
GAIA
GlobAl unIfied
pAge cache for
Heterogeneous

systems

Tanya Brokhman

Pavel Lifshits

Mark Silberstein

1

Technion, Israel Institute of
Technology

Tanya Brokhman, USENIX ATC19

GPUs – its been a long journey…

2

High-performance

Fully-programmable

Large physical
memory No integration with OS

memory management

Managed entirely by the
GPU driver

Support for
demand paging

Tanya Brokhman, USENIX ATC19

Core services that require OS management of GPU memory

3

• Access to memory mapped files by GPUs

• Disciplined inter-GPU/CPU file sharing

• Optimized CPU I/O by using GPU memory

• Seamless support for peer-to-peer access to storage
from GPU

OS

Why do we even need this?

Tanya Brokhman, USENIX ATC19

Example: Road navigation service

4

Road navigation
server

Tanya Brokhman, USENIX ATC19

Example: Road navigation service

5

Seattle
Airport

Hyatt
Regency

Hotel

10 10 10

5 5

Planning service

Tanya Brokhman, USENIX ATC19

Planning service

Example: Road navigation service
Traffic updater service

6

10 15 10

5 5

Seattle
Airport

Hyatt
Regency

Hotel

Tanya Brokhman, USENIX ATC19

Example: Road navigation service
Traffic updater service

7

10 15 10

5 5

Seattle
Airport

Hyatt
Regency

Hotel

Planning service

Tanya Brokhman, USENIX ATC19 8

SSD

map.d

Road navigation service – CPU only implementation
Traffic updater servicePlanning service

Tanya Brokhman, USENIX ATC19

Traffic updater servicePlanning service

9

SSD

map.d

mmap() mmap()

mapData = mmap(map.d)
calc_route(mapData)
munmap(mapData)

Road navigation service – CPU only implementation

mapData = mmap(map.d)
read_data_from_net()
for each road do:

mapData[road] = newTime
munmap(mapData)

Tanya Brokhman, USENIX ATC19

Traffic updater servicePlanning service

10

SSD

map.d

mmap()

mapData = mmap(map.d)
read_data_from_net()
mapData[road] = newTime
munmap(mapData)

Road navigation service – CPU&GPU implementation

gpuMem = allocGPUMem();
cpuMem = readFile(fd);
copyToGPU(cpuMem, gpuMem);
<<calc_route>>(gpuMem);
copyFromGpu(newRoute)

Whole file is copied!

Tanya Brokhman, USENIX ATC19

CPU&GPU file sharing

11

mmap()

SSD

map.d

data = mmap(map.d)
update(data)

cpuMem = readFile(fd);
copyToGPU(cpuMem, gpuMem);
<<gpuKernel>>(gpuMem);
copyFromGpu(gpuMem, cpuMem)
writeFile(cpuMem)

Whole file is copied 4 times!

CPU

???

Tanya Brokhman, USENIX ATC19

CPU&GPU file sharing

12

mmap()

SSD

map.d

data = mmap(map.d)
update(data)

Without OS management:

Data-dependent GPU accesses to files

Efficient write-sharing between CPU and
GPU

Repeated copying of the file into GPU
memory (no page cache in GPU)

CPU

Tanya Brokhman, USENIX ATC19

Tighter integration of GPU memory into
the OS page cache and file I/O

mechanisms is required!

13

Tanya Brokhman, USENIX ATC19

GAIA
A distributed, weakly-consistent page cache

architecture for heterogeneous multi-GPU systems

(GAIA = GlobAl unIfied pAge cache)

14

Tanya Brokhman, USENIX ATC19

15

GAIA

mmap for GPU kernels

Efficient write-sharing between CPU and GPU

Enable CPU and GPU I/O optimizations

Tanya Brokhman, USENIX ATC19

Challenges

• File system consistency model

• Integration with GPU driver

• Integration with OS page cache and OS prefetcher

16

Tanya Brokhman, USENIX ATC19

Challenges

• File system consistency model

• Integration with GPU driver

• Integration with OS page cache and OS prefetcher

17

For details see our paper

Tanya Brokhman, USENIX ATC19

Consistency model considerations

18

PCIe

Distributed page

cache!

