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Abstract
Intel Software Guard eXtensions (SGX) enable secure and
trusted execution of user code in an isolated enclave to pro-
tect against a powerful adversary. Unfortunately, running
I/O-intensive, memory-demanding server applications in en-
claves leads to significant performance degradation. Such
applications put a substantial load on the in-enclave system
call and secure paging mechanisms, which turn out to be the
main reason for the application slowdown. In addition to the
high direct cost of thousands-of-cycles long SGX manage-
ment instructions, these mechanisms incur the high indirect
cost of enclave exits due to associated TLB flushes and pro-
cessor state pollution.

We tackle these performance issues in Eleos by enabling
exit-less system calls and exit-less paging in enclaves. Eleos
introduces a novel Secure User-managed Virtual Memory
(SUVM) abstraction that implements application-level pag-
ing inside the enclave. SUVM eliminates the overheads of
enclave exits due to paging, and enables new optimizations
such as sub-page granularity of accesses.

We thoroughly evaluate Eleos on a range of microbench-
marks and two real server applications, achieving notable
system performance gains. memcached and a face verifi-
cation server running in-enclave with Eleos, achieves up to
2.2× and 2.3× higher throughput respectively while work-
ing on datasets up to 5× larger than the enclave’s secure
physical memory.

1. Introduction
Intel Software Guard Extensions (SGX) [2, 8, 16, 20] are
a new set of CPU instructions which enable trusted and
isolated execution of selected sections of application code
in hardware containers called enclaves. An enclave acts as a
reverse sandbox: its private memory and execution state are
isolated from any software outside the enclave, including an
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OS and/or a hypervisor, yet the code running in the enclave
may access untrusted memory of the owner process.

While SGX provides the convenience of a standard x86
execution environment inside the enclave, there are impor-
tant differences in the way enclaves manage their private
memory and interact with the host OS.

First, because an enclave may only run in user mode,
OS services, e.g., system calls, are not directly accessible.
Instead, today’s SGX runtime forces the enclave to exit, that
is, to securely transition from trusted to untrusted mode, and
to re-enter the enclave after the privileged part of the system
call completes. Similar exits are caused by asynchronous
events such as page faults and signals.

Second, an enclave may access an isolated trusted mem-
ory space called the enclave page cache, or EPC, which
is accessible only from that enclave. Physical memory that
stores the EPC contents is limited to the size of trusted pro-
cessor reserved memory (PRM) (128MB today). Therefore,
EPC introduces an extra level of virtual memory with its own
demand paging system. Under PRM pressure, EPC pages
are securely evicted to untrusted memory and paged in on-
demand by the SGX driver in response to EPC page faults.

Low-overhead system calls and efficient EPC paging
mechanisms are essential to running I/O and memory-
demanding server applications such as key-value stores
(KVS) inside enclaves. These applications are naturally ex-
ecuted in enclaves, because most of their code is dedicated
to manipulating private data in response to client requests.
Unfortunately, running such workloads in enclaves today re-
sults in a significant slowdown. For example, Figure 1 shows
that a simple KVS we implement runs 10× to 33× slower in
the enclave, losing performance as its memory requirements
grow. Our thorough analysis in §2 indicates the root cause
of the slowdown: the high direct and indirect costs of exit-
ing and re-entering an enclave per system call or EPC page
fault. We seek to mitigate these costs in this work.

Eleos is a runtime system for exit-less OS services in en-
claves. Eleos enables exit-less system calls by transparently
and securely delegating them to a remote procedure call
(RPC) service running in another application thread, with-
out exiting the enclave. Furthermore, Eleos offers a novel
Secure User-managed Virtual Memory (SUVM) abstraction.
This abstraction provides the same security and functional-



ity as SGX EPC, but brings the paging mechanism into the
enclave, therefore eliminating enclave exits due to paging.
A user allocates buffers in SUVM via a special allocator and
obtains a secure pointer or spointer, which can then be used
as a regular pointer in the application. A spointer accessing
evicted SUVM pages triggers a software page fault, which
is handled entirely inside the enclave. Notably, these mecha-
nisms are designed to improve enclave performance without
weakening the original SGX security guarantees.

