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Abstract

Hardware secure enclaves are increasingly used to run com-
plex applications. Unfortunately, existing and emerging en-
clave architectures do not allow secure and efficient implemen-
tation of custom page fault handlers. This limitation impedes
in-enclave use of secure memory-mapped files and prevents
extensions of the application memory layer commonly used in
untrusted systems, such as transparent memory compression
or access to remote memory.

CoSMIX is a Compiler-based system for Secure Memory
Instrumentation and eXecution of applications in secure en-
claves. A novel memory store abstraction allows implementa-
tion of application-level secure page fault handlers that are
invoked by a lightweight enclave runtime. The CoSMIX com-
piler instruments the application memory accesses to use one
or more memory stores, guided by a global instrumentation
policy or code annotations without changing application code.

The CoSMIX prototype runs on Intel SGX and is com-
patible with popular SGX execution environments, including
SCONE and Graphene. Our evaluation of several production
applications shows how CoSMIX improves their security and
performance by recompiling them with appropriate memory
stores. For example, unmodified Redis and Memcached key-
value stores achieve about 2× speedup by using a self-paging
memory store while working on datasets up to 6× larger
than the enclave’s secure memory. Similarly, annotating a
single line of code in a biometric verification server changes
it to store its sensitive data in Oblivious RAM and makes it
resilient against SGX side-channel attacks.

1 Introduction

Virtual Memory is integral to modern processor architectures.
In addition to its primary role in physical memory manage-
ment, it empowers developers to extend the standard mem-
ory layer with custom data storage mechanisms in software.
For example, the memory-mapped file abstraction, which is
broadly used, e.g., in databases [10, 5], relies on the OS’s
page fault handler to map a frame and populate it with the con-
tents of a file. Replacing accesses to physical memory with
file accesses requires no application code changes. Therefore,
the ability to override page fault behavior has been essential
for implementing a range of system services, such as memory

compression [44], disaggregation [39, 75], distributed shared
memory [36, 46] and heterogeneous memory support [37].

With the emergence of Software Guard Extensions (SGX)
for Trusted Execution in Intel CPUs [16, 55], applications
are increasingly ported to be entirely executed in hardware-
enforced enclaves [58, 45, 23, 25]. The enclave hardware pro-
tects them from attacks by a powerful privileged adversary,
such as a malicious OS or a hypervisor. A number of recent
systems facilitate the porting to SGX by shielding unmodified
applications in an enclave [21, 81, 18]. Unfortunately, these
systems do not allow secure overriding of page fault handling
in enclave applications. This drawback complicates porting a
large class of applications that use memory-mapped files to
SGX. Further, it prevents SGX applications from using secu-
rity and performance enhancements, such as efficient mem-
ory paging [61] and Oblivious RAM (ORAM) side-channel
protection [67, 11, 88] without intrusive application modifi-
cations. Our goal is to eliminate these constraints.

For example, consider the task of running an SQLite
database that uses memory-mapped files in the enclave. The
database file must be encrypted to ensure data confidentiality.
Enabling in-enclave execution of SQLite therefore requires
support for encrypted memory-mapped files, which in turn
implies that the page fault handler must be executed securely
as well. Unfortunately, hardware enclaves available today
do not support secure page faults. Instead, existing solutions
use workarounds, such as eagerly reading and decrypting the
whole mapped file region into trusted enclave memory [18].
This solution does not scale to large files and lacks the perfor-
mance benefits of on-demand data access.

We argue that the problem is rooted in the fundamental lim-
itation of SGX architecture, which does not provide the mech-
anism to define secure page fault handlers. The upcoming
SGX-V2 [54, 86, 43] will not solve this problem either. More-
over, we observe that existing and emerging secure enclave
architectures [28, 4, 34] suffer from similar limitations(§2).

In this work, we build CoSMIX, a compiler and a
lightweight enclave runtime that overcomes the SGX architec-
tural limitations and enables secure and efficient extensions
to the memory layer of unmodified applications running in
enclaves. We introduce a memory store, (mstore), a program-
ming abstraction for implementing custom memory manage-
ment extensions for enclaves. The CoSMIX compiler auto-
matically instruments application code to allocate the selected
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variables and memory buffers in the mstore, replacing the ac-
cesses to enclave memory with the accesses to the mstore.
The mstore logic runs in the enclave as part of the application.
The CoSMIX runtime securely invokes the mstore memory
management callbacks, which include custom page fault han-
dlers. The page faults are semantically equivalent to hardware
page faults yet are triggered by the CoSMIX runtime.

An mstore can implement the missing functionalities that
require secure page fault handlers. For example, it may pro-
vide the secure mmap functionality by implementing the page
fault handler that accesses the file and decrypts it into the
application buffer. A more advanced mstore may add its own
in-memory cache analogous to an OS page cache, to avoid
costly accesses to the underlying storage layer. CoSMIX sup-
ports several types of mstores, adjusting the runtime to handle
different mstore behaviors while optimizing the performance.

CoSMIX allows the use of multiple mstores in the same
program. This can be used, for example, to leverage both
secure mmap mstore and an ORAM mstore for side-channel
protection. Additionally, CoSMIX supports stacking of mul-
tiple mstores to enable their efficient composition and reuse.
We design and prototype three sophisticated mstores in §3.2.5,
and demonstrate the benefits of stacking in §4.5.

CoSMIX’s design focuses on two primary goals: (1) mini-
mizing the application modifications to use mstores and (2)
reducing the instrumentation performance overheads. We in-
troduce the following mechanisms to achieve them:
Automatic inference of pointer types. CoSMIX does not
require annotating every access to a pointer. Instead, it uses
inter-procedural pointer analysis [17] to determine the type of
the mstore (or plain memory) to use for each pointer. When
the static analysis is inconclusive, CoSMIX uses tagged point-
ers [47, 74, 13] with the mstore type encoded in the unused
Most Significant Bits, enabling runtime detection (§3.3.1).
Locality-optimized translation caching. The mstore call-
backs interpose on memory accesses, which are part of the
performance-critical path of the application. To reduce the
associated overheads, we employ static compiler optimiza-
tions to reduce the number of runtime pointer type checks and
mstore accesses. These include loop transformations and a
software Translation Lookaside Buffer (TLB) (§3.3.4). These
mechanisms reduce the instrumentation overheads by up to
two orders of magnitude (§4.2).

Our prototype targets existing SGX hardware and is com-
patible with several frameworks for running unmodified appli-
cations in enclaves [81, 1, 18]. However, CoSMIX makes no
assumptions about enclave hardware. The CoSMIX compiler
is implemented as an extension of the LLVM framework [48].

We prototype three mstores: Secure User Virtual Memory
(SUVM) for efficient paging in memory-intensive applica-
tions [61], Oblivious RAM [78] for controlled side-channel
protection, and a secure mmap mstore that supports access
to encrypted/integrity-protected memory-mapped files. We
evaluate CoSMIX on the Phoenix benchmark suite [66], as

well as on unmodified production servers: memcached, Redis,
SQLite, and a biometric verification server [61]. The compiler
is able to correctly instrument all of these applications, some
with hundreds of thousands of lines of code (LOC), without
the need to manually change the application code.

