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Abstract
We propose a principled approach to integrating GPU memory
with an OS page cache. We design GAIA, a weakly-consistent
page cache that spans CPU and GPU memories. GAIA en-
ables the standard mmap system call to map files into the GPU
address space, thereby enabling data-dependent GPU accesses
to large files and efficient write-sharing between the CPU and
GPUs. Under the hood, GAIA (1) integrates lazy release con-
sistency protocol into the OS page cache while maintaining
backward compatibility with CPU processes and unmodified
GPU kernels; (2) improves CPU I/O performance by using
data cached in GPU memory, and (3) optimizes the readahead
prefetcher to support accesses to files cached in GPUs.

We prototype GAIA in Linux and evaluate it on NVIDIA
Pascal GPUs. We show up to 3× speedup in CPU file I/O
and up to 8× in unmodified realistic workloads such as Gun-
rock GPU-accelerated graph processing, image collage, and
microscopy image stitching.

Introduction
GPUs have come a long way from fixed-function acceler-

ators to fully-programmable, high-performance processors.
Yet their integration with the host Operating System (OS) is
still quite limited. In particular, GPU physical memory, which
today may be as large as 32GB [9], has been traditionally man-
aged entirely by the GPU driver, without the host OS control.
One crucial implication of this design is that the OS cannot
provide core system services to GPU kernels, such as efficient
access to memory mapped files, nor can it optimize I/O per-
formance for CPU applications sharing files with GPUs. To
mitigate these limitations, tighter integration of GPU memory
into the OS page cache and file I/O mechanisms is required.
Achieving such integration is one of the goals of this paper.

Prior works demonstrate that mapping files into GPU mem-
ory provides a number of benefits [34, 36, 35]. Files can
be accessed from the GPU using an intuitive pointer-based
programming model, enabling GPU applications with data-
dependent access patterns. Transparent system-level perfor-
mance optimizations such as prefetching and double buffering
can be implemented to achieve high performance for I/O inten-
sive GPU kernels. Finally, file contents can be easily shared
between legacy CPU and GPU-accelerated processes.

Extending the OS page cache into GPU memory is advan-
tageous even for CPU I/O performance. With modern servers
commonly hosting 8 and more GPUs, the total GPU memory
available (100-200GB) is large enough to be used for caching
file contents. As we show empirically, doing so may boost
the I/O performance by up to 3× compared to accesses to a
high-performance SSD (§6). Finally, the OS management of
the page cache in GPU memory may allow caching GPU file
accesses directly in the GPU page cache, bypassing CPU-side
page cache and avoiding its pollution [15].

Unfortunately, today’s commodity systems fall short of
providing full integration of GPU memory with the OS page
cache. ActivePointers [34] enable a memory-mapped files
abstraction for GPUs, but their use of special pointers re-
quires intrusive modifications to GPU kernels, making them
incompatible with closed-source libraries such as cuBLAS [7].
NVIDIA’s Unified Virtual Memory (UVM) [8] and the Hetero-
geneous Memory Management (HMM) [4] module in Linux
allow GPUs and CPUs to access shared virtual memory space.
However, neither UVM nor HMM allow mapping files into
GPU memory, which makes them inefficient when process-
ing large files (§6.3.2). More fundamentally, both UVM and
HMM force the physical page to be present in the memory of
only one processor. This results in a performance penalty in
case of false sharing in data-parallel write-sharing workloads.
Moreover, false sharing has a significant impact on the system
as a whole, as we show in (§3).

Several hardware architectures introduce cache coherence
between CPUs and GPUs. In particular, CPUs with integrated
GPUs support coherent shared virtual memory in hardware.
In contrast to discrete GPUs, however, integrated GPUs lack
large separate physical memory. Therefore, today’s OSes do
not provide any memory management services for them.

Recent high-end IBM Power-9 systems feature hardware
cache-coherent shared virtual memory between CPUs and
discrete GPUs [31]. GPU memory is managed as another
NUMA node. Thus, the OS is able to provide memory man-
agement services to GPUs, including memory-mapped files.
Unfortunately, cache coherence between the CPU and dis-
crete GPUs is not available in x86-based commodity systems,
and it is unclear when it will be introduced (see §4.3). Clearly,
using the NUMA mechanisms for non-coherent GPU memory

USENIX Association 2019 USENIX Annual Technical Conference    661



management would not work. For example, migrating a CPU-
accessible page into GPU memory will break the expected
memory behavior for CPU processes, e.g., due to the lack of
atomic operations across the PCIe bus, among other issues.

To resolve these limitations, we propose GAIA1, a dis-
tributed, weakly-consistent page cache architecture for hetero-
geneous multi-GPU systems that extends the OS page cache
into GPU memories and integrates with the OS file I/O layer.
With GAIA, CPU programs use regular file I/O to share files
with GPUs. Calling mmap with a new MMAP_ONGPU flag makes
the mapping accessible to the GPU kernels, thus providing
support for GPU accesses to shared files. This approach al-
lows access to memory-mapped files from unmodified GPU
kernels.

This paper makes the following contributions:

• We characterize the overheads of CPU-GPU false shar-
ing in existing systems (§3.1). We propose a unified
page cache which eliminates false sharing by using a
lazy release consistency model [22, 10].

• We extend the OS page cache to control the unified (CPU
and GPU) page cache and its consistency (§4.1), without
requiring CPU-GPU hardware cache coherence. We in-
troduce a peer-caching mechanism and integrate it with
the OS readahead prefetcher, enabling any processor ac-
cessing files to retrieve them from the best location, and
in particular, from GPU memory (§6.2).

• We present a fully functional generic implementation in
Linux, not tailored to any particular GPU.

• We prototype GAIA on NVIDIA Pascal GPU, leveraging
its page fault support. We modify public parts of the
GPU driver and reliably emulate the functionality which
cannot be implemented due to the closed-source driver.

• We evaluate GAIA using real workloads, including
(1) an unmodified graph processing framework - Gun-
rock [38], (2) a Mosaic application that creates an im-
age collage from a large image database [34], and (3)
a multi-GPU image stitching application [16, 18] that
determines the optimal way to combine multiple image
tiles, demonstrating the advantages and the ease-of-use
of GAIA for real-life scenarios.

Background
We briefly explain the main principles of several existing

memory consistency models relevant to our work.
Release consistency. Release consistency (RC) [22] is a
form of relaxed memory consistency that permits delaying the
effects of writes to distributed shared memory. The program-
mer controls the visibility of the writes from each processor

1GlobAl unIfied pAge cache, or simply the daughter’s name of one of
the authors, born during this project.

by means of the acquire and release synchronization opera-
tions. Informally, the writes are guaranteed to be visible to the
readers of a shared memory region after the writer release-s
the region and the reader acquire-s it.

