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GPUs – its been a long journey…
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High-performance

Fully-programmable

Large physical 
memory No integration with OS 

memory management

Managed entirely by the 
GPU driver

Support for 
demand paging
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Core services that require OS management of GPU memory
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• Access to memory mapped files by GPUs

• Disciplined inter-GPU/CPU file sharing

• Optimized CPU I/O by using GPU memory

• Seamless support for peer-to-peer access to storage 
from GPU

OS

Why do we even need this?
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Example: Road navigation service
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Road navigation 
server
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Example: Road navigation service
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Planning service

Example: Road navigation service
Traffic updater service
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Example: Road navigation service
Traffic updater service
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SSD

map.d

Road navigation service – CPU only implementation
Traffic updater servicePlanning service
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Traffic updater servicePlanning service
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SSD

map.d

mmap() mmap()

mapData = mmap(map.d)
calc_route(mapData)
munmap(mapData)

Road navigation service – CPU only implementation

mapData = mmap(map.d)
read_data_from_net()
for each road do:

mapData[road] = newTime
munmap(mapData)
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Traffic updater servicePlanning service
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SSD

map.d

mmap()

mapData = mmap(map.d)
read_data_from_net()
mapData[road] = newTime
munmap(mapData)

Road navigation service – CPU&GPU implementation

gpuMem = allocGPUMem();
cpuMem = readFile(fd);
copyToGPU(cpuMem, gpuMem);
<<calc_route>>(gpuMem);
copyFromGpu(newRoute)

Whole file is copied!
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CPU&GPU file sharing
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mmap()

SSD

map.d

data = mmap(map.d)
update(data)

cpuMem = readFile(fd);
copyToGPU(cpuMem, gpuMem);
<<gpuKernel>>(gpuMem);
copyFromGpu(gpuMem, cpuMem)
writeFile(cpuMem)

Whole file is copied 4 times!

CPU

???
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CPU&GPU file sharing
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mmap()

SSD

map.d

data = mmap(map.d)
update(data)

Without OS management:

Data-dependent GPU accesses to files

Efficient write-sharing between CPU and 
GPU

Repeated copying of the file into GPU 
memory (no page cache in GPU)

CPU
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Tighter integration of GPU memory into 
the OS page cache and file I/O 

mechanisms is required!
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GAIA
A distributed, weakly-consistent page cache 

architecture for heterogeneous multi-GPU systems

(GAIA = GlobAl unIfied pAge cache)
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15

GAIA

mmap for GPU kernels

Efficient write-sharing between CPU and GPU

Enable CPU and GPU I/O optimizations
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Challenges

• File system consistency model

• Integration with GPU driver

• Integration with OS page cache and OS prefetcher
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Challenges

• File system consistency model

• Integration with GPU driver

• Integration with OS page cache and OS prefetcher
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For details see our paper



Tanya Brokhman, USENIX ATC19

Consistency model considerations

18

PCIe

Distributed page 

cache!

GPU memoryCPU memory

CPU
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A bit of background: NVIDIA unified memory 

• Single pointer accessible from CPU and GPU

• Data transfers occur transparently to programmer as part of page 
fault handling mechanism

19

ptr=0x39fe0000

0x39fe0000

CPU
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NVIDIA unified memory - Page-level strict 
coherence
• Strict coherence at the level of a GPU page (64KB = 16 X 4KB)

• A page can be mapped only by one processor
• Accesses to the shared object are serialized

20

Time

Time

64KB

Page 
fault

CPU
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Page 
fault

Page 
fault

Page 
fault

NVIDIA unified memory - Page-level strict 
coherence
• Strict coherence at the level of a GPU page (64KB = 16 X 4KB)

• A page can be mapped only by one processor
• Accesses to the shared object are serialized
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NVIDIA unified memory - Page-level strict 
coherence
• Strict coherence at the level of a GPU page (64KB = 16 X 4KB)

• A page can be mapped only by one processor
• Accesses to the shared object are serialized

Write-sharing causes multiple page migrations !
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Time

Time
64KB

64KB

64KB

64KB

64KB

64KB

CPU
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False sharing due to strict coherence

• Two NVIDIA GTX1080 GPUs

• 64KB-buffer (one GPU page) write-shared
• Each GPU executes read-modify-write

• Each GPU updates a different portion of the buffer

• Loop iteration per GPU varies
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32KB 32KB
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False sharing due to strict coherence
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False sharing impact on the system
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• CPU-only kmeans benchmark limited to specific cores

• False sharing benchmark running on remaining cores

System cores:

32KB32KB

False sharing benchmark

CPU-only kmeans
benchmark
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False sharing impact on the system
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False sharing impact on the system
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False sharing affects performance isolation!
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Lazy Release Consistency (LRC)