Our microbenchmarks using Phoenix with SUVM and se-
cure mmap mstores show that CoSMIX instrumentation results
in a low geometric mean overhead of 20%.

For the end-to-end evaluation, we run memcached and Re-
dis key value stores on 600 MB datasets – each about 6×
the size of the secure physical memory available to SGX en-
claves. In this setting, SGX hardware paging significantly
affects the performance. The SUVM [61] mstore aims to opti-
mize exactly this scenario. To use it, we only annotate the item
allocator in memcached (a single line of code) and compile it
with CoSMIX. Redis is compiled without adding annotations.
The instrumented versions of both servers achieve about 2×
speedup compared to their respective vanilla SGX baselines.

In another experiment, we evaluate a biometric verification
server with a database storing 256 MB of sensitive data. We
use the ORAM mstore to protect it from SGX controlled side-
channel attacks [87] that may leak sensitive database access
statistics. We annotate the buffers containing this database
(one line of code) to use ORAM. The resulting ORAM-
enhanced application provides security guarantees similar
to other ORAM systems for SGX, such as ZeroTrace [67], yet
without modifying the application source code. ORAM sys-
tems are known to result in dramatic performance penalties of
several orders of magnitude [26]. However, our hardened ap-
plication is only 5.8× slower than the vanilla SGX thanks to
the benefits of selective instrumentation enabled by CoSMIX.
To summarize, our contributions are as follows:
• Design of a compiler and an mstore abstraction for trans-

parent secure memory instrumentation (§3.2).
• Loop transformation and loop-optimized caching tech-

niques to reduce the instrumentation overheads (§3.3.4).
• Seamless security and performance enhancement for

unmodified real-world applications running in SGX, by
enhancing them with the SUVM, ORAM and secure
mmap mstores (§4).

2 Motivation

Enabling the use of custom page fault (PF) handlers in en-
claves would not only facilitate porting of existing applica-
tions that rely on such functionality, but also enable a range
of unique application scenarios, as we discuss next.
SUVM. The authors of Eleos [61] proposed Software User-
space Virtual Memory (SUVM), which implements exit-less
memory paging in enclaves and significantly improves the
performance of memory-demanding secure applications. It
keeps the page cache in the enclave’s trusted memory, while
the storage layer resides in untrusted memory whose contents
are encrypted and integrity-protected.
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ORAM. Oblivious RAM (ORAM) obfuscates memory ac-
cess patterns by shuffling the physical data locations and re-
encrypting the contents upon every access. As a result, an ad-
versary observing the accessed locations learns nothing about
the actual access pattern to the data [38]. Multiple ORAM
schemes have been proposed over time [38, 84, 78, 88, 67, 33],
and, ORAM was recently used to manually secure applica-
tions executing in SGX enclaves against certain side-channel
attacks [88, 67, 33].

Both ORAM and SUVM are generic mechanisms that
could be useful in many applications. Unfortunately, inte-
grating them with the application logic requires intrusive
code modifications. With the support for efficient and secure
in-enclave PF handlers, we could add these mechanisms to ex-
isting unmodified programs, as we show in the current work.

Other applications include transparent compression for in-
enclave memory, mmap support for encrypted and integrity-
protected files, and inter-enclave shared memory, as well as
various memory-management mechanisms [39, 75, 37].

Unfortunately, existing enclave hardware provides no ad-
equate mechanisms to implement efficient and secure user-
defined PF handlers, as we describe next.

2.1 Background: page-faults in enclaves
There are several leading enclave architectures: Intel SGX [16,
43], Komodo for ARM Trust Zone [34, 15], Sanctum [28],
and Keystone [4]. Among these, only Intel SGX and Sanctum
published support for paging. We briefly describe them below.
Intel SGX [16, 43, 55] supports on-demand paging between
secure and untrusted memory. SGX relies on Virtual Memory
hardware in X86 CPUs. When a PF occurs, the enclave exits
to an untrusted privileged OS which invokes the SGX PF
handler. The enclave execution resumes (via ERESUME ) after
the swapping is complete.

Since the PF handler is untrusted, the SGX paging is se-
cured via SGX paging instructions. Specifically, EWB encrypts
and signs the page when swapping the page out, whereas
ELDU validates the integrity and decrypts when swapping it
in. These instructions cannot be modified to perform other
operations. They cannot change the internal SGX encryption
key or modify the swapped page. In other words, they cannot
act as a general-purpose secure PF handler.
Sanctum [28] supports per-enclave page tables and secure
PF handlers. It uses a security monitor that runs at a higher
privilege level than the OS and the hypervisor. Upon a PF,
the enclave exits to the security monitor, which triggers the
in-enclave secure PF handler.

2.2 Limitations of existing enclaves

Signal handling in SGX. Page fault handlers can be cus-
tomized in userspace by registering a signal handler. SGX
supports signal handlers in enclaves and works according to

Figure 1: Execution of a signal handler in SGX

the following scheme (Figure 1): when an interrupt occurs,
the enclave exits to the OS 1 . The OS takes control and per-
forms an up-call to an untrusted user-space trampoline in the
enclave’s hosting process 2 . The trampoline re-enters the en-
clave by invoking the in-enclave signal handler 3 . After the
signal handler terminates, the enclave exits 4 and resumes
execution of the last instruction 5 via ERESUME.
SGX: No secure page fault handlers. The SGX signal han-
dling mechanism cannot guarantee secure execution of the
handler itself. When the enclave is resumed after the PF,
ERESUME replays the faulting memory access. Therefore, the
enclave cannot validate that the signal handler was indeed
executed correctly, or was executed at all. To the best of our
knowledge, this problem will not be resolved in the next ver-
sion of SGX [54, 86, 43].
SGX: Performance overheads. Even with hardware support
for the secure signal handler, SGX has inherent architectural
properties that will lead to significant performance penalties,
rendering this mechanism unsuitable for customized appli-
cation memory management. The architecture relies on the
OS to manage the enclave’s virtual memory. Furthermore,
SGX may only run userspace code. Since the OS is untrusted,
any secure page fault handling would inevitably follow the
signal handling scheme depicted in Figure 1, namely, double
enclave transition between the trusted and untrusted contexts.

We measure the latency of an empty SGX PF handler (ac-
cess to a protected page) to be 11µsec, which is more than 6×
the latency of a signal handler outside SGX. For comparison,
CoSMIX’s software page fault handler is only 0.01 µ second,
the cost of a single function call, which is three orders of
magnitude faster than in SGX.

Further analysis shows that the signal latency is dominated
by the latency of enclave transitions, which we measure to
be 5.3µsec each 1 and stems from costly validation, register
scrapping, TLB and L1 cache flushes [82, 43].
Other enclave architectures. Enclave transition overheads
are pertinent to other enclave architectures. Komodo reports
exit latency of 0.96µs [34]. Sanctum and Keystone do not
disclose their enclave transition penalties, yet they describe
similar operations performed when such transitions occur.