RC permits concurrent updates to different versions of the
page in multiple processors, which get merged upon later
accesses. A common way to resolve merge conflicts is by
using the version vectors mechanism, explained below.
Lazy release consistency. In Lazy Release Consistency
(LRC) [22, 10] the propagation of updates to a page is de-
layed until acquire. At synchronization time, the acquiring
processor receives the updates from the other processors. Usu-
ally, the underlying implementation leverages page faults to
trigger the updates [22]. Specifically, a stale local copy of the
page is marked inaccessible, causing the processor to fault
on the first access. The faulting processor then retrieves the
up-to-date copy of the page from one or more processors.
In the home-based version of the protocol, a home node is
assigned to a page to maintain the most up-to-date version of
the page. The requesting processor contacts the home node to
retrieve the latest version of the page.
Version vectors. Version vectors (VVs) [32] are used in dis-
tributed systems to keep track of replica versions of an object.
The description below is transcribed from Parker et al. [32].

A version vector of an object O is a sequence of n pairs,
where n is the number of sites at which O is stored. The pair
{Si : vi} is the latest version of O made at site Si. That is, the
vector entry vi counts the number of updates to O made at site
Si. Each time O is copied from site Si to S j at which it was
not present, the version vector of site Si is adopted by site S j.
If the sites have a conflicting version of the replica, the new
vector is created by taking the largest version among the two
for each entry in the vector.

Consistency model considerations
The choice of the consistency model for the unified page

cache is an important design question. We describe the options
we considered and justify our choice of LRC.
POSIX: strong consistency. In POSIX writes are immedi-
ately visible to all the processes using the same file [5]. In
x86 systems without coherent shared memory and with GPUs
connected via a high latency (relative to local memory) PCIe
bus, such a strong consistency model in a unified page cache
would be inefficient [36].
GPUfs: session semantics. GPUfs [36] introduces a GPU-
side library for file I/O from GPU kernels. GPUfs implements
a distributed page cache with session semantics. Session se-
mantics, however, couple between the file open/close opera-
tions and data synchronization. As a result, they cannot be
used with mmap, as sometimes the file contents need to be
synchronized across processors without having to unmap and
close the file and then reopen and map it again. Therefore, we
find session semantics unsuitable for GAIA.
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(a) False sharing between two GPUs
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(b) False sharing between CPU and GPU
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(c) The effect of false sharing in GPUs on an iso-
lated CPU-only kmeans benchmark [33]

Figure 1: Impact of false sharing on the performance of GPU kernels and the system as a whole.

UVM: page-level strict coherence. NVIDIA UVM [8] and
Linux (HMM) [4] implement strict coherence [24] at the
GPU page granularity (e.g., 64KB in NVIDIA GPUs). In this
model, a page can be mapped only by one processor at a time.
Thus, two processors cannot observe different replicas of the
page (multiple read-only replicas are allowed). If a processor
accesses a non-resident page, the page fault causes the page to
migrate, i.e., the data is transferred, and the page is remapped
at the requestor and unmapped at the source.

Although this model might seem appealing for page cache
management, it suffers from sporadic performance degrada-
tion due to false sharing. False sharing of a page occurs when
two processors inadvertently share the same page, at least
one of them for write, while performing non-overlapping data
accesses [17]. False sharing is known to dramatically degrade
the performance of distributed shared memory systems with
strict coherence because it causes repetitive and costly page
migration among different physical locations [17]. False shar-
ing has been also reported in multi-GPU applications that use
NVIDIA’s UVM [8]. The official recommended solution is to
allocate private replicas of the shared buffer in each processor
and manually merge them after use.
False sharing in a page cache. If strict coherence is used
for managing a unified page cache, false sharing of the page
cache pages might occur quite often. Consider an image pro-
cessing task that stitches multiple image tiles into a large
output image stored in a file, e.g., when processing samples
from a microscope [16]. False sharing will likely occur when
multiple GPUs process the images in a data-parallel way, each
writing its results to a shared output file. Consider two GPUs,
one processing the left and another the right half of the image.
In this case, false sharing might occur at every row of the
output. This is because for large images (thousands of pixels
in each dimension) stored in row-major format, each row will
occupy at least one memory page in the page cache. Since
each half of the row is processed on a different GPU, the same
page will be updated by both GPUs. We observe this effect in
real applications (§ 6.3.3).

False sharing with UVM

Impact of false sharing on application performance. To
experimentally quantify the cost of false sharing in multi-
GPU systems, we allocate a 64KB-buffer (one GPU page)
and divide it between two NVIDIA GTX1080 GPUs. Each
GPU executes read-modify-write operations (so they are not
optimized out) on its half in a loop. We run a total of 64
threadblocks per GPU, each accessing its own part of the array,
all active during the run. To control the degree of contention,
we vary the number of loop iterations per GPU.

We compare the execution time when both GPUs use a
shared UVM buffer (with false sharing) with the case when
both use private buffers and merge them at the end of the
run (no false sharing). Figure 1a shows the scatter graph
of the measurements. False sharing causes slowdown that
grows with the number of page migrations, reaching 28×, and
results in large runtime variance 2. Figure 1b shows similar
results when one of the GPUs is replaced with a single CPU
thread. This also indicates that adding more GPUs is likely to
cause even larger degradation due to higher contention and
increased data transfer costs.
System impact of false sharing. False sharing among GPUs
affects the performance of the system as a whole. We run the
CPU-only kmeans benchmark from Phoenix [33] in paral-
lel with the multi-GPU false sharing benchmark above. We
allocate two CPU cores for GPU management, and the re-
maining four cores to running kmeans (modified to spawn
four threads). The GPU activity should not interfere with
kmeans because kmeans does not use the GPU.

However, we observe significant interference when GPUs
experience false sharing. Figure 1c depicts the runtime of
kmeans when run together with the multi-GPU run, with and
without false sharing. Not only does kmeans become up to
47% slower, but the execution times vary substantially. Thus,
false sharing affects an unrelated CPU application, breaking
the fundamental OS performance isolation properties.
Preventing page bouncing via pinning. In theory, the false
sharing overheads could be reduced by pinning the page in

2The difference in the slowdown between the two GPUs stems from the
imperfect synchronization between them. Thus, the one invoked first (GPU0)
can run briefly without contention.
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Figure 2: GAIA high-level design in the OS kernel. The
modified parts are highlighted.

memory of one of the processors, and mapping it into the
address space of the other processors for remote access over
PCIe. Unfortunately, pinning page cache pages is quite prob-
lematic. It would require substantial modifications to the ex-
isting page cache management mechanisms. For example, to
be evicted, the pinned page would need to be unmapped from
the virtual address space of all the mapping processors.