There are several key aspects of our design that together
contribute to its performance advantages:
Reduced cache pollution due to system calls. As we show
in §2, Last Level Cache (LLC) misses are expensive in en-
claves, thus amplifying the application overheads of sys-
tem call-induced cache pollution [28]. Limiting the LLC
space available to the RPC thread using the Cache Alloca-
tion Technology can reduce the cache pollution effects, sav-
ing up to 25% of the enclave execution time (§6.1.1).
Application-managed paging. SUVM is a user-level li-
brary which implements its own per-enclave page table and
page cache in EPC along with a secure backing store in host
memory. Thus, it complies with hardware-enforced mem-
ory protection and SGX memory management. However,
SUVM carefully sizes its page cache to avoid EPC page
faults, achieving up to 7× faster accesses to secure memory
buffers 10× the size of PRM (§6.1.2).
Low-overhead software address translation. Memory ac-
cesses via spointers are resolved to the SUVM page cache
or trigger a software page fault to a page in evicted pages.
To save lookups on every spointer access, the page cache
pointer is cached in the spointer, while the runtime ensures
that the page is not swapped out for as long as the spointer
is in use. Thus, the page table lookup is performed once per
page, making the spointer accesses only 15-25% slower than
accesses to EPC (§6.1.2).
Graceful handling of multiple enclaves. PRM is shared by
all enclaves. Under PRM pressure, e.g., due to new enclave
invocation, the SGX driver may evict part of the SUVM
page cache, undermining its performance benefits. There-
fore, SUVM coordinates the size of its page cache with the
SGX driver to avoid thrashing, similarly to ballooning in
virtual machines [31]. As a result, performance of multi-
enclave execution improves by up to 3.5× (§6.1.2).
Optimized eviction and memory access policies. Expos-
ing SUVM management to the application enables optimiza-
tions which cannot be implemented with SGX hardware
paging. We introduce two such optimizations: preventing
write back of clean pages to the backing store, and provid-
ing direct access to the backing store at sub-page granularity.
We show that these optimizations boost performance by up
to 1.7× and 1.6× respectively (§6.1.2).

The main observation that drives our work is that enclave
exits are an impediment to application performance. There-
fore, Eleos strives to reduce or eliminate the exits due to in-

Figure 1: Parameter server slowdown in the enclave over untrusted
execution, with and without Eleos (§2.1)

enclave system calls and EPC page faults. The concept of
avoiding costly transitions to interact with system services
from isolated environments has been studied in several con-
texts, e.g., virtual machines [14] and GPU computing accel-
erators [18, 27]. It has also been applied in FlexSC to ac-
celerate system calls [28]. The SCONE project was the first
to introduce batched exit-less system calls from SGX en-
claves [9], independently and concurrently with our work.

Eleos retrofits some of these concepts under SGX con-
straints, combining them with novel design ideas such as
user-level paging and software address translation, which
together achieve significant performance gains. In particu-
lar, we show that handling EPC page faults in software in-
side the enclave is 3× to 4× faster than SGX hardware-
implemented page faults, as it both avoids the exit overheads
and sidesteps the complexity of managing EPC paging by an
untrusted SGX driver. Moreover, through a systematic anal-
ysis of SGX overheads, we find that indirect costs of enclave
exits dominate system performance. Therefore, with the ex-
pected drop in direct enclave management costs in the next
hardware generations, the Eleos exit-less design that elim-
inates indirect costs will become even more important for
achieving high performance in enclaves.

