

inputs from and send outputs to multiple other workers.

Depending on the specific task, the worker may wait to

receive more than one input to invoke its own compute

function. Similarly, the worker may send to a subset of other

workers connected to its outputs. For example, a filter
node is connected to several search nodes.

Affinity-aware scheduler determines the destination of the

next workers to which the outputs are sent. In particular,

the scheduler sends the output of a filter worker to the

search workers on the GPUs which store their respective

clusters. If such locality constraints are irrelevant, (i.e., there

are multiple search nodes running on the same GPU),

the scheduler chooses the worker via some load-balancing

policy (e.g., random or power-of-two choices).

Inter-worker communication. Gpipe is the main commu-

nication mechanism between workers. A gpipe is a single-

producer single-consumer queue which connects two work-

ers and allows data transfer, synchronization and in-place

data manipulation. Workers may reside in the same GPU,

or across different GPUs.

The gpipe mechanism is specifically designed to enable

atomics-free implementation, thus it works correctly over

PCIe bus that lacks atomic operations. To achieve high

performance, gpipes leverage peer-to-peer DMA between

the GPUs where available, otherwise falling back to the

compatibility mode which transfers data via CPU memory.

We discuss the implementation details in Section V-A.

reduce worker and space reservation. This is a special

worker with additional synchronization requirements. On

the one hand, reduce is blocked until inputs from all

the workers arrive. On the other hand, different workers

connected to it may be handling different requests, and may

produce results out of order. As a result, some gpipes may

run out of space while the reduce worker is waiting for the

inputs that belong to the same request, leading to a deadlock.

This is, in fact, a known problem in data flow systems.

Centaur introduces a reservation mechanism to prevent

reduce deadlocks. This mechanism reserves space in the

specialized reduce input gpipes for each incoming request

the moment the request enters the filter worker. Only

when the space is reserved the request begins its processing.

One useful byproduct of this design is that the search
workers are provided with the exact location to place their

outputs, thus saving space and polling overheads in the

reduce stage, as we explain in Section V-B.

A. Mapping execution on GPUs

Single GPU. Each worker is assigned to run one of the

tasks: filter, search or reduce and configured with
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Figure 4: k-NN execution on a single GPU. The tags (circles) of
the same color represent tasks belonging to the same request.

the number of threads appropriate for the task. In addition,

the configuration specifies the ratio between the number

of workers of each type. The best ratio would balance

the amount of computations between the stages, allowing

no worker stalls and better utilization. Centaur invokes the

workers on the GPU according to the requested ratio. All the

workers are invoked to run concurrently, eliminating GPU

kernel invocations at runtime.

Each worker running a specific task is connected to its

neighbors in the data flow graph. The GPU effectively

runs multiple such graphs, as many as there are filter
nodes. However, to achieve better load balancing and higher

utilization, we allow worker sharing between the graphs.

For example, a few filter workers can be connected to

a few search workers in an all-to-all fashion. We call the

set of interconnected workers a worker group. For perfect

load balancing, all filter workers can be connected to all

search workers, but this would incur high memory and

scheduling overhead.

Example. Figure 4 shows the system with two worker

groups, each implementing a full data flow graph. S1 and

S2 represent the data shards on that GPU.

Multiple GPUs. First, a single-GPU setup is replicated

across all available GPUs. Then, we connect the workers

across the GPUs as follows. All filter workers in the

same worker group on one GPU are connected to all

search workers in a single worker group in all the other

GPUs. Similarly we connect search and reduce workers

of the same worker group across all the GPUs.

The data is split evenly among the GPUs. Each GPU holds

an index table of all the clusters and their physical locations.

This table is used by the affinity-aware scheduler.

Example. Figure 5 shows the connectivity between the

workers when using two GPUs each with its own shard.

We show only connections from GPU0 to GPU1, and omit

the symmetric connections from GPU1 to GPU0 for clarity.

Note that the reduce workers can now get tasks from the

search workers located in both GPUs.

B. Connecting GPUs to the outside network

Each filter-reduce pair is associated with its own

GPUnet [30] network socket to receive a request from and

send a response to the client. This design follows the design

of GPU servers presented in GPUnet. Specifically, it assumes

Figure 5: Execution on multiple GPUs with shards split among
them.

that there is an external load balancer that routes the clients

to different server sockets, and that all the clients maintain

persistent (always open) connections to the server to mitigate

connection establishment overheads.