Moreover, even though pinning is likely to yield better
system performance for pages experiencing false sharing,
in the common case remote accesses from other processors
would be slower than accessing the pages locally. Thus, robust
false sharing detection heuristics should be designed, such that
only the actual page bouncing triggers the pinning mechanism.
On the other hand, enabling the programmer to pin pages
manually at the mmap time is not efficient either, because then
the pages must be initialized with the contents of the file.
Mapping large files would thus require reading them in full
from the disk, which not only nullifies the on-demand file
loading benefits of mmap, but might not even be possible for
the large files exceeding physical memory.
Implications for Unified Page Cache design. We conclude
that the UVM strict coherence model is unsuitable for imple-
menting a unified page cache. It may suffer from spurious and
hard-to-debug performance degradation that affects the whole
system, and only worsens as the number of GPUs increases. A
system-level service with such inherent limitations would be
a poor design choice. Thus, we chose to build a unified cache
that follows the lazy-release consistency model and sidesteps
the false sharing issues entirely.

Design
Overview. Figure 2 shows the main GAIA components in
the OS kernel. A distributed page cache spans across the
CPU and GPU memories. The OS page cache is extended to
include a consistency manager that implements home-based
lazy release consistency (LRC). It keeps track of the versions
of all the file-backed memory pages and their locations. When
a page is requested by the GPU or the CPU (due to a page
fault), the consistency manager determines the locations of
the most recent versions, and retrieves and merges them if
necessary. We introduce new macquire and mrelease system

Figure 3: Code sketch of mmap for GPU. The CPU writes data
into the file and then invokes the GPU controller, which maps
the file and runs the GPU kernel.

calls which follow standard Release Consistency semantics
and have to be used when accessing shared files. We explain
the page cache design in (§4.1).

If an up-to-date page replica is available in multiple loca-
tions, the peer-caching mechanism retrieves the page via the
most efficient path, e.g., from GPU memory for the CPU I/O
request, or directly from storage for the GPU access as in
SPIN [15]. This mechanism is integrated with the OS reada-
head prefetcher to achieve high performance (§6.2). To enable
proper handling of memory-mapped files on GPUs, the GAIA
controller in the GPU driver keeps track of all the GPU virtual
ranges in the system that are backed by files.
File-sharing example. Figure 3 shows a code sketch of shar-
ing a file between a legacy CPU application (producer) and
a GPU-accelerated one (consumer). This example illustrates
two important aspects of the design. First, no GPU kernel
changes are necessary to access files, and no new system
code runs on the GPU. The consistency management is per-
formed by the CPU consumer process that uses the GPU,
which we call the GPU controller. Second, no modifications
to legacy CPU programs are required to share files with GPUs
or among themselves, despite the weak page cache consis-
tency model. The consistency control logic is confined to the
GPU controller process. Besides being backward compatible,
this design simplifies integration with the CPU file I/O stack.

Consistency manager

Version vectors. GAIA maintains the version of each file-
backed 4K page for every entity that might hold the copy of
the page. We call such an entity a page owner. We use the
well-known version vector mechanism (§2) to allow scalable
version tracking for each page [32].

A page owner might be a CPU, each one of the GPUs, or the
storage device. Keeping track of the storage copy is important
because GAIA supports direct transfer from the disk to GPU
memory. Consider the example in Figure 4, where a page
is first concurrently modified by the CPU and the GPU, and
then flushed to storage by the CPU. Flushing it from the CPU
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Figure 4: Version vectors in GAIA. The CPU flushes its
replica to disk, the GPU keeps its version. The following
CPU read must merge two replicas.

removes both the data and its version information from CPU
memory. The next reader must be able to retrieve the most
recent version of the page, which in our example requires
merging the page versions on the disk and on the GPU. The
storage entry in the version vector is always zero.

A new Time Stamp Version Table (TSVT) stores all the
version vectors for a page. This table is located in the respec-
tive node of the page cache radix tree. The GPU entries are
updated by the CPU-side GPU controller on behalf of the
GPU. We choose the CPU-centric design to avoid intrusive
modifications to GPU software and hardware.
Synchronizing system calls for consistency control. We in-
troduce two new system calls to implement LRC.

macquire(void *addr, size len, void* device)

must be called to ensure that the device accesses the
latest version of the data in the specified address range.
macquire scans through the address range on the device and
invalidates (unmaps and drops) all the outdated local pages.
When called for the CPU, it unmaps such pages from all the
CPU processes. Thus, the following access to the page will
cause a page fault trap to retrieve the most recent version of
the page, as we describe later in (§4.1.1).

mrelease(void *addr, size_t len, void* device)

must be called by the device that writes to the respective
range to propagate the updates to the rest of the system.
Similarly to macquire, this operation does not involve data
movements. It only increases the versions of all the modified
(since the last macquire) pages in the owner’s entry of its
version vector.

Tracking the status of CPU pages requires a separate
LRC_modified flag in the page cache node, in addition to
the original modified flag used by the OS page cache. This
is because the latter can be reset by other OS mechanisms,
e.g, flush, resulting in a missed update. The new flag is set
together with the original one, but is reset by mrelease call as
part of the version vector update.
Transparent consistency support for the CPU. GAIA does
not change the original POSIX semantics when sharing files
among CPU processes, because all the CPUs share the same
replica of the cached page. However, macquire and mrelease

calls must be invoked by all the CPU processes that might
inadvertently share files with GPUs. In GAIA we seek to
eliminate this requirement.

Our solution is to perform the CPU synchronization calls
eagerly, combining them with macquire and mrelease calls
issued on behalf of GPUs. The macquire call for the GPU is
invoked after internally calling mrelease for the CPU, and
mrelease of the GPU is always followed by macquire for the
CPU. This change does not affect the correctness of the origi-
nal LRC protocol, because it maintains the relative ordering
of the acquire and release calls on different processors, simply
moving them closer to each other.
Consistency and GPU kernel execution. GAIA’s design
does not preclude invocation of macquire and mrelease dur-
ing the kernel execution on the target GPU. However, the
current prototype does not support such functionality, because
we cannot retrieve the list of dirty pages from the GPU while
it is running, which is necessary for implementing mrelease.
Therefore, we support the most natural scenario (also in Fig-
ure 3), which is to invoke macquire and mrelease at the kernel
execution boundaries. Integrating these calls with the CUDA
streaming API might be possible by using CUDA CPU call-
backs [2]. We leave this for future work.