We evaluate Eleos on a range of microbenchmarks and
two real server workloads: a face verification server [18]
and memcached. Running the face verification server with
Eleos on a dataset of 450 MB (about 4× PRM size), we
achieve 95% of the throughput of the server execution with-
out SGX, and up to 2.3× higher throughput compared to
vanilla SGX. We modify memcached to use SUVM (75
LOC changed), and run it in enclave using the Graphene li-
brary OS [4, 29], enhanced with Eleos’s RPC mechanism
for faster system calls. With 500MB of data, memcached
runs 2.2× faster with Eleos than with Graphene alone. No-
tably, the throughput of SUVM+memcached operating on
500MB of data is only 15% lower than the throughput of
Graphene+memcached operating on a small 20MB data set
that does not incur EPC page faults at all.



2. Motivation
We show that executing a simple server application in en-
claves results in significant performance degradation. We
then use this application to thoroughly analyze the main
sources of in-enclave execution overheads. We refer to run-
ning code outside the enclave as an untrusted execution. The
measurement methodology and the hardware specifications
are presented in §6.
Workload. Parameter servers are commonly used in dis-
tributed machine learning systems to store shared model pa-
rameters (e.g., weights of a neural network) across a cluster
of workers which train the model [11]. Each worker issues
in-place updates, e.g., increments one or more parameters or
retrieves their values. This workload serves as a proxy for
large memory footprint server applications, yet it remains
simple enough to analyze. It is also a fairly realistic applica-
tion for SGX which operates on private data in public clouds.

We implement a simple parameter server and compare
its performance inside and outside an enclave. The server
stores the parameters in a hash table in the enclave’s private
memory, 8-byte keys, 8-byte values. The server listens to
client requests, computes the new values, and updates the
relevant entries in the hash table. Each client request updates
one or more values. We use OCALL SGX SDK API to
invoke recv() from the enclave. OCALL internally calls
the EEXIT and EENTER SGX instructions.

In the experiments, the network requests are encrypted
by the clients and decrypted by the server using AES-NI
instructions. The load is generated on a separate machine
connected via a dedicated 10Gb/s network.

2.1 End-to-end performance
We configure the load generator to issue 100,000 random
single-value updates, and then measure the performance for
three server data sizes: 2MB, which fits into the last level
cache (LLC), 64MB, which fits into the EPC, and 512MB,
which exceeds the EPC.

Figure 1 compares the performance of trusted and un-
trusted execution. The enclaves incur dramatic slowdown:
9× slower than the untrusted execution when the server data
fits in LLC and up to 34× for the out-of-EPC configuration.
For comparison, we include the outcome of the same exper-
iment with the best-performing Eleos configuration.

Our analysis presented next, shows that when the server
data fits in EPC the slowdown is caused by the overheads
of SGX exits due to system call invocations. When the data
size exceeds the EPC size, the slowdown increases due to
the overhead of the SGX paging mechanism.

2.2 The cost of system calls

Direct costs. We refer to the latency of SGX EEXIT and
EENTER instructions invoked for each system call as a direct
cost of running code in an enclave. We find that the latency
of these two instructions is about 3,300 and 3,800 cycles,

Operation Sequential access Random access
READ 5.6× 5.6×

WRITE 6.8× 8.9×
READ and WRITE 7.4× 9.5×

Table 1: Relative cost of LLC misses when accessing EPC vs.
accesses to untrusted memory.

which is an order of magnitude higher than the cost of
a regular system call (about 250 cycles [28]). The SDK
OCALL API adds about 800 additional cycles, bringing the
total cost of exits to about 8,000 cycles.

Our measurements show that when the parameter server
is initialized to 2MB of data (fits in the LLC), processing
a single request takes about 9,000 and 1,000 cycles inside
and outside the enclave respectively. Therefore, the enclave
application slowdown is rooted in direct enclave execution
costs alone.

2.2.1 Indirect cost
When an enclave exits, its execution state gets partially
evicted from the caches and other micro-architectural buffers
in the CPU. As a result, when the enclave execution is re-
sumed, the enclave state needs to be restored. We refer to the
associated overhead as indirect costs.