C. Scalability Analysis

The primary factor that limits Centaur’s scalability is

the allocation of gpipes for connections between filter
stages and search stages in all the GPUs. The number of

gpipes connected to search stage increases linearly with

the number of GPUs. Thus, a search stage gets occupied

by scanning for a new job instead of doing useful work.

We show that as long as the load increases proportionally
with the number of GPUs, aka weak scaling, there are no

runtime overheads due to the increased number of gpipes.

Each search stage has NGNf input gpipes, where NG

is the number of GPUs, and Nf is the number of filter
workers per GPU. There are Ns search workers in total.

We assume that each request to filter results in execution

of W search workers, that the client load λclient creates

Wλclient load on the search workers, which is evenly

distributed among the NG GPUs. Hence the load per gpipe

λq is given by:

λq =
Wλclient

N2
GNsNf

We assume that each search worker serves requests at

rate of μs. We also assume that the service rate is split

evenly between gpipes, and so the service rate per gpipe is

μq = μs

NGNfNs
.

We now ask: what is the expected number of times ntrials

the search worker checks its input gpipes until a task is

found? This quantity determines the overhead of polling and

connects it to the number of GPUs.

To answer these question we assume the approximation

of M/M/1 queues. For simplicity we assume that a search
worker randomly selects a gpipe and keeps scanning until a

task is found.
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In this case,

ntrials =
μq

λq
=

μsNG

λclient

Therefore, if the system load λclient grows linearly with

NG, the number of trials until a job is found is independent

of the number of GPUs.

V. IMPLEMENTATION

We implement Centaur using CUDA for NVIDIA GPUs.

Here we describe the main implementation details. Notice

however that although the implementation uses CUDA, the

problem we address is a fundamental problem (as we show

in III).

A. Gpipes
There are several types of gpipes, each providing the

communication channel for a different setup.

Local gpipes. We implement a gpipe as a lock-less single-

producer single-consumer ring buffer, similar to those used

in prior works [30], [24]. The buffer resides in the GPU

global memory, and its size is set at setup time to accom-

modate load fluctuations, and also depends on the size of

the objects transferred between the stages.
This design trades space for performance, as it requires a

private gpipe per consumer-producer pair while eliminating

the contention. It is a conscious design choice, however,

which allows low-overhead fine-grain inter-task communi-

cations. On the other hand, as the number of gpipes grow,

system scaling might get affected due to the increased

polling overhead for consumers. We analyze these overheads

below.

Cross-GPU gpipes. When the producer and the consumer

reside on different GPUs, we place the ring buffer in the

consumer’s GPU, and use GPUDirect to directly access the

gpipe in the consumer’s GPU memory. Placing the buffer

closer to consumer has two benefits: it allows low-overhead

polling of the head/tail pointers by the consumer, which is a

frequent operation when the consumer is waiting for new

tasks; and employs remote-write-local-read principle [30]

which optimizes the system performance for synchronization

over PCIe.

Fallback: cross-GPU gpipes without GPUDirect GPU
support. Unfortunately, GPUDirect is not always available.

Specifically, it is not supported across QPI for different

NUMA nodes, and does not allow a GPU to connect to

more than 8 other GPUs [6]. This limitation is likely to

be removed in the future to meet the growing demands for

multi-GPU machines [7], [1], [2].
We replicate ring buffer in the CPU and in the consumer’s

GPU memory. The producer writes to the host, while a host

runs a helper thread that copies the tasks from the CPU

memory into the consumer’s GPU buffer. Direct GPU mem-

ory access from the CPU is implemented using NVIDIA

gdrcopy [36] kernel module.

Memory management. gpipe serves not only for inter-task

communications but also as a memory manager. gpipe stores

all its data by value. To save redundant memory copies, the

producer access gpipe to allocate a gpipe slot, to which it

then writes directly without using private memory. When the

data is ready, the producer commits, thereby making the slot

available to the consumer. The consumer, similarly, operates

on the slot, and commits it back when done.

This mechanism simplifies the intra-task memory man-

agement, and eliminates the overheads associated with it.

B. Reduce stage

Tracking sub-tasks for the same request. The reduce
stage aggregates multiple results pertaining the processing

of the same request by previous stages in the data flow

graph. To maintain this semantics while allowing concurrent

handling of multiple requests by different graph stages, a

naive solution would annotate each request with its ID when

it enters the system. Instead, we introduce a simple reducer

buffer mechanism which we describe next.