Page faults and merge

Page faults from any processor are handled by the CPU
(hence, home-based LRC). CPU and GPU-originated page
faults are handled similarly. For the latter, the data is moved
to the GPU. The handler locates the latest versions of the
page according to its TSVT in the page cache. If the faulting
processor holds the latest version in its own memory (minor
page fault), the page is remapped. If, however, the present
page is outdated or not available, the page is retrieved from
the memory of other processors or from storage.

This process involves handling the merge of multiple repli-
cas of the same page. The overlapping writes to the same
memory locations (i.e., the actual data races) are resolved via
an "any write wins" policy, in a deterministic order (i.e., based
on the device hardware ID). However, non-overlapping writes
to the same page must be explicitly merged via 3-way merge,
as in other LRC implementations [22].
3-way merge. The CPU creates a pristine base copy of the
page when a GPU maps the page as writable. Conflicting
pages are compared with their base copies first to detect the
changes.

The storage overheads due to pristine copies might compro-
mise scalability, as we discuss in (§6.1). The naive solution is
to store a per-GPU copy of each page. A more space-efficient
design might use a single page base copy for all the proces-
sors, employing copy-on-write and eagerly propagating the
updates after the processor mrelease-s the page, instead of
waiting for the next page fault (lazy update). Our current
implementation uses the simple variant.

The overheads of maintaining the base copy are not large in
practice. First, the base copy can be discarded after the page
is evicted from GPU memory. Further, it is not required for
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read-only accesses, or when there is only one-page owner (ex-
cluding the storage) in the system. Most importantly, creating
the base copy is not necessary for writes from CPU processes.
This is because the CPU is either the sole owner, or the base
copy has already been created for the modifying GPU.

Interaction with file I/O

Peer-caching. GAIA architecture allows a page replica to be
cached in multiple locations, so that the best possible I/O path
(or possibly multiple I/O paths in parallel) can be chosen, to
serve page access requests. In particular, the CPU I/O request
can be served from GPU memory. Note that access to the
GPU-cached page does not invalidate it for the GPU.

A naive approach to peer-caching is to determine the best
location individually for each page. However, this approach
degrades the performance for sequential accesses by an order
of magnitude, due to the overheads of small data transfers
over the PCIe bus. Instead, GAIA leverages the OS prefetcher
to optimize PCIe transfers. We modify the prefetcher to deter-
mine the data location in conjunction with deciding how much
data to read at once. This modification results in a substantial
performance boost, as we show in (§6.2).
Readahead for GPU streaming access. GPUs may concur-
rently run hundreds of thousands of threads that access large
amounts of memory at once. GPU hardware coalesces multi-
ple page faults together (up to 256, one for 64KB page). If the
page faults are triggered by accesses to the memory-mapped
file on the GPU, GAIA reads the file according to the GPU-
requested locations and copies the data to GPU pages. We
call such accesses GPU I/O.

We observe that the existing OS readahead prefetcher does
not work well for GPU I/O. It is often unable to optimize
streaming access patterns where a GPU kernel reads the
whole file in data-parallel strides, one stride per group of
GPU threads. The file accesses from the GPU in such a case
appear random when delivered to the CPU due to the non-
deterministic hardware schedule of GPU threads, thereby con-
fusing the CPU read-ahead heuristics.

We modify the existing OS prefetcher by adjusting the up-
per bound on the read-ahead window to 16MB (64× of the
CPU), but only for GPU I/O accesses. We also add madvise

hints that increase the minimum read size from a disk to
512KB for sequential accesses. These changes allow the
prefetcher to retrieve more data faster when the sequential
pattern is recognized, but it does not fully recover the per-
formance. Investigating a better prefetcher heuristic that can
cope with massive multi-threading is left for future work.

Discussion

GAIA and cache-coherent accelerator architectures.
Cache-coherent systems with global virtual address space

may allow a simpler solution to the page cache management.
However, we believe that cache coherence between the CPU
and discrete accelerators is unlikely to fully replace exist-
ing systems soon. Despite the cache coherent technologies
(CAPI [37]) having been available, the high cost and the need
for industry-wide coordination on open interfaces have hin-
dered their adoption thus far. Nor is it apparent how and
to what extent these technologies will improve commodity
applications (i.e., graphics, deep learning). Many additional
open issues (for example, scalability) also must be addressed.
Therefore, in GAIA we choose not to rely on cache-coherence
among CPUs and accelerators.
No snapshot isolation. GAIA does not provide snapshot iso-
lation. This is consistent with prior work on GPU file system
support [36]. While adding such guarantee is possible, we did
not find applications that require it.
Prefetching hints. Our current prototype could be extended
to support more advanced prefetching hints similar to
UVM [1]. For example, it could employ eager data copy into
the page cache of a specific GPU that is known to exclusively
access the data. We leave this for future work.
Using huge CPU pages. GAIA design and implementation is
tailored for 4KB pages managed by the OS. However, GAIA
can be adapted to support different page sizes as well, i.e.
2MB huge pages. Huge pages require only minor modifica-
tions to the TSVT management logic and tables, and might
improve performance for applications with sequential file ac-
cess. This is because transferring 2MB pages over PCIe is
about 5× more efficient than 4KB pages. On the other hand,
increasing the page sizes would affect the workloads with
poor spatial locality, such as Mosaic (§6.3.1).
GAIA compatibility with other accelerators. GAIA’s de-
sign can be extended to other GPUs and accelerators with
paging capabilities. In fact, support for paging was introduced
recently in AMD GPUs [4, 6]. However, implementation in
GAIA would require an accelerator to expose minimal page
management APIs, as we explain in the next section.

Implementation
GAIA implementation requires changing 3300 LOC and

1200 LOC in Linux kernel and the NVIDIA UVM driver
respectively.

OS changes

Page cache with GPU pointers. In Linux, the page cache
is represented as a per-file radix tree with each leaf node
corresponding to a continuous 256KB file segment. Each leaf
holds an array of addresses (or NULLs) of 64 physical pages
caching the file content.