We conclude that secure page fault handlers are not sup-
ported in SGX, and are likely to incur high-performance costs
in other enclave architectures due to transition overheads.

1This value is almost double the one reported in prior works [61, 85]
because of the firmware update to mitigate the Foreshadow [82] bug.
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2.3 Code instrumentation for enclaves

Instrumenting application memory accesses with the desired
software PF handling logic is a viable option to achieve the
functionality equivalent to the hardware-triggered PF handlers.
Unfortunately, existing instrumentation techniques are not
sufficient to achieve our goals, as we discuss below.

Binary instrumentation. Dynamic binary instrumentation
tools [51, 57, 24, 52, 71], such as Intel PIN [51], enable in-
strumentation of memory accesses. Unfortunately, these tools
have significant drawbacks in the context of in-enclave exe-
cution. For example, for PIN to work, all its libraries should
be included in the enclave’s Trusted Computing Base (TCB).
Moreover, PIN requires JIT-execution mode to instrument
memory accesses. Therefore, the enclave code pages should
be configured as writable, which might lead to security vulner-
abilities. Removing the write access permission from enclave
pages will be supported in SGX V2, but doing so will require
costly enclave transitions [43].

Static binary instrumentation tools do not suffer from these
shortcomings. However, compared to the compiler-based tech-
niques we propose in this work, they do not allow using com-
prehensive code analysis necessary for performance optimiza-
tions. Therefore, we decided against the binary instrumenta-
tion design.

Compiler-based instrumentation. The main advantage of
this method is the ability to aggressively reduce the instru-
mentation overheads by using advanced source code analysis.
On the other hand, the source code access requirement limits
the applicability of this method. However, this drawback is
less critical in the case of SGX enclaves because many SGX
execution frameworks, such Panoply [77] and SCONE [18],
require code recompilation anyway. Therefore, we opt for
compiler-based instrumentation in CoSMIX.

3 CoSMIX Design

CoSMIX aims to facilitate the integration of different mstores
efficiently into SGX applications. Our design goals are:

• Performance. Low overhead memory-access and soft-
ware address translation.
• Ease-of-use. Annotation-based or automatic instrumen-

tation without manual application code modification.
• General memory extension interface. Easy and mod-

ular development of application-specific memory instru-
mentation libraries.
• Security. Keep SGX security guarantees and small TCB.

Threat Model. CoSMIX is designed with the SGX threat
model, where the TCB includes the processor package and the
enclave’s code. Additionally, we assume that the code running
in an enclave does not contain memory vulnerabilities.

Figure 2: CoSMIX compilation overview. The compiler is
guided by code annotations and global instrumentation policy.

3.1 Design overview

Compiler-based instrumentation. CoSMIX enables SGX
developers to build custom memory stores, mstores that rede-
fine the memory layer functionality of an instrumented pro-
gram. To integrate one or more mstores into an application,
the CoSMIX compiler automatically instruments the program
(Figure 2). The developer may selectively annotate static vari-
ables or/and memory allocations to use different mstores, or
define a global instrumentation policy. The compiler automat-
ically instruments the necessary subset of memory accesses
with the accesses to the corresponding mstores, and statically
links mstore libraries with the code.

The CoSMIX configuration file defines the instrumentation
behavior. It specifies annotation symbols per mstore, mstore
type (§3.2) and the instrumentation policy(§3.3).

3.2 Mstore abstraction
At a high level, an mstore implements another layer of virtual
memory on top of an abstract storage layer. An mstore oper-
ates on pages, mpages, and keeps track of the mpage-to-data
mappings in its internal mpage table. When an application
accesses memory, the runtime invokes the mstore’s software
page fault handler, retrieves the contents (e.g., for the secure
mmap mstore, it would read data from a file and decrypt), and
makes it accessible to the application.

We distinguish between cached and direct-access mstores.
A cached mstore maintains its own mpage cache to reduce
accesses to the storage layer, whereas a direct-access mstore
does not cache the contents.

Figure 3 shows the execution of an access to a cached
mstore. The pointer access 1 triggers the runtime call, which
chooses the appropriate mstore 2 and checks the translation
cache 3 . If the translation is not in the cache, the runtime
invokes the mpage fault handler 4 . The mstore translates
the pointer 5 , and either fetches the referenced mpage from
the page cache 6 , or retrieves it from the storage layer and
updates the mpage and translation caches 7 .

3.2.1 Mstore callbacks

Table 1 lists the callback functions mstores must implement.
Initialization/teardown. The mstore is initialized at the be-
ginning of the program execution and torn down when the pro-
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Callback Purpose
mstore_init(params)/mstore_release() Initialize/tear down
void* alloc(size_t s, void* priv_data)/free(void* ptr) Allocate/free buffer
size_t alloc_size(void* ptr) Allocation size
size_t get_mpage_size() Get the size of the mpage

Direct-access mstore
mpf_handler_d(void* ptr, void* dst, size_t s) mpage fault on access to ptr, store the value in dst
write_back(void* ptr, void* src, size_t size) Write back value in src to ptr

Cached mstore
void* mpf_handler_c(void* ptr) mpage fault on access to ptr, return pointer to mpage
flush(void* ptr, size_t size) Write the mpages in the range ptr:ptr+size to mstore
get_mstorage_base()/get_mpage_cache_base() Gets the base address of mstorage/mpage cache
notify_tlb_cached(void* ptr) / notify_tlb_dropped(void*
ptr, bool dirty)

The runtime cached/dropped the ptr translation in its TLB

Table 1: Compulsory mstore callback functions

Figure 3: CoSMIX: code transformation and execution flow
of access to a cached mstore. See the text for explanation.

gram terminates. Importantly, the runtime flushes the mpage
cache when tear-down of cached mstores is called.
Memory allocation. The runtime delegates the memory allo-
cation calls of the original program to the mstore alloc.

3.2.2 Pointer access and mpage faults

When the instrumented code accesses the mstore, the runtime
incurs an equivalent of a page fault, and invokes the respective
callback in the mstore, as discussed below.
Cached mstores. A cached mstore translates the pointer
to the mpage inside its cache. mpf_handler_c returns the
pointer into the mpage that holds the requested data, allowing
direct access from the code. For cross-page misaligned ac-
cesses, the runtime creates a temporary buffer and populates
it by calling the mpf_handler_c for every page separately.
For store access, the updates are written to both pages.

When the runtime determines that the code is accessing the
same mpage multiple times, it may cache the pointer to that
mpage in its private TLB. This avoids the address translation
overheads for all but the first access to the page. To ensure
that the mpage is not swapped out by the mstore logic, the
runtime notifies the mstore to pin the mpage in the mpage
cache via notify_tlb_cached. The page is unpinned by
notify_tlb_dropped when its translation is evicted from

the TLB (see §3.3.4 for more details).
There can be multiple cached mstores in the same program,

each with its own mpage size. The runtime can query an
mstore page size using the get_mpage_size call, for exam-
ple, to determine accesses to the same mpage in the TLB.