As we show below, the indirect costs might grow quite
large when executing a system call. In fact, a similar impact
on application performance was observed earlier with sys-
tem calls alone [28]. However, in combination with enclave
exits, the indirect cost of a system call is much larger.
The cost of LLC pollution. System calls, and in particu-
lar I/O system calls such as recv(), use additional internal
buffers that compete with the application state in the LLC.
Moreover, as enclaves operate on confidential data, decrypt-
ing/encrypting its inputs/outputs also consume part of the
LLC space. However, in our experiments, we observe that
the effective LLC size available to an application running in
the enclave is smaller than in untrusted runs. We speculate
that this is due to the SGX memory encryption engine stor-
ing its integrity tree in the EPC [15], which competes for
LLC space as well.

The cost of LLC misses, however, is dramatically higher
in enclaves. Indeed, for every miss, the enclave performs in-
tegrity checks and encryption/decryption which slow down
memory accesses.

Table 1 shows the slowdown of LLC misses when access-
ing EPC over accesses to untrusted memory. Read and write
operations exhibit different performance most likely because
for the write workload, there is a need to encrypt dirty data
when evicting it from the cache.

Higher LLC contention and LLC miss costs in the en-
clave result in more costly system calls than in an untrusted
environment, as we show in Figure 2a. We run a server with
64MB of data. For this experiment, we issue 100K random
requests limited to “hot” keys, such that the parameter server



(a) LLC cache pollution costs for “hot” requests on a 64MB
parameter server

(b) The cost of TLB flushes for a 2MB parameter server

Figure 2: Indirect costs of system call induced exits in a parameter
server, as a function of the number of keys updated in each request.
Measured in-enclave.

only updates 8MB out of the 64MB it holds (8MB is the size
of the LLC). We measure the impact of the request size on
the in-enclave execution time. Ideally, no impact should be
observed. However, as we increase the number of keys up-
dated per request, hence, cache pollution, the enclave execu-
tion becomes up to 2.2× slower over the untrusted run.
The cost of TLB flushes. Figure 2b shows the effect of
mandatory TLB flushes performed upon enclave exits. We
compare two implementations of the parameter server: one
that uses a hash table with open addressing and another
with chaining; both are loaded with 2MB of data, which
fits in the LLC. Both hash tables have the same number
of buckets. We configure the load generator to issue 100K
random requests, varying the number of keys to update in
each request (up to 32 keys). We measure the in-enclave
execution time without including the direct costs of exits
and system calls. Since open addressing does not involve
pointer chasing, this implementation is insensitive to TLB
misses. However, the hash table with chaining suffers from
the growing slowdown proportional to the number of hash
table lookups (items accessed) per request.

2.3 The cost of EPC page faults
EPC page faults occur when the enclave accesses EPC pages
that are not resident in the PRM. In today’s systems, PRM
is limited to 128 MB [2]. In practice, however, only about

90MB is available to applications. The rest is used by en-
clave page tables and metadata.
Direct cost. We instrument the SGX SDK and the EPC
page fault handler in the SGX driver to count the number
of page faults. Specifically, we count faults in which a single
page is evicted. The cost of such faults is about 12k cycles,
excluding the time to exit and re-enter the enclave. As a
sanity check, we measure the combined cost of eviction and
paging-in together, by performing random accesses to a 200
MB array in an enclave. We find the combined cost to be
about 25k cycles.
Indirect cost. We measure the execution times of perform-
ing 100k random write operations to a small 60MB array
(tnopf ) and to a 200MB array (tpf ). The first run did not ex-
perience page faults, while the second incurred about 2.9 ×
109 page faults. For the second run, we have already mea-
sured the time required to handle page faults in the driver:
Cdrct=25,000 cycles. The total cost of a single page fault,
which includes both eviction and paging-in as observed by
the enclave, is computed as Ctotal =

(tpf−tnopf )
#pagefaults . This

cost includes the cost of exiting and re-entering the enclave:
Cexit = 7, 000 cycles (§2.2). The indirect cost is Cindrct =
Ctotal−Cdrct−Cexit. We conclude that Ctotal=40,000 cy-
cles, thus Cindrct = 8, 000 cycles.