GAIA extends the tree leaf node data structure to store the
addresses of GPU pages. We add 4 pointers per leaf node per
GPU, to cover a continuous 256KB file segment (GPU page is
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Function Purpose UVM implementation\
GAIA emulation Used by

Available in UVM allocVirtual/allocPhysical
mapP2V

allocate virtual/physical range
map physical-to-virtual cudaMallocManaged() mmap

freeVirtual/freePhysical free virtual/physical range
unmap virtual cudaFree() munmap

Emulated by GAIA unmapV Invalidate mapping in GPU Migrate page to CPU maquire

fetchPageModifiedBit Retrieve dirty bit in GPU Copy page to CPU and
compute diff mrelease

Table 1: Main GPU Virtual Memory management functions and their implementation with UVM

64KB). The CPU only keeps track of file-backed GPU pages
rather than the entire GPU physical memory. The leaf node
stores all the versions (TSVT) for the 64 4KB pages.
Linking the page cache with the GPU page ranges. GAIA
keeps track of all the GPU virtual ranges in the system that
are backed by files to properly handle the GPU faults for file-
backed pages. When mmap allocates a virtual address range in
the GPU via the driver, it registers the range with GAIA and
associates it with the file radix tree.
Data persistence. GAIA inherits the persistence semantics
of the Linux file I/O. It updates both msync and fsync to fetch
the fresh versions of the cache pages (similarly to the logic in
the page fault handler) and write their contents to storage.
GPU cache size limit. GAIA enforces an upper bound on
the GPU cache size by evicting pages. The evicted pages can
be discarded from the system memory entirely (after syncing
with the disk if necessary) or cached by moving them to avail-
able memory of other processors. In our current implementa-
tion, we cache the evicted GPU pages in CPU memory. We
implement the Least Recently Allocated eviction policy [36],
due to the lack of the access statistics for GPU pages.

Integration with GPU driver

The NVIDIA GPU driver provides no public interface for
low-level virtual memory management. Indeed, giving the
OS the full control over GPU memory management might
seem undesirable. For example, only the vendors might have
the intimate knowledge of the device/vendor-specific proper-
ties that require special handling, such as different page sizes,
texture memory, alignment requirements, and physical mem-
ory constraints. However, we believe that a minimal subset
of APIs is enough to allow generic advanced OS services
for GPUs, such as unified page cache management, without
forcing the vendors to give up on the GPU memory control.

We define such APIs in Table 1. The driver is in full control
of the GPU memory, i.e., it performs allocations and imple-
ments the page eviction policy, only notifying the OS about
the changes (callbacks are not shown in the table). We demon-
strate the utility of such APIs for GAIA, encouraging GPU
vendors to add them in the future.

Using the GPU VM management API

Implementing GAIA functionality is fairly straightforward,
and closely follows the implementation of the similar func-
tionality in the CPU OS. We provide a brief sketch below just
to illustrate the use of the API.
mmap/munmap. When mmap with MAP_ONGPU is called, the
system allocates a new virtual memory range in GPU memory
via allocVirtual and registers it with the GAIA controller
in the driver to associate it with the respective file radix tree,
similar to the CPU mmap implementation. The munmap function
performs the reverse operation using unmapV call.
Page fault handling. To serve the GPU page fault, GAIA
determines the file offset and searches for the pages that cache
the content in the associated page cache radix tree. If the most
recent version of the page is found, and it is already located
on the requesting GPU (minor page fault), GAIA maps the
page at the appropriate virtual address using mapP2V call.

Otherwise (major page fault), GAIA allocates a new GPU
physical page via allocPhysical call, populates it with the
appropriate data (merging replicas if needed), updates the
page’s TSVT structure in the page cache to reflect the version,
and maps the page to the GPU virtual memory. If necessary,
GAIA creates a pristine copy of the page.

If a page has to be evicted to free space in GPU mem-
ory, GAIA chooses the victim page, unmaps it via unmapV,
retrieves its dirty status via fetchPageModifiedBit, stores
the page content on the disk or CPU memory if marked as
dirty, removes the page reference from the page cache, and
finally frees it via freePhysical.
Consistency system calls. GPU macquire scans through the
GPU-resident pages of the page cache to identify outdated
GPU page replicas and unmaps the respective pages via
unmapV. GPU mrelease retrieves the modified status via
fetchPageModifiedBit for all the GPU-resident pages in the
page cache, and updates their versions in TSVT.

Functional emulation of the API

Implementing the proposed GPU memory management
API without vendor support requires access to low-level inter-
nals of the closed-source GPU driver. Therefore, we choose
to implement it in a limited form.
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First, we use the user-level NVIDIA’s UVM memory man-
agement APIs to implement a limited version of the API for
allocation and mapping physical and virtual pages in GPU
(refer to Table 1). Specifically, cudaMallocManaged is used to
allocate the GPU virtual address range, and cudaFree to tear
down the mapping and de-allocate memory.

Second, we modify the open-source part of the NVIDIA
UVM driver. The GPU physical page allocation and mapping
of the virtual to physical addresses are all part of the GPU
page fault handling mechanism, yet they are implemented in
the closed-source part of the UVM driver. To use them, GAIA
modifies the open-source UVM page fault handler to perform
the file I/O and page cache-related operations, effectively
implementing the scheme described above (§5.2.1).

Finally, whenever the public APIs and open-source part
of the driver are insufficient, we resort to emulation. To im-
plement unmapV, we use a public driver function to migrate
the page to the CPU, which also unmaps the GPU page. The
fetchPageModifiedBit call is emulated by copying the re-
spective page to the CPU without unmapping it on the GPU
and computing diff with the base copy.

In Table 1 we highlight the emulated functions (in red) and
specify where they are used.

Ultimately, this pragmatic approach allows us to build a
functional prototype to evaluate the concepts presented in the
paper. We hope that tese APIs will be implemented properly
by GPU vendors in the future.

Limitations due to UVM

Our forced reliance on NVIDIA UVM leads to several
limitations. The page cache lifetime and scope are limited to
those of the process where the mapping is created, as UVM
does not allow allocating physical pages that do not belong to
a GPU context. Therefore, the page cache cannot be shared
among GPU kernels belonging to different CPU processes.
Further, the maximum mapped file size is limited by the size
of the maximum UVM buffer allocation, which must fit in
the CPU physical memory. Finally, UVM controls memories
of all the system GPUs, preventing us from implementing a
distributed page cache between multiple NVIDIA GPUs.

These limitations are rooted in our use of UVM, and are
not pertinent to GAIA design. They limit the scope of our eval-
uation to a single CPU process and a single GPU, but allow
us to implement a substantial prototype to perform thorough
and reliable performance analysis of the heterogeneous page
cache architecture.