Reducer buffer and reservations. Reducer buffer is used

instead of gpipe to connect the reducer. It is an array broken

into slots, one per request, each intended to store all the

partial results from the previous stages that pertain the same

request. The memory in the reducer buffer is reserved for

each request it is received. While simple, this reservation

mechanism works well for k-NN. The slot cannot be used

by any other request. When the tasks preceding the reduce
worker terminate, their outputs are placed directly into the

correct slot in the reducer buffer.

This mechanism has several benefits. First, it prevents the

deadlock due to insufficient space in reduce gpipes. In

addition, it saves the overhead of searching for the partial

results belonging to the same request. Last, it does not

require maintaining unique request ID.

C. GPU invocation

Centaur uses task-to-threadblock mapping, while allowing

different number of threads for workers of different types.

To invoke them on the GPU, we consolidate the workers

of the same type in the same kernel. Doing so is essential

to reduce the total number of concurrently running kernels,

which is limited to 32 (the size of the Hyper-Q) [6], [38].

This design creates an opportunity for additional perfor-

mance optimizations in terms of the task placement on GPU

streaming multiprocessors (SMs). Specifically, earlier works

demonstrate substantial improvements in GPU performance

when threadblocks running different tasks are placed on the

same SM [40]. The reason is that different tasks are likely

to use different hardware resources, thereby easing resource

contention.

We therefore strive to schedule that workers such that dif-

ferent tasks end up on the same SM if possible. Specifically,

we experimentally find that the NVIDIA GPU scheduler
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places threadblocks of a kernel in a round-robin fashion

over the available SMs. Thus, if a kernel with n search
threadblocks is invoked after the kernel with n filter
threadblocks, the search and filter will be placed on

the same SM if n is the number of SMs in the GPU. This

simple heuristic achieves the best results, also because it

balances the load between different SMs.

For example, in our setup we choose 1024,480 and 32

threads for filter,search and reduce workers respec-

tively. This configuration ensures that all the stages will fit

on the same SM when invoked as three kernels with 15

threadblocks each, to fit on the 15SMs in the GPU.

VI. EVALUATION

A. Evaluation Objectives

We aim to answer the following questions:

1) How well does Centaur-based server scale compared to the

CPU-driven design? (§VI-F)

2) How sensitive Centaur-based server is to the availability

of CPU cores and CPU speed (§VI-G)

3) What is the performance cost of using Centaur design in

smaller scale systems (§VI-H)

B. Competing Designs

We implement three servers, each following a different

design approach: CPU-centric micro-batching server, CPU-

centric server without batching, and Centaur.

Micro-batching server design. A batching server is a poor

match for interactive network services due to its high latency,

but we provide it as a reference point for the maximum

achievable throughput.

Our implementation uses two CPU threads.The receiving
thread receives requests from the network, and waits until

a predefined number of requests arrive in a batch, or for

a predefined timeout, whichever comes first. It passes the

batch to the processing thread, and continues with the next

batch.

The processing thread sends the batch to a randomly

selected GPU to run the filter stage, waits for the results,

partitions them into sub-batches according to the location

of the shards required for each request in the batch, and

sends each sub-batch to the correct GPU to perform the

search stage. After completion of all the search tasks

for all the sub-batches, the processing thread invokes the

reduce stage on the CPU (running it on the GPU is slower

due to overheads).

CPU-driven server design. This server is a multi-threaded,

highly optimized lock-free server. We allocate 4 IO threads:

two receiving threads and two sending threads. In addition

we allocate a control thread for each GPU. We found that

fewer I/O threads fail to saturate the server and shift the

bottlenecks to the I/O path.

All the threads multiplex the processing of multiple re-

quests to achieve high GPU utilization. We use an event-

driven server design [52] in which the server maintains a

state machine for each request. Each one of the GPU threads

is assigned a set of active requests it should handle. The

thread scans through the state machines of all its requests

until it finds a request with a pending action, and performs

this action. Example actions are: receiving a request from

a network, sending computation to the GPU, checking the

completion of a computation request, or sending a response

to the client.

C. Setup

We perform the experiments on two different systems

described in Table I. First, we use a server in our lab to run

a complete end-to-end evaluation by measuring the request

latency and throughput as observed by a client running on

a separate machine connected via Infiniband. The Centaur’s

server implementation uses GPUnet GPU-side networking

library to handle requests on GPU. The PCIe PLX switch

in our server provides stable and symmetric performance

across all the GPUs and the network adapter.

As our machine is limited to 6 GPUs (3 x K80 boards),

we perform additional evaluations on an Amazon EC2

P2.16xlarge instance that scales to 16 GPUs with 64 vCPUs.