We note that these measurements are slightly biased be-
cause accessing the 200MB buffer results in a 98% LLC
miss rate compared to a 93.4% LLC miss rate for the 60MB
buffer. We believe, however, that this bias is insignificant for
the purposes of evaluating the indirect costs of EPC paging.

We conclude that running applications in SGX lead to
significant performance slowdown due to costly system calls
and EPC page faults. Eleos aims to eliminate or significantly
reduce the number of enclave exits in these cases to recover
application performance.

3. Design
Eleos provides two essential services inside the enclave:
exit-less OS system call invocation via a Remote Procedure
Call (RPC) mechanism, and Secure User-managed Virtual
Memory (SUVM) with exit-less paging.

Our design goals are as follows:
• Performance. We seek to reduce the cost of running

memory-demanding I/O-intensive server applications in
enclaves.
• Small TCB. Eleos adds relatively little code into the en-

clave’s TCB compared to Intel’s SDK or library OSes like
Graphene [29] (1000 LOC in total).
• Ease-of-use and ease-of-tuning. Eleos is intended for use

by application developers, so it only introduces two new
memory management functions, while RPC services are
integrated transparently with Intel SDK. However, it also
exposes a low-level tuning interface for expert runtime
developers.



Figure 3: Eleos high-level design

• Security. Eleos does not change the original SGX security
guarantees, nor does it improve or weaken them.

Design overview. Figure 3 shows the high-level design.
There are three components: (1) the trusted runtime, which
provides the RPC (§3.1) and SUVM (§3.2) inside the en-
clave; (2) an untrusted runtime running in a separate appli-
cation thread to handle RPC requests and to interact with the
SGX driver; (3) the SGX driver module, which exposes the
interface for coordinating SUVM memory allocation across
enclaves (§ 3.3). We now describe each component in detail.

3.1 RPC for system calls
The RPC mechanism enables invocation of blocking calls
into untrusted code without exiting the enclave. The actual
call is delegated to a worker thread, which executes in the
untrusted context of the enclave’s owner process. As an
enclave may execute multiple threads, Eleos maintains a
thread pool with multiple worker threads.

The thread pool interacts with the enclave via a shared
job queue located in untrusted memory. To perform the call,
the enclave enqueues the pointer to the untrusted function
and its parameters in the job queue and blocks (via polling)
until its completion. The threads in the thread pool poll the
queue, invoke the requested functions, and transfer the re-
sults back via the untrusted shared buffer. The synchroniza-
tion between the trusted and untrusted contexts is performed
via polling because the enclave’s threads cannot use stan-
dard OS synchronization primitives like mutexes. To reduce
the cost of polling, Eleos invokes long running system calls
like poll() via the naive OCALL mechanism.
Cache Partitioning. As we discussed in §2.2.1, the RPC
mechanism alone is insufficient to recover in-enclave perfor-
mance because of the LLC pollution induced by I/O system
calls. This is because I/O buffers used by the worker threads
still compete with the enclave threads for the LLC.

To reduce the impact of cache pollution, Eleos augments
the plain RPC mechanism by partitioning the cache between
the RPC thread (25%) and the enclave (75%) using Intel
Cache Allocation Technology (CAT) [12]. Eleos’s partition-
ing scheme favors enclave threads, assuming the untrusted

calls executed in the worker threads require a smaller frac-
tion of the cache. We evaluate the benefits of this optimiza-
tion in §6.1.1.
Integration. The original Intel SGX SDK provides an
OCALL interface for performing system calls from the en-
clave. Eleos’s RPC infrastructure replaces Intel’s OCALL
mechanism while maintaining the same API, thus allowing
applications to enjoy the performance benefits transparently
without any code modifications.

3.2 Secure user-managed virtual memory
The Secure User-managed Virtual Memory (SUVM) abstrac-
tion provides a user-space mechanism for managing secure
memory on top of the enclave’s EPC, eliminating costly EPC
hardware page faults and the associated enclave exits.