Evaluation
We evaluate the following aspects of our system 3:

• Benefits of peer-caching and prefetching optimizations;
• Memory and compute overheads;
3GAIA source code is publicly available at https://github.com/

acsl-technion/GAIA.

• End-to-end performance in real-life applications with
read and write-sharing.

Platform. We use an Intel Xeon CPU E5-2620 v2 at 2.10GHz
with 78GB RAM, GeForce GTX 1080 (with 8GB GDDR)
GPU and 800GB Intel NVMe SSD DC P3700 with 2.8GB/s
sequential read throughput. We use Ubuntu 16.04.3 with ker-
nel 4.4.15 that includes GAIA modifications, CUDA SDK
8.0.34, and NVIDIA-UVM driver 384.59.
Performance cost of functional emulation. The emulation
introduces performance penalties that do not exist in the CPU
analogues of the emulated functions. In particular, unmapV
constitutes more than 99% of macquire latency, and fetch-

PageModifiedBit occupies nearly 100% of mrelease.
These functions are expensive only because of the lack of

the appropriate GPU driver and hardware support. We expect
them to be as fast as their CPU analogues if implemented by
GPU vendors. For example, mmap or mprotect calls for a 1GB
region take less than 10 µseconds on the CPU. If implemented
for the GPU, they might last slightly longer due to over-PCIe
access to update the page tables.

To be safe, we conservatively assume that unmapV and
fetchPageModifiedBit are as slow as 10 msec in all the re-
ported results. These are the worst-case estimates, yet they
allow us to provide a reliable estimate of GAIA performance
in future systems.
Evaluation methodology. We run each experiment 11 times,
omit the first result as a warmup, and report the average. We
flush the system page cache before each run (unless stated
otherwise). We do not report standard deviations below 5%.

Overhead analysis

Impact on CPU I/O. GAIA introduces additional version
checks into the CPU I/O path. To measure the overheads, we
run the standard TIO benchmark suite [23] for evaluating CPU
I/O performance. We run random/sequential reads/writes us-
ing the default configuration with 256KB I/O requests, ac-
cessing a 1GB file. As a baseline, we run the benchmark on
the unmodified Linux kernel 4.4.15.

We vary the number of supported GPUs in the system
as it affects the number of version checks. We observe less
than 1% and up to 5% overhead for 32GPUs and 160GPUs
respectively for random reads, and no measurable overheads
for sequential accesses. We conclude that GAIA introduces
negligible performance overheads for legacy CPU file I/O.
Memory overheads. The main dynamic cost stems from pris-
tine page copies for 3-way merge. However, common read-
only workloads require no such copies, therefore incurring no
extra memory cost. Otherwise, the memory overheads depend
on the write intensity of the workload. GAIA creates one copy
for every writable GPU page in the system.

The static cost is due to the addition of version vectors
to the page cache. This cost scales linearly with the utilized
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Figure 5: CPU I/O speedup of GAIA over unmodified Linux.
Higher is better.

GPU memory size as GPU versions are stored only for GPU-
resident pages, but grows quadratically with the number of
GPUs. With 512 bytes per version vector entry, the worst-case
memory overhead (all GPUs fill their memories with files)
and 100 GPUs each with 8GB memory, the overhead reaches
about 5GB, which is less than 1% of the total utilized GPU
memory (800GB).

Microbenchmarks

Benefits of peer caching. We measure the performance of
CPU POSIX read accesses to a 1GB file which is partially
cached in GPU memory. Thus, these accesses result in reading
the GPU-resident pages from the GPU instead of the SSD.
We vary the cached portion of the file, reading the rest from
the SSD. We run three experiments: (1) random reads (2)
sequential reads, and (3) sequential reads while the SSD is
busy serving other I/O requests. We compare to unmodified
Linux, where all the data is fetched from the SSD.

Figure 5 shows that peer-caching can boost the CPU perfor-
mance by up to 3× for random reads, and up to 2× when the
SSD is under load. GAIA is no faster than SSD for sequen-
tial reads, however. This is due to the GPU DMA controller
bottleneck, stemming from the lack of public interfaces to
program its scatter-gather lists. Therefore, GAIA is forced to
perform the I/O one GPU page at a time.
False sharing. We run the same CPU-GPU false-sharing
microbenchmark as in §3.1. We map the shared buffer from
a file, and let the CPU and the GPU update it concurrently
with non-overlapping writes. GAIA merges the page when the
GPU kernel terminates. We compare with the execution where
each of the processors writes into a private buffer, without
false sharing. We observe that GAIA with shared buffer is the
same as the baseline. The cost of merging the page in the end
is constant per 4KB page: 1.4 µsecond.

This experiment highlights the fact that GAIA eliminates
the overheads of false sharing entirely.
Streaming read performance. We evaluate the case where
the GPU reads and processes the whole file. We use three
kernels: (1) a zero-compute kernel that copies the data from

the input pointer into an internal buffer, one stride at a time per
threadblock; (2) an unmodified LUD kernel, representative of
compute-intensive kernels in Rodinia benchmark suite [19];
(3) a closed-source cuBLAS SGEMM library kernel [7]. We
modify their CPU code such that the GPU input is read from
a file rather than from memory, as in prior work [40].

We evaluate several techniques to read files into the GPU:

1. CUDA-[must fit in GPU memory]: read from the host,
copy to GPU;

2. GPUfs-[requires GPU code changes]: read from the
GPU kernel via GPUfs API. GPUfs uses 64KB pages as
in GPU hardware;

3. UVM: read from the host into UVM memory (physically
residing in CPU), read from the GPU kernel;

4. GAIA: map the file into GPU, read from the GPU kernel.

We implement all four variants for the zero-compute ker-
nel. LUD and cuBLAS cannot run with GPUfs because that
requires changing their code. We run the experiments with
two input files, one smaller and one larger than GPU memory.

Figure 6a shows the results of reading a 1GB and 10GB
file for the zero-compute kernel. GAIA is competitive with
UVM and GPUfs for all of the evaluated use cases, but slower
than CUDA when working with a small file in the CPU
page cache, due to inefficiency of the GPU data transfers
in GAIA. In CUDA, the data is copied in a single transfer
over PCIe, whereas in GAIA the I/O is broken into multiple
non-consecutive 64KB blocks, which is much slower.