GPU memoryCPU memory

CPU

Tanya Brokhman, USENIX ATC19

A bit of background: NVIDIA unified memory

• Single pointer accessible from CPU and GPU

• Data transfers occur transparently to programmer as part of page
fault handling mechanism

19

ptr=0x39fe0000

0x39fe0000

CPU

Tanya Brokhman, USENIX ATC19

NVIDIA unified memory - Page-level strict
coherence
• Strict coherence at the level of a GPU page (64KB = 16 X 4KB)

• A page can be mapped only by one processor
• Accesses to the shared object are serialized

20

Time

Time

64KB

Page
fault

CPU

Tanya Brokhman, USENIX ATC19

Page
fault

Page
fault

Page
fault

NVIDIA unified memory - Page-level strict
coherence
• Strict coherence at the level of a GPU page (64KB = 16 X 4KB)

• A page can be mapped only by one processor
• Accesses to the shared object are serialized

21

Time

Time

Page
fault

64KB

Page
fault

CPU

Tanya Brokhman, USENIX ATC19

NVIDIA unified memory - Page-level strict
coherence
• Strict coherence at the level of a GPU page (64KB = 16 X 4KB)

• A page can be mapped only by one processor
• Accesses to the shared object are serialized

Write-sharing causes multiple page migrations !

22

Time

Time
64KB

64KB

64KB

64KB

64KB

64KB

CPU

Tanya Brokhman, USENIX ATC19

False sharing due to strict coherence

• Two NVIDIA GTX1080 GPUs

• 64KB-buffer (one GPU page) write-shared
• Each GPU executes read-modify-write

• Each GPU updates a different portion of the buffer

• Loop iteration per GPU varies

23

32KB 32KB

Tanya Brokhman, USENIX ATC19

False sharing due to strict coherence

24

0

10

20

30

40

0 20 40 60 80 100 120 140 160

Sl
o

w
d

o
w

n

of page migrations

GPU slowdown
GPU slowdown Linear (GPU slowdown)

Tanya Brokhman, USENIX ATC19

False sharing impact on the system

25

• CPU-only kmeans benchmark limited to specific cores

• False sharing benchmark running on remaining cores

System cores:

32KB32KB

False sharing benchmark

CPU-only kmeans
benchmark

Tanya Brokhman, USENIX ATC19

False sharing impact on the system

26

Tanya Brokhman, USENIX ATC19

False sharing impact on the system

27

False sharing affects performance isolation!

Tanya Brokhman, USENIX ATC19

Lazy Release Consistency (LRC)

• Visibility of writes defined by acquire and release synchronization
operations
• The writes are visible after the writer release-s and the reader acquire-s

• The propagation of the updates is delayed until acquire

Time

Time

fwrite(“w1”,0x10)

acq 0x20=“w2”

28

writer1

writer2

acq

fwrite(“w2”,0x20)
rel

rel acq

3-way
merge

fread(0x10)=
“w1 w2”

rel

Tanya Brokhman, USENIX ATC19

GAIA LRC

Time

Time

fwrite

acq

29

writer2

acq

fwrite
rel

rel acq
fread

rel

writer1

• Visibility of writes defined by acquire and release synchronization
operations
• The writes are visible after the writer release-s and the reader acquire-s

• The propagation of the updates is delayed until acquire

CPU

Tanya Brokhman, USENIX ATC19

GAIA LRC

Incompatible with CPU legacy applications!

Time

Time

fwrite

acq

30

writer2

acq

fwrite
rel

rel acq
fread

rel

writer1

CPU

Tanya Brokhman, USENIX ATC19

GAIA LRC – Design challenges

Support unmodified CPU legacy applications!

• CPU applications must be un-aware of the LRC page-cache

How?

• Limit the explicit consistency control to the CPU code invoking GPU
kernels

31

Tanya Brokhman, USENIX ATC19

GAIA LRC - Design

32

Time

Time

W

acq

writer1
CPU

writer2
GPU

acq

rel

rel relacq

write read

Legend:

WR

WR

What do we want to happen on release/acquire?

Tanya Brokhman, USENIX ATC19

GAIA LRC - Design

33

Time

Time

W

acq

writer1
CPU

writer2
GPU

acq

rel

rel relacq

write read

Legend:

WR

WR

++

Tanya Brokhman, USENIX ATC19

GAIA LRC - Design

34

Time

Time

W

acq

writer1
CPU

writer2
GPU

rel

rel rel

write read

Legend:

WR

WR

++++

Synchronization transparent to CPU!