Unfortunately, EC2 does not offer Infiniband NICs, and

therefore we cannot use GPUnet. To achieve consistent

and reliable results, we generate the load locally on the

server, and emulate the network traffic by transferring client

requests and server responses in/from running GPU kernels

as if they were received/sent via network.

Another limitation of the large-scale multi-GPU setup is

that NVIDIA GPUs do not support more than eight peer-to-

peer GPU connections each [6]. This constraint, in turn, puts

a hard limit on scaling experiments with Centaur when using

peer-to-peer gpipes. Therefore, for the experiments with

more than 9 GPUs, we resort to using gpipe compatibility

mode which streams the data via CPU memory using CPU

helper threads (see §V-A for more details). Figure 6a shows

that with 8 GPUs this CPU-assisted compatibility mode

results in slightly lower throughput than when using peer-

to-peer gpipes. Therefore, the multi-GPU evaluation using

the compatibility mode provides a pessimistic estimate of

the server performance on future hardware which hopefully

will not have these peer-to-peer scaling restrictions.

All the GPUs are configured to the highest supported

clock rate. The CPUs are also set to the highest frequency

unless stated otherwise. EC2 vCPUs do not support fre-

quency scaling and run in the default mode.

D. Workload

We evaluate the k-NN server by using it for running a low-

latency image similarity search service. In our experiments
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Location Software CPU GPU PCIe Network
Local CUDA 8.0, Ubuntu 14.04, kernel 3.13.0

. NVIDIA Driver v375.39, GPUnet
6 cores (12 hyperthreads)
Intel Xeon E5-2620 v3
(Haswell)

3x NVIDIA
K80 (6
GPUS)

PLX PEX
8747

Mellanox
Connect-IB
56Gbps

Amazon EC2
(p2.16xlarge
instance)

CUDA 7.5, Amazon Linux AMI release
2016.03, kernel 4.4.16-27.56, NVIDIA
Driver v352.99

64 virtual CPUs, custom
Intel Xeon E5-2686 v4
(Broadwell)

8x NVIDIA
K80 (16
GPUs)

unknown none

Table I: Experimental setup.

(a) Server throughput scaling. Higher is better.

(b) Server speedups over one GPU. Higher is better.

Figure 6: Scalability of different server designs.

we configure the algorithm to use two clusters to search for

the match (W = 2 in Section III), and k = 1 (top 1 result).

We use a 1 million images SIFT data set [28], and split it

equally across all the available GPUs used in the experiment.

Each image in the image data set is represented as a 128-D

SIFT [34] vector. The data set is pre-processed offline to

group similar images into separate clusters. The clustering

uses the k-Means algorithm [35], [48]

E. Measurement methodology

For the experiments with the local server we measure per-

request latency and average server throughput as observed

by a remote network client. The client generates the load

at a requested throughput level. Unless stated otherwise, the

throughput reported for different designs is the maximum

achievable throughput. The throughput-latency curves (Fig-

ure 9) confirm that the system achieves maximum through-

put while retaining the desired low per-request latency.

F. Performance scaling

We perform the experiment on both the local machine

with 6 GPUs and a remote EC2 machine with 16 GPUs.

We present the absolute throughput results in Figure 6a and

the speedup over a single GPU for each design in Figure 6b.

We first validate that the Amazon EC2 experiments pro-

duce meaningful results by comparing them with the local

execution. We observe that the Amazon EC2 instance is

consistently slower than the local server, both in CPU-driven

and Centaur-based servers. Due to poor visibility into the

actual hardware resources in EC2, we cannot explain this

performance gap. However, since it equally affects both

server designs, we believe that its effect on the reported

scaling is negligible.

Centaur’s throughput surpasses that of the CPU-driven de-

sign starting from 11 GPUs, with the performance advantage

growing up to 35% with 16 GPUs. In fact, the CPU-driven

design throughput reaches its maximum with 9 GPUs, with

its resource efficiency of only 56% with 16 GPUs.

According to Figure 6b, the CPU-driven server fails

to scale linearly beyond 4 GPUs, and levels off entirely

for 9 GPUs. This result is consistent across a variety of

assignments of CPU management threads to CPU cores.

In contrast, Centaur achieves perfect scaling for up to
9 GPUs, and with the resources efficiency of 91% with
16 GPUs. We speculate that the main reason for reduced

scalability is the lack of peer-to-peer inter-GPU communi-

cations that is not available beyond 9 GPUs. Therefore, we

believe that Centaur may achieve even better scalability if

this constraint is lifted in future GPU architectures.