GAIA is faster than UVM when reading cached files due to
the UVM’s extra data copy, and faster than GPUfs with 1GB
because of GPUfs trashing. The thrashing occurs because the
GPUfs buffer cache in GPU memory is not large enough to
store the whole file. Pages are constantly evicted as a result,
introducing high runtime overheads.

Figure 6b shows the results of processing a 1GB and a
10GB file for the compute-intensive LUD and cuBLAS ker-
nels for techniques (1), (3) and (4). Large files cannot be
evaluated with CUDA as they do not fit in GPU memory.
GAIA is faster than LUD on UVM, yet slightly slower than
the other methods. With cuBLAS, the specific access pattern
results in a large working set, causing trashing with GAIA.

The insufficient coordination with the OS I/O prefetcher
in the current implementation makes it slower when the file
fits GPU memory. The performance can be improved via a
more sophisticated prefetcher design and transfer batching
in future GPU drivers. With large files, however, GAIA is on
par with and faster than UVM, while offering the convenience
of using a GPU-agnostic OS API and supporting unmodified
GPU kernels.
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(a) Zero-compute kernel, normalized to GAIA. Higher is better.
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(b) LUD and cuBLAS small and large files (from disk). Higher is better.

Figure 6: Streaming read I/O performance analysis

Prefetched On disk

GAIA (sec) 1.2 2.9
UVM (sec) 11.4 (↑ 9×) 17.8 (↑ 6×)
ActivePointers(4 CPU threads) (sec) 0.5 (↓ 2×) 1.7 (↓ 2×)
ActivePointers(1 CPU thread) (sec) 0.6 (↓ 2×) 5.5 (↑ 2×)

Table 2: Image collage: GAIA vs. UVM vs. ActivePointers

Applications

Performance of on-demand data I/O

We use an open-source image collage benchmark [34]. It
processes an input image by replacing its blocks with "simi-
lar" tiny images from a large indexed dataset stored in a file.
The access pattern depends on the input: each block of the
input image is processed separately to generate the index into
the dataset, fetching the respective tiny image afterward. The
dataset is 19GB, thus it does not fit in memory of our GPU.
While only about 25% of the dataset is required to completely
process one input, the accesses are input-dependent.

We compare three implementations: (1) original Active-
Pointers, (2) UVM and (3) GAIA. For the last two we modify
the original code by replacing ActivePointers [34] with reg-
ular pointers. In UVM the dataset is first read into a shared
UVM buffer. In GAIA the file is mmap-ed into GPU memory.

Both ActivePointers and GAIA allow random file access
from the GPU, but they differ in that they rely on software-
emulated and hardware page faults respectively.

Table 2 shows the end-to-end performance comparison.
GAIA is 9× and 6× faster than UVM, because it accesses
the data in the file on-demand, whereas in UVM the file must
be read in full prior to kernel invocation.

We investigate the performance difference between Active-
Pointers and GAIA. We observe that ActivePointers use four
I/O threads on the CPU to serve GPU I/O requests. Reducing
the number of I/O threads to only one as in GAIA provides a
more fair comparison. In this case, GAIA is 2× faster when
reading data from disk, but still 2× slower when the file is
prefetched. The reasons are not yet clear, however.

We conclude that GAIA’s on-demand data access is com-
petitive with highly optimized ActivePointers, and signifi-
cantly faster than UVM.
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Figure 7: Graph processing with dynamic graph updates,
while varying the number of updates. Lower is better.

Dynamic graph processing with Gunrock

We focus on a scenario where graph computations are in-
voked multiple times, but the input graph periodically changes.
This is the case, for example, for a road navigation service
such as Google Maps, which needs to accommodate the traffic
changes or road conditions while responding to user queries.

We assume the following service design. There are two pro-
cesses: an updater daemon (producer) and a GPU-accelerated
compute server (consumer), which share the graph database.
The daemon running on the CPU (1) retrieves the graph up-
dates (traffic status) from an external server; (2) updates the
graph database file; and (3) signals to the compute service to
recalculate the routes. The latter reads these updates from the
file each time it recomputes in response to a user query. The
producer updates only part of the graph (i.e., edge weights rep-
resenting traffic conditions). This design is modular, easy to
implement, and supports very large datasets. Similar producer-
consumer scenarios have also been used in prior work [15].

We use an unmodified Gunrock library [38] for fast graph
processing. We run the Single Source Shortest Path algorithm
provided with Gunrock, modifying it to read input from a file,
which is updated in a separate (legacy) CPU process that uses
standard I/O (no consistency-synchronizing system calls).
The file updates and graph computations are interleaved: the
compute server invokes the updater, which in turn invokes the
computations, and so on. We run a loop of 100 iterations and
measure the total running time.

We implement the benchmark using UVM and GAIA, and
also compare it with the original CUDA implementation. For
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(a) CPU and GPU speedups over UVM while varying the number of compu-
tations. Higher is better.
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(b) End-to-end runtime comparison. Other: memory (de)/allocation. Touch
time = time of first access from CPU, includes merge for GAIA. Prep time =
time of reading input. Lower is better.

Figure 8: Performance impact of false sharing in image stitching.

both UVM and CUDA, the whole file must be copied into a
GPU-accessible buffer on every update because the locations
of the modified data in the file are unknown. No such copy
is required for GAIA, where each GPU kernel invocation is
surrounded by macquire and mrelease calls.

We run the experiment on the uk_2002 input graph pro-
vided with Gunrock examples, extended to include edge
weights. The file size is 5.2GB.

Figure 7 shows the performance as a function of the por-
tion of the graph being updated. GAIA is faster than the
alternatives with fewer changes to the file, automatically de-
tecting the changes in the pages that were indeed modified.
For the worst case of full file update (above 75%) GAIA be-
comes slower than the original CUDA implementation. This
is due to the inefficiency of the GPU data transfers, as we
also observed in Fig. 6a. This experiments shows the utility of
GAIA’s fine-grain consistency control, which enables efficient
computations in a read-write sharing case.

Effects of false sharing in image stitching

We consider an image processing application used in opti-
cal microscopy to acquire large images. Microscopes acquire
these images as grids of overlapping patches that are then
stitched together. Recent works accelerate this process on
multiple GPUs [18, 16]. The output image is split into non-
overlapping sub-images, where each GPU produces its output
independently, and the final result is merged into a single
output image.

This application benefits from using GAIA to write into
the shared output file directly from GPUs, eliminating the
need to store large intermediate buffers in CPU memory. We
seek to show the effects of false sharing in this workload if
it were implemented with GAIA. Unfortunately, we cannot
fully evaluate GAIA on multiple GPUs, as we explained ear-
lier (§5.2.3). Instead, we implement only its I/O-intensive
component in the CPU and the GPU.