3.2.1 Design overview
SUVM is designed as an additional level of virtual memory
(VM) on top of hardware VM. The enclave program allo-
cates memory by calling suvm malloc(), which returns
a special pointer we call a secure active pointer, or spointer.
Spointers implement the same semantics as regular point-
ers, but they encapsulate the address translation mechanism
which steers respective memory accesses to use SUVM.

SUVM implements a full-fledged paging system, with its
own page table and a page cache in the EPC, and a back-
ing store in untrusted memory of the enclave’s owner pro-
cess (see Figure 3). The SUVM page cache, EPC++, caches
the contents of the backing store in the trusted memory. The
SUVM page table maintains the mapping between EPC++
pages and the location of the cached content in the back-
ing store. When an application accesses pages not resident
in EPC++, an equivalent of a page fault occurs, but it is trig-
gered by and handled in software. Specifically, the enclave
handles the page fault by transferring the page content from
the backing store into EPC++. SUVM software paging does
not require exiting the enclave. SUVM mimics the behavior
of the original SGX paging, maintaining privacy, integrity,
and freshness of the evicted pages. We discuss the SUVM
mechanisms in §3.2.2 and §3.2.3.

SUVM management in user-space provides several ben-
efits beyond the exit-less paging. In particular, it enables the
application-tailored eviction policies and memory access op-
timizations we discuss in §3.2.4.

To ensure efficient operation of SUVM with multiple en-
claves, we extend the SGX driver to support coordinated al-
location of EPC++ space per enclave. Thus, we avoid occa-
sional eviction of EPC++ pages by the SGX driver due to
growing memory pressure when running multiple enclaves.
We discuss this further in §3.3.

We now describe each component of SUVM in detail.

3.2.2 Software address translation via ActivePointers
The key challenge in designing software-managed virtual
memory is to overcome the overheads incurred on every
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Figure 4: Spointers in action. BS: encrypted backing store, PT: page table, PC: page cache, RC: reference count. See 3.2.2 for details.

Figure 5: Spointer address translation in SUVM.

memory access due to the extra level of address translation.
In our solution, we retrofit the ActivePointers software ad-
dress translation mechanism used in GPUs [25].

Spointers provide an abstraction of a large linear address
space on top of a small page cache backed by a large backing
store. The page cache is stored in the EPC, and the backing
store securely stores evicted pages in untrusted memory.
The spointers perform address translation, while the SUVM
paging mechanism automatically swaps relevant data in and
out of the backing store on-demand.

The spointer address translation scheme is depicted in
Figure 5. This mechanism is similar to the ordinary VM
translation, with the notable exception that user code has
full control over the spointer’s page table, page size, and
eviction policy. To save costly page table lookups on ev-
ery memory access, each spointer caches the translated ad-
dress of the respective page in a local variable upon the
first access (EPC++ address in the figure). The spointer with
the cached address is marked as linked. Thus, accesses via
linked spointers involve no page table lookup, reducing the

number of lookups to only one per page. As a result, the
translation overhead is reduced for the common case of spa-
tial and temporal locality of accesses to a page. Access to an
unlinked spointer trigger either a major or minor page fault.
Major page faults page data into EPC++, possibly evicting
other EPC++ pages if no space is left in the cache. Minor
page faults occur if the page is already resident in EPC++,
but the respective spointer is unlinked.

Two basic ideas make the address caching possible with-
out sacrificing correctness. First, the system pins the pages
in the page cache for as long as the spointers that cache
them are accessible by the application. A pinned page can-
not be evicted from the page cache. The total number of
spointers pointing to a given page is kept in a per-page ref-
erence counter in the page table.