• Visibility of writes defined by acquire and release synchronization 
operations
• The writes are visible after the writer release-s and the reader acquire-s

• The propagation of the updates is delayed until acquire

Time

Time

fwrite(“w1”,0x10)

acq 0x20=“w2”
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writer1

writer2

acq

fwrite(“w2”,0x20)
rel

rel acq

3-way 
merge

fread(0x10)=
“w1  w2”

rel
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GAIA LRC 

Time

Time

fwrite

acq
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writer2

acq

fwrite
rel

rel acq
fread

rel

writer1

• Visibility of writes defined by acquire and release synchronization 
operations
• The writes are visible after the writer release-s and the reader acquire-s

• The propagation of the updates is delayed until acquire

CPU
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GAIA LRC 

Incompatible with CPU legacy applications!

Time

Time

fwrite

acq
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writer2

acq

fwrite
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fread
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GAIA LRC – Design challenges

Support unmodified CPU legacy applications!

• CPU applications must be un-aware of the LRC page-cache

How?

• Limit the explicit consistency control to the CPU code invoking GPU 
kernels

31
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GAIA LRC - Design
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Time
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Legend:
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What do we want to happen on release/acquire?
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GAIA LRC - Design
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GAIA LRC - Design

34

Time

Time
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writer1
CPU
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++++

Synchronization transparent to CPU!
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Planning service Traffic updater service
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SSD

map.d

mmap()

mapData = mmap(map.d)
read_data_from_net()
mapData[road] = newTime
munmap(mapData)

Putting it all together:
Road navigation service – CPU&GPU implementation

mapData = mmap(map.d, 
ONTO_GPU)

maquire()
<<calc_route>>(mapData);
mrelease()
munmap(mapData)

w/ GAIA:

mmap()
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More details in the paper…

• Improved CPU and GPU I/O
• Peer-caching

• Readahead prefetcher support for GPU I/O

• Implementation details
• Integration with OS

• Integration with GPU

36
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Evaluation

• Overhead analysis
• Impact on CPU I/O

• Microbenchmarks
• Benefits of peer-caching

• False sharing

• Applications
• Performance of on-demand data I/O with image collage

• Effects of false sharing in image stitching

• Dynamic graph processing with Gunrock

37

• Memory overheads

• Streaming read performance
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Evaluation

• Overhead analysis
• Impact on CPU I/O

• Microbenchmarks
• Benefits of peer-caching

• False sharing

• Applications
• Performance of on-demand data I/O with image collage

• Effects of false sharing in image stitching

• Dynamic graph processing with Gunrock
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• Memory overheads

• Streaming read performance

For details see our paper
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A Hybrid CPU-GPU System for Stitching 
Large Scale Optical Microscopy Images

Timothy Blattner, Walid Keyrouz, Joe Chalfoun, Bertrand Stivalet, Mary Brady, and Shujia Zhou. 
“A HybridCPU-GPUSystemforStitchingLargeScaleOptical Microscopy Images.”

In 2014 43rd International Conference on Parallel Processing, pages 1–9, Sept 2014.
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A Hybrid CPU-GPU System for Stitching 
Large Scale Optical Microscopy Images
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No False sharing
• CPU and GPU working on 

private output buffers
• Output buffers merged at the 

end of the run

Output file size = 5.3GB 
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A Hybrid CPU-GPU System for Stitching 
Large Scale Optical Microscopy Images
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UVM
• CPU and GPU 

write-share output 
buffer

• False sharing 
observed

Output file size = 5.3GB 
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A Hybrid CPU-GPU System for Stitching 
Large Scale Optical Microscopy Images
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A Hybrid CPU-GPU System for Stitching 
Large Scale Optical Microscopy Images
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Output file size = 5.3GB 



Tanya Brokhman, USENIX ATC19

Road navigation service

• Gunrock: CUDA library for graph-processing designed for the GPU
• Unmodified Single Source Shortest Path application

• Legacy CPU process updates the input file

• Updates and graph computations are interleaved

• Compared implementations:

(1) CUDA (original) (2) UVM (3) GAIA

44
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Dynamic graph processing with Gunrock

Input file size = 5.2 GB 45
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Dynamic graph processing with Gunrock

Input file size = 5.2 GB 46
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GAIA - Conclusion

• Scalable weakly consistent page cache abstraction extended to GPU 
memory
• Demonstrating the benefit of LRC for write-shared workloads

• Support mapping large files into GPU address space, enabling on-demand I/O

• Backward compatible with legacy CPU and unmodified GPU kernels
• Transparent consistency support for legacy CPU applications

• IO optimizations for legacy CPU applications

http://github.com/acsl-technion/gaia

47

https://github.com/acsl-technion/gaia
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GAIA - Conclusion
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Questions?