Tanya Brokhman, USENIX ATC19

Planning service Traffic updater service

35

SSD

map.d

mmap()

mapData = mmap(map.d)
read_data_from_net()
mapData[road] = newTime
munmap(mapData)

Putting it all together:
Road navigation service – CPU&GPU implementation

mapData = mmap(map.d,
ONTO_GPU)

maquire()
<<calc_route>>(mapData);
mrelease()
munmap(mapData)

w/ GAIA:

mmap()

Tanya Brokhman, USENIX ATC19

More details in the paper…

• Improved CPU and GPU I/O
• Peer-caching

• Readahead prefetcher support for GPU I/O

• Implementation details
• Integration with OS

• Integration with GPU

36

Tanya Brokhman, USENIX ATC19

Evaluation

• Overhead analysis
• Impact on CPU I/O

• Microbenchmarks
• Benefits of peer-caching

• False sharing

• Applications
• Performance of on-demand data I/O with image collage

• Effects of false sharing in image stitching

• Dynamic graph processing with Gunrock

37

• Memory overheads

• Streaming read performance

Tanya Brokhman, USENIX ATC19

Evaluation

• Overhead analysis
• Impact on CPU I/O

• Microbenchmarks
• Benefits of peer-caching

• False sharing

• Applications
• Performance of on-demand data I/O with image collage

• Effects of false sharing in image stitching

• Dynamic graph processing with Gunrock

38

• Memory overheads

• Streaming read performance

For details see our paper

Tanya Brokhman, USENIX ATC19 39

A Hybrid CPU-GPU System for Stitching
Large Scale Optical Microscopy Images

Timothy Blattner, Walid Keyrouz, Joe Chalfoun, Bertrand Stivalet, Mary Brady, and Shujia Zhou.
“A HybridCPU-GPUSystemforStitchingLargeScaleOptical Microscopy Images.”

In 2014 43rd International Conference on Parallel Processing, pages 1–9, Sept 2014.

Tanya Brokhman, USENIX ATC19

A Hybrid CPU-GPU System for Stitching
Large Scale Optical Microscopy Images

0

2

4

6

8

10

12

14

No
 false sharing

UVM GAIA

Ti
m

e[
se

c]

+31% -31%

40

No False sharing
• CPU and GPU working on

private output buffers
• Output buffers merged at the

end of the run

Output file size = 5.3GB

Tanya Brokhman, USENIX ATC19

A Hybrid CPU-GPU System for Stitching
Large Scale Optical Microscopy Images

0

2

4

6

8

10

12

14

No
 false sharing

UVM GAIA

Ti
m

e[
se

c]

-31%

41

UVM
• CPU and GPU

write-share output
buffer

• False sharing
observed

Output file size = 5.3GB

Tanya Brokhman, USENIX ATC19

A Hybrid CPU-GPU System for Stitching
Large Scale Optical Microscopy Images

0

2

4

6

8

10

12

14

No
 false sharing

UVM GAIA

Ti
m

e[
se

c]

Output file size = 5.3GB

-31%

42

+31% GAIA
• CPU and

GPU mmap
the output
file

Tanya Brokhman, USENIX ATC19

A Hybrid CPU-GPU System for Stitching
Large Scale Optical Microscopy Images

0

2

4

6

8

10

12

14

No
 false sharing

UVM GAIA

Ti
m

e[
se

c]

+31%

0%

43

Output file size = 5.3GB

Tanya Brokhman, USENIX ATC19

Road navigation service

• Gunrock: CUDA library for graph-processing designed for the GPU
• Unmodified Single Source Shortest Path application

• Legacy CPU process updates the input file

• Updates and graph computations are interleaved

• Compared implementations:

(1) CUDA (original) (2) UVM (3) GAIA

44

Tanya Brokhman, USENIX ATC19

Dynamic graph processing with Gunrock

Input file size = 5.2 GB 45

0

0.5

1

5 25 50 75 100

Ti
m

e
[s

ec
]

% of the input file updated by CPU process

CUDA

CUDA UVM

Tanya Brokhman, USENIX ATC19

Dynamic graph processing with Gunrock

Input file size = 5.2 GB 46

0

0.5

1

5 25 50 75 100

Ti
m

e
[s

ec
]

% of the input file updated by CPU process

CUDA

CUDA UVM

GAIA

X8

Tanya Brokhman, USENIX ATC19

GAIA - Conclusion

• Scalable weakly consistent page cache abstraction extended to GPU
memory
• Demonstrating the benefit of LRC for write-shared workloads

• Support mapping large files into GPU address space, enabling on-demand I/O

• Backward compatible with legacy CPU and unmodified GPU kernels
• Transparent consistency support for legacy CPU applications

• IO optimizations for legacy CPU applications

http://github.com/acsl-technion/gaia

47

https://github.com/acsl-technion/gaia

Tanya Brokhman, USENIX ATC19

GAIA - Conclusion

• Scalable weakly consistent page cache abstraction extended to GPU
memory
• Demonstrating the benefit of LRC for write-shared workloads

• Support mapping large files into GPU address space, enabling on-demand I/O

• Backward compatible with legacy CPU and unmodified GPU kernels
• Transparent consistency support for legacy CPU applications

• IO optimizations for legacy CPU applications

48

Questions?