A cached mstore must implement the flush() callback
to synchronize its mpage cache with the storage layer. This
callback is used, for example, to implement the msync call.
Direct-access mstores. Direct-access mstores have no cache
and thus are easier to implement. The input pointer provided
to the mpf_handler_d callback may be used without address
translation, and at finer granularity not bound to the mpage
size. The runtime provides a thread-local intermediate buffer
to store the accessed data. For loads, the program uses this
buffer. For stores, the runtime writes the updated contents
back to the mstore using the write_back callback.

3.2.3 Thread safety and memory consistency

CoSMIX allows multiple threads to access the same mstore,
as long as the mstore implementation is thread-safe.

For cached mstores, CoSMIX does not change the mstore
memory consistency model as long as the accesses are inside
the same mpage, and the mpage size is 4KB or larger. The
CoSMIX runtime does not introduce extra memory copies
for such accesses and effectively inherits the mstore memory
consistency. In addition, the mstore itself must ensure that the
storage layer is accessed only via its mpage cache, thereby
preventing different threads from seeing inconsistent data.

This guarantee does not hold for direct-access mstores and
misaligned cross-mpages. The primary implication is that
hardware atomics will not work for such accesses.

We believe that this limitation does not affect most practical
cases. The lack of cross-mpage atomics support does not
affect race-free programs synchronized via locks. This is
because the intermediate buffer is written back to the mstore
immediately after the original store operation and thus will
be protected by the original lock. We observed no cases of
cross-mpage atomics in the evaluated applications.
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Today, the problem of misaligned cache accesses deserves
special handling in compilers. For example, LLVM translates
such accesses into the XCHG instruction [43]. CoSMIX must
rely on a software solution, e.g., using readers-write locks
per-mpage. We defer this to future work.

3.2.4 Memory vs. file-backed mstores

The mstore abstraction described so far instruments memory
accesses alone. However, it is insufficient to enable imple-
mentation of memory-mapped files. For example, consider a
program that uses mmap to access a file, and then calls fsync.
It will not work correctly because fsync is not aware of the
mstore’s internal cache. Specifically, all the I/O operations on
files managed by a file-backed mstore must interact with its
mpage cache to avoid data inconsistency.

We define a file-backed cached mstore type, which im-
plements all the callbacks of memory-backed mstores, but
additionally overrides the POSIX file API that interacts with
the page cache, e.g., open, close, read, write, msync
( §3.3). Direct-access mstores do not have internal caches;
thus they can be used with files without overriding file I/O
operations other than mmap itself.

3.2.5 Mstore examples

CoSMIX provides a set of reusable building blocks for
mstores, such as a slab memory allocator, spinlocks, a generic
mpage table, and an mpage cache, all with multi-threading
support, which we use to implement the mstores below.
SUVM mstore. SUVM allows exit-less memory paging for
enclaves by keeping a page table, page cache and a fault
handler as part of the enclave. We implement SUVM from
scratch as a cached memory-backed mstore, using CoSMIX’s
generic mpage table and mpage cache. The alloc function
returns a pointer to the storage layer in untrusted memory.
Upon mpf_handler_c, the mstore checks whether the needed
mpage is already cached in the mpage table. If not, it reads the
mpage’s contents from the storage layer, decrypts and verifies
its integrity using a signature maintained for every mpage,
and finally copies it to the mpage in the page cache. When
the mpage cache is full, the mstore evicts pages back into the
storage layer.
Secure mmap mstore. This mstore enables the use of memory-
mapped encrypted and integrity-protected files in enclaves.
We support private file mapping only and leave cross-enclave
sharing support for future work. This is a cached file-backed
mstore that maintains its own mpage table and mpage cache.

The alloc callback is invoked by the runtime upon the
mmap call in original code. alloc records the mapping start
offset in the file and the access flags in an internal table. It
then returns a pointer with the requested offset from a unique
file base address. This address is internally allocated by the
mstore and used as isolated address space for each file.

The mpf_handler_c callback translates the given pointer
to the respective file. If the contents are not available in the
mpage cache, the data is fetched from the file using a read
system call, followed by decryption and integrity check.
Oblivious RAM mstore. ORAM obfuscates memory access
patterns by shuffling and re-encrypting the data upon every
data access. The ORAM mstore streamlines the use of ORAM
in enclaves. It allows the developer to allocate and access the
buffers that store sensitive data in an ORAM, thereby protect-
ing the program against controlled side-channel attacks [87].

We implement a direct-access memory-backed ORAM
mstore. This is because if it were cached, the accesses to
the cache would be visible to the attacker, compromising the
ORAM security guarantees. Our ORAM mstore addresses a
threat-model similar to ZeroTrace [67], yet without leakage
protection in the case of enclave shutdowns. Specifically, all
the instrumented memory accesses destined to the ORAM
mstore become oblivious, such that an adversary cannot learn
the actual memory access pattern. We implement the Path
ORAM algorithm [78] and ensure oblivious accesses to its
position map and stash using the cmovz instruction.

We store the Path-ORAM tree in a contiguous buffer within
the enclave trusted memory. This eliminates the need to im-
plement block encryption and integrity checks as part of the
ORAM mstore since SGX hardware does exactly that.

The alloc function allocates the requested number of
blocks in ORAM and registers them with the ORAM module.
It returns an address from a linear range with a hard-coded
base address, which is used only to compute the block index.

The mpf_handler_d callback translates the address to the
requested block index and invokes the ORAM algorithm to
obliviously fetch the requested memory block to a tempo-
rary buffer. Loads are issued from this buffer and stores are
appended with the write_back callback.

3.2.6 Stacking mstores

The mstore abstraction makes it possible to stack different
mstores. Stacking allows one mstore to invoke another mstore
recursively. We denote by A→B an mstore A that internally
accesses its memory via mstore B.

Consider, for example, ORAM→SUVM. The motivation
to stack is when the ORAM mstore covers a region that is
larger than the enclave’s physical memory. Since SUVM opti-
mizes the SGX paging mechanism, stacking ORAM on top
of SUVM improves ORAM’s performance ( §4.5).

To create a new A→B mstore, the developer simply an-
notates A’s storage layer allocations with B’s annotations.
CoSMIX instruments all these accesses appropriately.

Stacking the ORAM mstore on top of any mstore that main-
tains data confidentiality does not compromise the ORAM
access pattern obfuscation guarantees, as ORAM protocols
consider the backing store to be untrusted [78]. Therefore
ORAM→SUVM would maintain data-oblivious access.
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However, the stacking→ operator is not commutative from
the security perspective: SUVM→ORAM would result in the
SUVM mstore caching mpages fetched obliviously by the
ORAM mstore, thereby leaking the access patterns to these
mpages and compromising ORAM’s security guarantees.

3.3 CoSMIX compiler and runtime
The instrumentation compiler modifies the application to use
mstores and is guided by code annotations or/and a global
instrumentation policy. The compiler needs to instrument four
different types of code: (1) memory accesses; (2) memory
management functions; (3) file I/O operations for file-backed
mstores; (4) libc library calls.
Instrumentation policy. A developer may annotate any static
variable declaration or memory allocation function call. An-
notations allow instrumentation of a subset of the used buffers
to reduce instrumentation overheads. Alternatively, a global
instrumentation policy specifies compile-time rules applied to
the whole code base (e.g., instrument all calls to malloc), or
run-time checks injected by the compiler (e.g., using mstore
for large buffers above a certain threshold). A global policy
serves for bulk operations on large code bases, such as adding
SUVM mstore to Redis sources with over 130K LOC (§4.4).