Both the CPU and GPU load their patches, with already
pre-computed output coordinates. Each patch is sharpened

via a convolution filter, and then is written to the output file.
The convolution filter is invoked several times per output to
explore a range of different compute loads. In GAIA, we map
both the input patches and the output file into the CPU and the
GPU. For the UVM baseline, the inputs are read into UVM
memory before kernel invocation.

We run the experiment on a public Day2 Plate [3] stitching
dataset with 5.3GB of input tiles and 1.3GB of output. We
use the patch locations included in the dataset to write the
patches, which ensures realistic access to the output file.

We split the output image over the vertical dimension and
load-balance the input such that both the CPU and the GPU
run about the same time in the baseline implementation which
writes into a UVM shared output buffer. The patch coordinates
determine the amount of false sharing in this application.

Figure 8a shows the speedup of GAIA over UVM while
varying the amount of computations per patch. We observe
up to 45% speedup for the CPU, and over 2.3× speedup for
the GPU. This experiment corroborates the conclusions of the
microbenchmark in (§3.1), now in a realistic write-sharing
workload. GAIA enables significant performance gain by
eliminating false sharing in the unified page cache.

To evaluate the complete system rather than the perfor-
mance of each processor separately, we pick one of the run-
time parameters in the middle of Figure 8a, and measure the
end-to-end runtime, including file read, memory allocation,
and page merging. We prefetch the input into the page cache
on the CPU to highlight the performance impact.

Figure 8b shows the results. For exactly the same runtime
configuration GAIA outperforms UVM by 21%. Moreover,
GAIA allows further improvements by rebalancing the load
between the processors (GPU runs faster without false shar-
ing), achieving overall 31% performance improvement.

Related work
To the best of our knowledge, GAIA is the first system to

offer a distributed page cache abstraction for GPUs that is
integrated into the OS. Our work builds on prior research in
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the following areas.
Memory coherence for distributed systems. Lazy Release
Consistency [22, 10] serves as the basis for GAIA. GAIA
implements the home-based version of LRC [41]. Munin [14]
implements eager RC by batching the updates. GAIA adopts
this idea by using LRC-dirty bit to batch multiple updates.
Version Vectors is an idea presented in [32] for detecting mu-
tual inconsistency in multiple-writers systems. We believe
that GAIA is the first to apply these ideas to building a het-
erogeneous OS page cache.
Heterogeneous, multi-core, and distributed OS design for
systems without cache coherence. Several proposed OSes
support heterogeneous and non-cache coherent systems by
applying distributed system principles to their design [29, 13,
12]. None of these systems implements shared page cache
support, which is the main tenet of our work.

K2 [25] is a shared-most OS for mobile devices running
over several coherence domains. It implements a sequentially
consistent software DSM for the OS structures shared among
the domains. K2 DSM implements sequential consistency,
which is a strict coherence model. Similarly to GAIA, K2
relies on page faults as the trigger for consistency operations.
K2 DSM implementation of the coherence model relies heav-
ily on the underlying hardware. Thus, even read-only sharing
is not possible as it requires a different MMU for handling
reads and writes. GAIA does not have this limitation. Sol-
ros [27] proposes a data-centric operating system to enable
efficient I/O access for XeonPhi accelerators. Solros includes
a buffer cache for faster I/O, but unlike GAIA, it is limited to
host memory, and does not explicitly discuss inter-accelerator
sharing.

The file system in the FOS multikernel [39] shares data
between cores but is limited to read-only workloads. Hare [21]
is a file system for non-cache-coherent multicores in which
each node may cache file data in the private memory and a
shared global page cache. Hare uses close-to-open semantics,
which GAIA refines. Distributed OSes such as Sprite [30],
Amoeba [28], and MOSIX [11] aim to provide a single system
image abstraction and in particular, coherent and transparent
access to files from different nodes, but they achieve this via
process migration/use home nodes to forward their I/O.
GPU file I/O. GPUfs [36] allows file access from GPU pro-
grams and implements a distributed weakly consistent page
cache with session semantics. ActivePointers [34] extend
GPUfs with a software-managed address translation and page
faults, enabling GPU memory mapped files. However, unlike
GAIA, ActivePointers require intrusive changes to GPU ker-
nels, its session semantics is too coarse-grain for our needs,
and its page cache is not integrated with the CPU page cache,
thus lacks peer-caching support. SPIN [15] integrates direct
GPU-SSD communications into the OS. As in GAIA peer-
caching, SPIN adds a mechanism for choosing the best path
for file I/O to the GPU. However, it does not extend the page
cache into the GPU.

Memory management in GPUs. NVIDIA Unified Virtual
Memory (UVM) and Heterogeneous Memory Management
(HMM) [4] allow both the CPU and GPU to share virtual
memory, migrating the pages to/from GPU/CPU upon page
fault. Neither currently supports memory mapped files on
x86 processors. Both introduce a strict coherence model that
suffers from false sharing overheads. Asymmetric Distributed
Shared Memory [20] is a precursor of UVM that emulates a
unified address space between CPUs and GPUs in software.

IBM Power9 CPU with NVIDIA V100 GPUs provides
hardware support for coherent memory between the CPU and
the GPU. Since GPU memory is managed as another NUMA
node, memory-mapped files are naturally accessible from the
GPUs. This approach would not work for commodity x86
architectures which lack CPU-GPU hardware coherence.

Dragon [26] extends NVIDIA UVM to enable GPU ac-
cess to large data sets residing in NVM storage, by mapping
them into the GPU address space. Dragon focuses exclusively
on accessing the NVM from the GPU, does not integrate
GPU memory into a unified page cache, has no peer-caching
support, and does not consider CPU-GPU file sharing, all of
which are the main contributions of our work.

Conclusions
GAIA enables GPUs to map files into their address space

via a weakly consistent page cache abstraction over GPU
memories that is fully integrated with the OS page cache. This
design optimizes both CPU and GPU I/O performance while
being backward compatible with legacy CPU and unmodified
GPU kernels. GAIA’s implementation in Linux for NVIDIA
GPUs shows promising results for a range of realistic ap-
plication scenarios, including image and graph processing.
It demonstrates the benefits of lazy release consistency for
write-shared workloads.

GAIA demonstrates the importance of integrating GPU
memory in the OS page cache, and proposes the minimum
set of memory management extensions required for future
OSes to provide the unified page cache services introduced
by GAIA.
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