Notice that the classic CPU-driven design outperforms

Centaur if the number of GPUs is low. This is due to the

following inefficiencies in Centaur’s design:

• All the threadblocks of each stage have the same size. This

leads to underoccupied GPUs due to failure to allocate the

maximum possible number of threads.

• The different stages of the computation (filter, search,

reduce) are not perfectly balanced, which results in wasting

resources waiting to the slowest stage.

• Each threadblock in Centaur design indefinitely performs a

single computation stage. This prevents the CUDA runtime

from allocating resources on demand, which results in wasting

GPU resources.

We are planning to address the above disadvantages in

future work. However, in spite of these inefficiencies, Cen-

taur outperforms the CPU-driven design when the number

of GPUs is high.

Performance scaling vs. GPU compute load. How much

does the performance scaling depend on the computational

load per kernel? The answer to this question helps assess

the benefits of Centaur servers for setups where interactions

with GPUs are less frequent, possibly easing the CPU

management bottlenecks.

We configure the k-NN algorithm to increase the number

of clusters (W ) in the filter search, thus proportionally

increasing the load on GPUs.

We run the GPU scaling experiments in EC2 for each

value of W . The results in Figure 7 confirm that the
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Figure 7: Server scalability for different levels of GPU compute
loads while varying the number of search tasks. Higher is better.

Figure 8: Server performance for different CPU frequencies.
Higher is better.

scalability of the CPU-driven server improves gets closer to

that of Centaur for higher GPU load (larger W ). However,

Centaur scales better even for higher GPU loads.

G. Server performance sensitivity to CPU capacity

Using fewer CPU cores. We measure the maximum

throughput that different server designs can achieve as a

function of the number of available CPU hardware threads.

We use the local server with 6 GPUs. We note that the

experiment is performed with a hyperthreaded CPU with 12

logical CPU cores. When hyperthreading is off, however,

Centaur consistently outperforms the CPU-driven server by

over 7× when using all 6 CPU physical cores. Thus, by

using hyperthreading we provide a more favorable execution

environment for the CPU-driven design.

To perform the measurements we gradually turn off

CPU logical cores via procfs. The results in Figure 1

highlight the main performance benefits of the Centaur’s

CPU-less design. The throughput degradation of the CPU-

driven server compared to Centaur ranges from 40× for

one logical core to over 4× for eight. It finally regains

its performance back when using all the 10 cores, which

matches the number of CPU threads used with the 6-GPU

CPU-driven implementation. In contrast, Centaur maintains
stable performance regardless of the number of dedicated
CPU cores.

To quantify the influence of the number of dedicated

CPU cores on request latency, we run a throughput-latency

experiment while varying the number of cores as above.

Each point in the graphs in Figure 9 is obtained as follows:

the client applies a certain load on the server, sends 100K

requests, measures the latency of each request, and the server

throughput. In figure 9 we see that the latency degradation

of the CPU-driven design due to the lack of CPU cores is

Figure 9: Throughput-Latency curves of CPU-driven design under
different number of dedicated CPU cores. Centaur throughput and
latency do not depend on CPU availability (not shown).

even worse than the drop in its throughput. For example the

latency spikes 20× with six CPU threads. The latency of

Centaur server remains the same regardless of the number

of CPU cores (not shown).

Server throughput vs. CPU frequency. We evaluate the

effect of CPU frequency on the server performance. The

goal is to provide a more fine-grain assessment on of the

performance as the function of CPU speed. We run this

experiment on the local server with 6 GPUs, because EC2

does not enable frequency scaling for vCPUs. We take extra

care to obtain reliable CPU-driven server results with the

hyper-threaded CPU. Specifically, we pin all four I/O threads

to two physical cores and keep them running at the highest

frequency. We then reduce the frequency of all the other

logic cores (effectively 4 physical cores), and measure the

system throughput.

We perform the same experiment for different number of

GPUs and present the results in Figure 8. The performance

of the CPU-driven server decreases due to CPU frequency

scaling as we add more GPUs to the system. Indeed, the

server loses up to 40% of its throughput with 6 GPUs when

the CPU is slowed down by half. This is because additional

GPUs increase the frequency of inter-GPU synchronizations,

which amplifies the overall effect.

Similarly to the previous experiment, Centaur server per-
formance is insensitive to the changes in the CPU frequency.

Server throughput vs. CPU Load. We evaluate the effect

of additional CPU load on the throughput of the server.