Similarly, for file-backed mstores, a global policy may limit
the use of the mstore to specific files or directories.

3.3.1 Pointer access instrumentation

Static analysis. The compiler uses static build. Therefore, it
can conservatively determine the subset of operations that
must be replaced with mstore-related functions at compile
time and eliminate the instrumentation overhead for such
cases. Trivially, the compiler may replace an annotated call to
malloc with the alloc callback of the requested mstore. A
much more challenging task, however, is to determine the type
of the mstore (if any) to use for every pointer in the program.

For this purpose, we use Andersen’s analysis [17] to gener-
ate inter-procedural point-to information. In a nutshell, CoS-
MIX first parses all instructions and generates a graph with
pointers as nodes and their constraints (e.g., assignment or
copy) as edges. The graph is then processed by a constraint
solver which outputs the set of points-to-information.

When instrumenting memory accesses, CoSMIX can use
this information to determine whether the pointer may alias
to a specific mstore pointer.
Runtime checks and tagged pointers. CoSMIX’s pointer
analysis is sound but incomplete; therefore it requires run-
time decisions for ambivalent cases. We use tagged point-
ers [47, 13, 74, 31] to determine pointer type at runtime. Each
mstore is assigned a unique identifier, stored in unused most
significant bits of the pointer virtual address. For instrumented
allocations, the runtime adds this identifier to the returned ad-
dress from the mstore allocation. For external function calls

and memory accesses, the runtime checks the tag, strips it
from the pointer, and invokes the callback of the respective
mstore if necessary.
Tagged pointers vs. range checks. One known limitation
of tagged pointers is that the application code might reset
the higher bits of a pointer. Prior work [47] and our own
experience suggest that this is rarely the case in practice.
An alternative approach is to differentiate between mstores
by assigning a unique memory range to each. Using tagged
pointers turned out to be faster in our experience because the
range check requires additional memory accesses.

3.3.2 Memory management and file I/O calls

The compiler replaces all the memory management operations
selected by the instrumentation policy with the calls to the
runtime that invokes the appropriate mstore callbacks.

Similarly, file I/O operations are replaced with runtime
wrappers. On open, the runtime determines whether to use
an mstore with the current file and registers its file descriptor.
An I/O call using this file descriptor will be redirected to the
respective mstore.

3.3.3 libc support

Invoking an uninstrumented function on an mstore pointer
would result in undefined behavior. We assume that most
application libraries are available at compile time. However,
libc is not instrumented and we provide wrappers instead,
similarly to other works [47, 59].

There are two main reasons to not instrument libc.
First, doing so would create a bootstrapping problem since
mstores might use libc calls. Second, SGX runtimes such as
SCONE [18] use proprietary, closed-source versions of libc.
Wrapping libc functions allows CoSMIX to be portable
across multiple enclave execution frameworks.

CoSMIX provides wrappers for most popular libc func-
tions (about 80), which suffices to run the large production
applications we use in our evaluation. Adding wrappers for
more functions is an ongoing effort.

In addition to stripping the pointer tag, these wrappers must
guarantee access to virtually contiguous input/output buffers
from uninstrumented code, instead of using mstore mpages.
Thus, where necessary, the wrappers use a temporary buffer in
regular memory to stage the mstore buffer before the library
call and write it back to the mstore after the call.

3.3.4 Translation caching

Minimizing the instrumentation overhead is a fundamental
requirement for CoSMIX. The overheads are caused mainly
by runtime checks of the pointer type and invocation of the
mstore logic on memory accesses.

To reduce these overheads, CoSMIX first runs aggressive
generic code optimizations, reducing memory accesses. It
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also avoids invoking mstore page fault handlers for recurrent
accesses to the same mpage.
Opportunistic caching. We introduce a small (one cache
line) TLB stored in the thread-local memory. This TLB is
checked upon each access to the mstore. The runtime pins the
page in the mstore while the mpage translation is cached, and
unpins when it is flushed. To support multiple threads, the
TLB notification callbacks use a reference counter for each
mpage. The mpage can be evicted if the counter drops to zero,
eliminating the need for explicit TLB invalidation. We choose
small TLB size (5) for its low lookup times. Increasing the
size did not improve performance in our workloads.
Translation caching in loops. The TLB captures the locality
of accesses quite effectively, but in loops, the performance
can be further improved by transforming the code itself to use
the mpage base address without checking the TLB.

For example, in the case of an array allocated in an mstore
and sequentially accessed in a tight loop, most accesses to
the mstore are performed within the same mpage. Therefore,
replacing the code in the loop to check the TLB only at mpage
boundaries would result in near-native access latency.

To perform this optimization, CoSMIX has to (a) determine
the iterations in which the same mpage gets accessed, and
(b) determine the pointer transformation across the iterations.
For (b), CoSMIX uses the scalar evolution analysis [83] in
the compiler to find predictable affine transformations for the
pointers used in the loop. For (a) it injects a code that deter-
mines the number of iterations where the cached translation
hits the same mpage, recomputing the new base pointer and
dropping the translation from the TLB when crossing into a
new mpage. Finally, it replaces the original accesses to the
mstore with the accesses to the mpage’s base pointer with the
offset, which is updated across the loop iterations according
to the determined transformation.

3.4 Discussion

Security guarantees. CoSMIX itself does not change the se-
curity of SGX enclaves. Its runtime neither accesses untrusted
memory nor leaks secret information from the enclave. How-
ever, the security of mstores depends on their implementation:
SUVM has the same security as SGX paging [61] and the
ORAM mstore introduces a controlled side-channel [87] pro-
tection mechanism not available in the bare-metal SGX [67].
We note, however, that CoSMIX does not guarantee that the
code using an mstore will indeed maintain that mstore’s se-
curity properties. For example, in case of the ORAM mstore,
user code must not use sensitive values read from ORAM in a
data/control dependent manner because doing so might break
the data pattern obfuscation [65].
Other mstore applications. Mstores are general and can be
used to implement many other useful extensions. For exam-
ple, implementing bounds checking for 32-bit address space
enclaves as in SGXBounds [47] becomes easy. All it takes is

adding an extra 4 bytes for each buffer allocation to store the
lower bounds of the object and tag the pointer’s highest 32
bits with its lower bounds’ address. Then, every memory ac-
cess is instrumented to check these bounds. The SGXBounds
mstore can implement this logic in its callback functions.

Another useful application is transparent inter-enclave
shared memory, which may enable execution of multi-socket
enclaves and support for secure file sharing.