Second, the system strives to minimize the number of
pinned pages. To that end, when a linked spointer is de-
stroyed (e.g., leaving the program scope), or moved beyond
the boundary of the linked page, the spointer gets unlinked.
Then, SUVM drops the cached address, and decreases its re-
spective reference count in the page table. Pages with their
reference counts equal to zero become unpinned and can be
evicted from the page cache.
Spointers in action. An example in Figure 4 illustrates the
the spointer address translation while executing a simple
program. The figure shows the state of the spointer data
structures (changes in red) after the execution of the respec-
tive code at the bottom.
suvm malloc() initializes a spointer by allocating

memory in the SUVM backing store (address 0x2000). Ini-
tially, the spointer (Figure 4, left) is still unlinked, and the
page is not cached in the EPC++ until the first access. As
the program executes, the page gets accessed, cached, and
eventually evicted. Figure 4, middle, depicts the state of the
backing store after the page has been evicted and securely
stored in it (value ’2’ in encrypted form).

When the spointer is dereferenced (Figure 4, middle),
the system realizes that the page is not found in EPC++,



and triggers a major page fault. The system allocates a new
EPC++ page (page 0 in the figure), and populates it with
the contents of the respective location in the backing store,
decrypting and integrity-checking the data first. The address
of the page in EPC++ is stored in the spointer (PTE = 0), and
the page reference count is increased (RC=1).

When the spointer is incremented (Figure 4, right), it
crosses the page boundary, so the cached value of the EPC++
page becomes invalid. spointer is marked unlinked, and the
reference count of the page in the page table is decremented.
Heuristics for reducing the number of pinned pages.
The system enforces two rules that help reduce the num-
ber of linked spointers and consequently the number of
pinned pages: (1) when assigning a linked spointer to an-
other spointer, the new spointer is initialized unlinked (2) a
spointer gets unlinked when it is destroyed (e.g., automatic
variables) and when it is iterated outside of the page bound-
ary. These rules establish a reasonable tradeoff between the
translation overhead of unlinked spointers and the number
of pinned pages. In particular, they enable efficient use of
spointers in data containers, e.g., hash tables, which is the
main use case for spointers in this paper. In such contain-
ers, even though the container contents are stored in buffers
pointed to by spointers, all these spointers remain unlinked.
As a result, SUVM enables creating data containers of ar-
bitrarily large sizes, whose content is stored securely in the
backing store.

3.2.3 spointers and SUVM

SUVM API. The SUVM API has been designed for C++
applications. A spointer is a C++ template which can be
instantiated with any type and used instead of regular point-
ers. A spointer is initialized by allocating memory via
suvm malloc(), and deleted via suvm free() call. For
applications written in C, we provide a lower level API for
operating on the spointer data type. This interface requires
more effort to adapt an application to using SUVM, as we
discuss in §5. Last, to achieve better performance with data
containers and large data blobs, we design an optimized
API for operating on memory buffers, e.g., suvm memcpy,
suvm memcmp and suvm memset.
Secure backing store. A secure backing store is allocated
in untrusted memory of the process that owns the enclave.
The data is initialized inside the enclave, but is written back
to the backing store when a page is evicted from EPC++.
Upon eviction, the page is first encrypted with a random per-
page nonce and signed using a random per-application key
stored in the EPC. When the page is paged in, its integrity is
checked to avoid replay and data manipulation attacks. The
nonce and the page signature are stored in the page table in-
side the enclave. The encryption, signing, and validation op-
erations use AES-GCM just like the EWB SGX instruction,
as described in the SGX manual [2].

Periodic page eviction. In vanilla SGX, EPC page eviction
is the responsibility of the SGX driver. In Eleos, the eviction
logic runs inside the enclave. Eviction may occur in three
cases: (1) when EPC++ is full and a new page has to be
paged in due to a page fault, (2) when an EPC++ swapper
thread, which is periodically invoked by the untrusted run-
time, removes some pages to maintain enough pages in the
EPC++ free memory pool, and (3) when the swapper thread
removes pages to reduce the size of EPC++ upon request of
the SGX driver, e.g., when another enclave is started, as we
explain in §3.3.