We use the stress-ng [3] benchmarking tool to spawn

12 compute-intensive CPU threads, stressing all the CPU

cores in our setup. In parallel, we invoke the GPU server

with 6 GPUs and measure its maximum throughput. We

also measure the number of compute operations per second

executed by the stress-ng to estimate the slowdown of

CPU computations due to the execution of the GPU server.

We present the results in Figure 10. Under stress, the

CPU-driven server experiences a 8.2× slowdown in its

throughput, while the Centaur server is not affected at all.

stress-ng itself is dramatically slowed down when co-

running with the CPU-driven server, while only slightly

affected when co-running with Centaur.

253



(a) Server Throughput (b) stress-ng slowdown due to co-
execution

Figure 10: Co-execution of the server with a CPU demanding
workload. Centaur not affected. Higher is better.

Figure 11: Throughput-Latency curves of CPU Driven, micro-
batching and Centaur-based designs.

H. Performance costs of GPU-centric design

Latency and throughput for different server designs. We

evaluate the three server designs described in VI-B, with the

goal to show their latency-throughput tradeoff.

The adaptive micro-batching is configured to aggregate

up to 1000 requests for 10ms, whichever comes first. Al-

ternative configurations have resulted in lower maximum

throughput and are not shown.

Figure 11 shows that both the CPU-driven and Centaur-

based designs achieve similar average latency of around

2ms/request in steady state, whereas the latency of the batch-

ing approach is larger by up to 15×, and grows dramatically

the load increases.

The CPU-driven design attains 10% higher maximum

throughput than Centaur. This overhead is the cost Centaur

pays for better scaling and independence from the host

CPU’s characteristics (Centaur scaled better though and will

become favorable after a higher number of GPUs).

VII. RELATED WORK

To the best of our knowledge, Centaur is the first system

to show the benefits of GPU-centric low-latency multi-GPU

server architecture. We build upon prior art in several areas.

GPU server architectures. Several earlier works evaluate

the benefits of running server workloads on GPUs: Kim

et al. [30] report performance advantages using GPU for

running a face verification server; Agrawal et al. show [9],

[8] boost in power efficiency and operational costs for web

servers and text similarity search server; Unlike Centaur,

these works do not deal with data affinity and multi-GPU

scaling.

Task-parallel processing on GPUs. Chatterjee et al. [13]

implement on-GPU work stealing mechanism for irregular

workloads. Tzeng et al. [50] introduce an on-GPU runtime

for task-parallel execution on GPUs for dependent tasks,

advocating for the use of persistent kernels, on-device load

balancing and task dependency handling. We employ similar

ideas in our work, extending the system to a multi-GPU

environment.

GPU-centric designs. Recent works [30], [44], [45], [14]

advocate to transform the GPU into a first-class system pro-

cessor by offering I/O abstractions to GPU kernels, allowing

CPU-less execution of GPU-native programs. Centaur builds

on the same concept, but applies it in the context of multi-

GPU servers for improved scalability.

Inter-GPU communication. GPU-side networking li-

braries [30], [14], [24] allow GPUs to communicate via

Infiniband without CPU involvement, but do not provide

efficient inter-GPU communication in a single machine.

MVAPICH2 [51] provides GPU-aware MPI primitives.

NCCL [39] implements efficient collective communication

in multi-GPU machines. However, all of these solutions are

triggered from the host.

OpenCL has the concept of CLpipes [5] for inter kernel

communication, However, unlike gpipe which connects run-

ning kernels, it requires explicit synchronization of both ends

of the CLpipe by stopping the kernels to achieve consistent

updates.

VIII. CONCLUSIONS

We presented Centaur, a CPU-less multi-GPU server de-

sign for latency-sensitive, memory-demanding k-NN server.

We show that Centaur scales perfectly to 9 GPUs and

achieves 91% efficiency on 16 GPUs, with 35% higher

throughput than a highly-optimized CPU-driven design,

while providing 2msec average latency per request. Cen-

taur’s performance is agnostic to the CPU load, frequency

or the number of dedicated cores, which makes it over an

order of magnitude faster than the CPU-driven design under

the same load conditions.

Centaur demonstrates the benefits of fully autonomous

GPU operation in a highly demanding application using

current GPU generations, but it will likely become even

more advantageous with new generations of fast GPU-GPU

interconnects such as NVLINK. We believe, therefore, that

this work provides a valuable point in the design space of

multi-GPU systems, and hope to motivate further research

in this direction.
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