Eleos vs. CoSMIX. The starting point of our design was
Eleos [61]. There, the authors introduce spointers, which are
similar to C++ smart pointers. In Eleos all necessary mem-
ory accesses are replaced with spointers and translations are
cached in the spointers themselves. On every access, spointers
perform bound checking, to make sure that pointer arithmetic
on the spointer did not cross to a new page. However, the
mpage bound check impacts performance greatly, even when
the caching is limited to the scope of a function. Second,
maintaining static translation for mstore pointers complicated
the design. For example, pointer-to-integer casts had to be
invalidated, forcing a reverse mapping in mstores.

A key lesson from CoSMIX is that caching the translations
only in cases of high access locality is enough to leverage the
performance benefits and simplify the design.

Limitations. Inline assembly snippets, while quite rare, can-
not be easily supported. CoSMIX considers them as an
opaque function call. It injects code to check whether passed
arguments are mstore pointers. If so, CoSMIX aborts the pro-
gram and notifies that manual instrumentation is necessary.

Hardware extensions. We hope that CoSMIX will motivate
hardware developers to support secure in-enclave fault han-
dling. This functionality would allow enclaves to control the
execution flow of the page faults. For example, an enclave
might refuse to resume execution after a fault unless a correct
secure fault handler has been invoked. As a result, secure page
faults would allow extending enclaves with cached mstore
functionality, such as the secured mmap provided by CoSMIX,
albeit at a significantly higher performance costs due to tran-
sitions to/from untrusted mode. Moreover, hardware support
for secure fault handlers would enable paging of code pages
not supported by CoSMIX.

However, direct mstores such as ORAM cannot be sup-
ported in the same way, since they invoke the fault handler
for every memory access. Therefore, good performance could
be achieved only by much more intrusive modifications that
would avoid enclave mode transitions. Additionally, enclave
hardware evolves slowly. For example, the SGX2 specifica-
tion was published in 2014, yet is still not publicly available
in mainstream processors [20]. CoSMIX on the other hand,
can be used to enhance enclaves’ functionality today.
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4 Evaluation

Implementation. CoSMIX implementation closely follows
its design 2. The compiler prototype is based on the LLVM
6.0 framework and is implemented as a compile-time module
pass, consisting of 1,080 LOC. We compile applications using
the Link-Time Optimization (LTO) feature of LLVM and pass
them as inputs to the compiler pass.

CoSMIX uses the SVF framework [79, 80] to perform An-
dersen’s pointer analysis with type differentiation. CoSMIX
runtime is written in C++ and consists of 1,600 LOC. CoS-
MIX’s configuration file is JSON formatted and CoSMIX uses
JsonCpp [3] to parse it. All mstores are written in C++. Their
implementation follows the design described in Section 3.
The implementations of SUVM, ORAM and mmap mstores
are 935 LOC, 551 LOC, and 1,108 LOC respectively. mmap
mstore leverages the SCONE file shields, which override the
read/write calls in libc to implement integrity checks and
encryption for file I/O operations. This is one of the examples
when our design choice to use libc wrappers rather than
libc instrumentation pays off.

Setup. Our setup comprises two machines: server and client.
The client generates the load for the server under evalua-
tion. The client and the server are connected back-to-back
via a 56Gb Connect-IB operating in IP over Infiniband [27]
(32Gbps effective throughput) to stress the application logic
and avoid network bottlenecks.

For the server, we use Dell OptiPlex 7040, with Intel Sky-
lake i7-6700 4-core CPU with 8 MB LLC, 16 GB RAM, and
256 GB SSD drive, Ubuntu Linux 16.04 64-bit, Linux 4.10.0-
42, and Intel SGX driver 2.0 [2]. We use LLVM 6.0 to compile
the source code. As recommended by Intel, we apply L1TF
microcode patches [9]. The client runs on a 6-core Intel Xeon
CPU E5-2620 v3 at 2.40GHz with 32GB of RAM, Ubuntu
16.04 64-bit, Linux 4.4.0-139.

Methodology. Unless otherwise specified, we run all the
workloads in SGX using SCONE [18]. We run each test 10
times and report the mean value, with the standard deviation
below 5%. We compile all workloads as follows: (1) compile
to LLVM IR with full optimizations (-O3) and invoke LLVM’s
IR linker to link all IR files; (2) invoke CoSMIX LLVM pass
for code instrumentation; (3) use the SCONE compiler to
generate an executable binary linked with its custom libc. We
skip step (2) when compiling the baseline.

Summary of workloads. We evaluated several production
applications and benchmarks, detailed in Table 2. CoSMIX
successfully instruments large code bases using only a few or
no code annotations, and no source code changes.

2CoSMIX source code is publicly available at https://github.com/
acsl-technion/cosmix.

Workload LOC Changed
LOC

mstore

memcached [35] 15,927 1 SUVM
Redis [8] 123,907 0 SUVM
SQLite [62] 134,835 2 secure mmap
Phoenix suite [66] 1,064 1/bench SUVM ‖ secure mmap
Face verification [61] 700 1 SUVM→ ORAM

Table 2: Summary of the evaluated workloads. ‖ - side-by-
side,→ - stacked. LOC includes all statically linked libraries.

Data size Baseline SUVM ORAM
16 MB 0.7µsec 0.9µsec (−1.28×) 32.3µsec (−46.1×)
256 MB 14.4µsec 1.5µsec (9.6×) 590.6µsec (−41×)
1GB 19.9µsec 1.6µsec (12.4×) 1.23msec (−61.8×)

Table 3: mstore latency to fetch a 4 KB page. Baseline is
native memory access.

4.1 Mstore performance
First, we measure the latency of random accesses to mstores
and compare them to native memory accesses in the enclave.
We evaluate scenarios with small and large memory usage
where the latter causes SGX page faults. We report the results
for SUVM and ORAM mstores and exclude the mmap mstore
because it is similar to SUVM. We measure the average la-
tency to access random 4 KB pages over 100k requests.

Table 3 shows the results. For small datasets, SUVM incurs
low overhead compared to regular memory accesses. How-
ever, for large data sets which involve SGX paging, it is about
10× faster. This is because SUVM optimizes the enclave
paging performance by eliminating enclave transitions [61].
As expected, ORAM mstore access is between 30× to 60×
slower than the baseline, even when covering a small range
of 16 MB. This result indicates that selective instrumentation
for ORAM is essential to achieve practically viable systems.

4.2 Instrumentation and mstore overheads
We instrument all seven benchmarks in the Phoenix suite [66]
to measure CoSMIX’s instrumentation overheads. Each
benchmark is small, making the results easier to analyze.

We evaluate 4 configurations: (1) Full automatic instrumen-
tation using SUVM and mmap mstore. Both mstores are run
side-by-side because Phoenix uses both dynamic allocations
and memory-mapped files. (2) Same but with an empty mstore.
All the pointers are instrumented, but the mstore logic is not
invoked. (3) Selective instrumentation where we manually
annotate only the inputs. (4) Same but with an empty mstore.
For benchmarks that use mmap, the baseline reads the entire
input file to memory.

Measuring an empty mstore allows us to distinguish be-
tween overheads of pointer instrumentation and mstores.

To focus solely on the CoSMIX overheads, we use the
small dataset shipped with Phoenix so no paging operation
will occur. The only exception is the histogram benchmark,
for which we synthetically resize the dataset to 25 MB. We
exclude mstore initialization and preload all the datasets into
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Figure 4: CoSMIX instrumentation overheads for the Phoenix
suite running in the enclave normalized to the execution of
non-instrumented binaries. Lower is better.

SGX memory, both in the baseline and in CoSMIX measure-
ments, to stress the runtime components of the system.

Often mstores can be tuned to reduce the translation over-
head, by increasing the mstore page size. As a result, the
accesses in a loop might touch fewer pages, enabling more
efficient use of CoSMIX’s TLB. Therefore, we manually tune
the page size, setting it to 256 KB for kmeans, 16 MB for
word count, 64 MB for lreg, and 4 KB for the rest of the
benchmarks, as in all the other experiments.

Figure 4 shows the results. Figure 4b shows the overhead
for both CoSMIX’s instrumentation and mstore logic. Fig-
ure 4a excludes the mstore logic. In each figure, the rightmost
bar refers to the selective instrumentation of accesses to the in-
put data alone, and the other bar refers to full instrumentation
of all dynamic allocations and mmap calls.
Instrumentation overheads. The runtime overheads exclud-
ing mstores are relatively small, with an average (geomean)
of 17% for full instrumentation and 10% for the input instru-
mentation alone, with the worst case of 50% in lreg.
Full instrumentation. With the full instrumentation, mstore
logic dominates the runtime overheads, ranging from almost
none for histogram to 26× for matrix multiplication. Such
variability stems from the different ways memory is accessed.
Specifically, if the program exhibits poor access locality, or
the CoSMIX compiler fails to capture the existing locality in
a loop, the runtime will not be able to optimize out the calls
to the mstore inside the loop, resulting in high overheads.
Selective instrumentation. Instrumenting only the input
buffers results in dramatically lower overheads, ranging from
5% to 15%. The only pathological case is kmeans, where
the CoSMIX compiler fails to optimize accesses to the multi-
dimensional input array because the inner array is too short.
Unrolling this loop reduces the overhead to about 5%. We

CoSMIX
secure
mmap

read
no
cache

read
1 MB
cache

read
16 MB-60 MB
cache

Query latency 2.4µsec 10.7µsec 4.5µsec 1.7µsec
Speedup 4.4× 1.8× −1.4×

Table 4: SQLite performance with secure mmap mstore.

plan to add automatic optimizations for this case in the future.
Contribution of CoSMIX optimizations. We measure the
performance of the selective instrumentation while disabling
the runtime TLB and compiler loop optimizations (§3.3.4).
We find that these two features are essential to make CoSMIX
practical and keep the instrumentation overheads low. The
slowdown ranges from 4× for word count and kmeans to 55×
for histogram and 197× for lreg, making the system unusable.
In comparison, the optimized version brings the overheads
down to 4% and 44% for histogram and lreg. The geomean of
the unoptimized selective instrumentation is 16.4× compared
to 20% with the optimizations enabled.
CoSMIX overheads for non-enclave execution. For com-
pleteness we perform the same experiment with Phoenix but
now outside the enclave. As expected, the relative overheads
increase as compared to the in-enclave execution, with up
to 50% geometric mean slowdown when using selective in-
strumentation with SUVM and mmap mstores and up to 25%
when using an empty mstore. We attribute this discrepancy
to SGX’s memory encryption engine [40], which provides
confidentiality and integrity to memory accesses and therefore
offsets the CoSMIX instrumentation overheads.

4.3 Secure mmap with SQLite
SQLite is a popular database, but running it in SGX with mmap
while providing encryption and integrity guarantees for the
accessed files is not possible today. To run SQLite with mmap
support, we use the secure mmap mstore. We configure the
mpage size to be 4 MB. We use SQLite v3.25.3, and evaluate
it with kvtest [10], shipped with SQLite to test read access
latency to DB BLOBs. We use a database stored in a 60 MB
file holding 1 KB BLOBs. The database is sized to fit in SGX
physical memory. This allows us to focus on the evaluation
of the file access logic rather than SGX paging (refer to §4.4
for paging evaluation).

As a baseline, we evaluate SQLite with its internal backend
that uses read/write calls instead of memory-mapped files.
In this configuration, SQLite implements its own optimized
page cache for data it reads from files. In the evaluation, we
vary the SQLite page cache size from disabled (1 KB) to
60 MB (no misses). We measure the average latency of 1 KB
random read requests over 1 million requests.
Results. CoSMIX enables execution of an unmodified SQLite
server that uses mmap to access encrypted and integrity-
protected files. Such execution was not possible without CoS-
MIX. Moreover, as we see in Table 4, the secure mstore en-
ables 4.4× faster queries compared to the SQLite without

564    2019 USENIX Annual Technical Conference USENIX Association



SGX (Anjuna)
CoSMIX SUVM (Anjuna)

SGX (SCONE)
CoSMIX SUVM (SCONE)

Eleos SUVM (SCONE)

25 50 75 100
throughput (kreq/sec)

0

2

4

la
te

nc
y 

(m
se

c)

(a) Memcached. 10% SET 90%
GET for 1 KB items.

0 20 40 60
throughput (kreq/sec)

0

1

2

3

4

la
te

nc
y 

(m
se

c)

(b) Redis. 100% GET for 1 KB
items.

Figure 5: Performance improvement using the SUVM mstore
in production key-value stores, each using a 600 MB database
(6× the size of SGX secure memory)

page cache. This case illustrates the CoSMIX performance
benefits for applications that do not implement their own op-
timized page cache.

On the other hand, enabling the SQLite page cache allows
us to evaluate the instrumentation overheads. This is, in fact, a
conservative estimate, because the baseline is hand-optimized
and implements the necessary functionality by itself, ver-
sus the general instrumentation and generic CoSMIX’s page
cache. Even in this worst-case scenario, CoSMIX is only
about 40% slower than SQLite.

4.4 Optimizing memory-intensive workloads
with the SUVM mstore

To demonstrate CoSMIX’s support for different SGX execu-
tion frameworks, we run the following experiments both in
SCONE [18] and Anjuna [1].

We use CoSMIX to accelerate SGX execution of applica-
tions with a large memory footprint. We choose Redis and
memcached key-value stores as representatives. Both run with
data sets of 600 MB – about 6× larger than the SGX enclave-
accessible physical memory. These applications experience
a significant slowdown due to SGX paging overheads. The
goal is to reduce these overheads using the SUVM mstore.
Memached. memcached uses a slab allocator to manage its
memory. We annotate a single line of code where the memory
is allocated, making SUVM mstore manage all items.

We evaluate memcached v1.4.25 [35] using the memaslap
load generator shipped with libmemcached v1.0.18 [6]. Our
workload consists of 10% SET and 90% GET requests for
1 KB items (key+value) as used in prior works [61], with re-
quests uniformly distributed to stress the memory subsystem.

We compare the instrumented memcached with SUVM
to native SGX execution. In addition, we run a manually
optimized version of memcached with the SUVM used in
Eleos [61]. Notably, in Eleos, the authors changed memcached
internals to create a shadow memory buffer for the slab al-

locator. This is an intrusive change that CoSMIX eliminates
completely. All runs are performed on 4 cores. Figure 5a
shows that SUVM mstore boosts the throughput by 1.9×
and 2.2× compared to native SGX execution in Anjuna and
SCONE respectively. The difference between the frameworks
correlates with the relative time each of them spends resolv-
ing page faults. Interestingly, the CoSMIX version is about
7% faster than Eleos thanks to its compiler optimizations.
Redis. Manually annotating Redis with its 130 KLOC would
be too tedious. Further, its memory management involves too
many allocations, making annotation challenging. Therefore,
we use automatic instrumentation without code changes.

To achieve high performance, we leverage CoSMIX’s abil-
ity to perform conditional instrumentation. Specifically, CoS-
MIX introduces runtime checks that determine whether to
allocate a buffer in an mstore or in regular memory based
on the requested allocation size. In Redis, we configure the
policy to redirect all allocations in the range of 1 KB-10 KB
to the SUVM mstore. The intuition is to use SUVM only for
keys and values and keep native memory accesses for the rest.

We use Redis v5.0.2 [8], and evaluate it using the memtier
v1.2.15 official RedisLab load generator [7]. We configure
memtier to generate uniformly distributed GET requests for
1 KB items as used in prior works [18].

Figure 5b shows that Redis with CoSMIX achieves about
1.6× and 2× higher throughput compared to native SGX ex-
ecution in Anjuna and SCONE respectively. These results
demonstrate the power of CoSMIX to improve the perfor-
mance of an unmodified production system.

4.5 Protecting data with the ORAM mstore
Selective instrumentation capabilities in CoSMIX are particu-
larly useful when using heavyweight mstores such as ORAM.
ORAM is known to dramatically affect performance (Table 3).

We use ORAM to protect a face verification server [61]
against controlled side-channel attacks [87] on its data store.

The server mimics the behavior of a biometric border con-
trol server. It stores a database with sensitive face images.
When a person passes through border control, the client at
the border kiosk queries the server whether the image of the
person in the database matches the one taken at the kiosk.

The implementation stores the images in an array. The
server fetches the image from the array and compares it with
the input image, using the LBP algorithm [12]. This imple-
mentation is vulnerable to controlled channel attacks which
leak the access pattern to SGX memory pages. Thus, an at-
tacker may observe page access frequency and learn when a
person passes through border control. Note that existing de-
fenses against controlled channel attacks would be ineffective
since they cannot handle legitimate demand paging [76, 60].

We use a database with 1,024 256 KB images from the
Color FERET dataset [63], totaling 256 MB of sensitive data.
We annotate the allocation of the database array to use ORAM
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Native SGX ORAM ORAM→SUVM
Throughput(req/sec) 203.1 23.4 34.7

Slowdown 8.6× 5.8×

Table 5: Selective instrumentation of face verification server.

(1 LOC) and compile with CoSMIX. As a result, the applica-
tion accesses the sensitive data obliviously. In the experiments
we configure the server to use 1 thread and the load generator
to issue random requests, saturating the server.

We report the throughput achieved in Table 5. It shows
that the ORAM mstore introduces an 8.6× slowdown. We
note that for a dataset of 256 MB, the ORAM mstore over-
head is about 41× more than native access, as reported in
Table 3. This shows that selective instrumentation may make
ORAM an attractive solution for some systems. However,
with CoSMIX we can further reduce paging penalties.
ORAM→SUVM stacking. Although the application data is
only 256 MB, PathORAM consumes about 860 MB due to
its internal storage overheads. As a result, the SGX paging
significantly affects the performance.

To optimize, we create a new ORAM→SUVM mstore
by stacking ORAM on top of SUVM. Only 1 LOC in
the ORAM mstore is annotated. The use of the combined
ORAM→SUVM mstore improves the overall performance by
1.5× compared to the ORAM mstore alone (Table 5). Over-
all, selective instrumentation and mstore stacking result in a
relatively low, 5.8× slowdown of the oblivious system com-
pared to native SGX execution. This performance might be
acceptable for practical ORAM applications and requires no
code changes.

5 Related Work

Enclave system support. Recent works proposed systems to
protect unmodified applications using enclaves [18, 21, 77,
81]. Other works proposed enclave enhancements [72, 47, 49],
such as memory safety, ASLR, and enclave partitioning. Com-
plementary to these works, CoSMIX provides system support
for modular extensions to unmodified enclave applications.
Trusted execution environments. Previous works proposed
different systems to protect applications from a malicious
OS [30, 29, 42, 16, 15]. InkTag [42], for example, offers
secured mmap service to applications; however, it relies on a
trusted hypervisor with para-verification. CoSMIX puts its
root of trust in hardware enclaves to implement in-enclave
secure fault handlers.
Controlled side-channel mitigation. Previous works sug-
gested the use of ORAM in SGX to improve its secu-
rity [65, 67, 33, 88, 11, 50]. We believe that CoSMIX
will allow the use of ORAM in many more applications
via lightweight annotations. More efficient systems for mit-
igating the controlled side-channel attack have been pro-
posed [22, 60, 76, 30]. For example, Apparition [30] uses
Virtual Ghost [29], a compiler-based virtual machine, to re-

strict OS access to the page table. However, these systems do
not support demand paging. CoSMIX protects applications
that rely on demand paging from both a malicious OS and
physical bus snooping attacks using the ORAM mstore.
Customizing applications via paging mechanisms. Previ-
ous systems proposed using page faults to improve perfor-
mance and enable quality of service functionality in OS,
GPUs, and enclaves [41, 61, 74, 14]. CoSMIX enables using
similar enhancements in secure enclave systems.

Recent works take advantage of the RDMA infrastructure
to enable efficient and transparent access to remote memory
by customizing the OS page fault handler [39, 75, 53, 37]. For
example, LegoOS [75] uses paging to simulate an ExCache
for disaggregated memory support. CoSMIX takes a similar
approach for extending secure enclaves.

Software-based distributed shared memory systems were
proposed to customize memory access logic across remote
machines [68, 69, 70, 64, 19, 56, 32]. These systems either
use the page fault handler, runtime libraries or instrumenta-
tion of applications. CoSMIX is inspired by these systems;
however, the mstore abstraction is more general and can sup-
port different memory access semantics, mixed or stacked in
the same application.
Memory instrumentation. Much work has been done on in-
strumenting memory accesses using binary instrumentation
tools [51, 24, 57, 52, 71] and compiler-based instrumenta-
tion [73, 47, 13, 31]. CoSMIX enables low-overhead selective
memory instrumentation, specifically tailored for enclaves.

6 Conclusions

CoSMIX is a new system for modular extension of the mem-
ory layer in unmodified applications running in enclaves. It
sidesteps the lack of hardware support for efficient and secure
page fault handlers in existing architectures. CoSMIX en-
ables low-overhead and selective instrumentation of memory
accesses via a simple yet powerful mstore abstraction.

We show how compilation with CoSMIX both speeds up
execution and adds protection to production applications. We
believe that mstores may become a useful tool for facilitating
the development of new secured systems.
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