The eviction logic runs inside the enclave and is trusted,
obviating the need to use costly untrusted EPC page ta-
ble manipulation instructions such as EWB, EBLOCK and
ETRACK.
Multithreading. The SUVM implementation supports multi-
threaded enclaves. The page cache and page table are pro-
tected via fine-grained spin-locks built atop x86 atomic in-
structions.

The use of SUVM in multi-threaded enclaves has an ad-
ditional benefit of eliminating TLB shootdown costs associ-
ated with EPC page eviction. Specifically, when a page is
evicted from EPC by the SGX driver, the driver first de-
termines whether the page address is cached in TLBs of
other cores via ETRACK instruction. The driver then per-
forms the TLB shootdown which involves sending Inter Pro-
cessor Interrupts (IPI) to other cores. A core which receives
the IPI forces the running SGX thread to exit the enclave
(via AEX [2]), resulting in an additional application per-
formance penalty. In SUVM, instead, evicting a page from
EPC++ does not require IPIs. We evaluate the associated per-
formance savings in §6.

3.2.4 Memory access-specific optimizations
SUVM enables optimizations which are not yet available
in vanilla SGX and might be hard to implement with SGX
hardware virtual memory. We show two examples of such
optimizations: avoiding write-back for clean pages and sub-
page direct accesses to the backing store.
Avoiding write-back for clean pages. Page eviction is a
computationally heavy operation on the critical path in large
memory footprint workloads. However, if the page to be
evicted is already present in the backing store and has not
been modified since the previous eviction, the write-back
is unnecessary and the page can be discarded. This opti-
mization is not implemented in SGX today, and it is un-
clear whether such implementation is at all possible. This
is because the only SGX memory eviction instruction (EWB)
forces the page being evicted to be written to the backing
store regardless of whether it has been modified.

In SUVM we add a dirty bit to the spointer data struc-
ture that is updated on every write access. When the spointer
becomes unlinked, the dirty bit is copied into the page ta-
ble. Unfortunately, C++ does not distinguish between deref-



erencing operators for read and for write. Therefore, to lever-
age this optimization, a user should access spointers via
get/set macros. The default behavior assumes write ac-
cess.
Sub-page direct access. When the data access pattern ex-
hibits no spatial/temporal locality, caching the contents in
the page cache only decreases performance. Paging in in-
curs the overhead of copying, decrypting and validating the
integrity of the whole page, even though only a small frac-
tion of that page might actually be accessed.

To optimize for such an access pattern, we implement a
special mode in which accesses to spointers effectively by-
pass the page cache, and access data directly in the backing
store, at sub-page granularity. The system ensures that reads
are consistent by checking that the page is not resident in the
page cache first. This mode is akin to O DIRECT mode for
direct access to storage.

When accessing the data in this mode, decryption, fresh-
ness and integrity check operations are performed at sub-
page granularity too. Otherwise, the whole page would have
to be read anyway, and most of the benefits of sub-page di-
rect access would be lost. Therefore each sub-page is en-
crypted and signed separately, with its own nonce.

This optimization appears to be impossible to implement
in SGX hardware today because SGX uses standard hard-
ware virtual memory that may access data only from the
page cache.

We note that allowing sub-page access to the page cache
would have been equivalent to using SUVM with a small
page size. In contrast, sub-page accesses to the backing
store are suitable for workloads with small random accesses
which exhibit no data reuse, as we show in §6.1.2.

3.2.5 SUVM security
As mentioned, SUVM follows the SGX secure paging de-
sign in terms of encryption and integrity checking mecha-
nisms, ensuring that data integrity, privacy, and freshness of
the evicted pages in untrusted memory are as protected as
they would have been in the original SGX. All the security-
related metadata is stored in the secure enclave memory.
Moreover, the SUVM page table is stored in the secure en-
clave memory and can be accessed only from trusted code.
The paging operations are performed inside the enclave as
well. Therefore, neither the data nor SUVM management
meta-data are exposed to untrusted code.

SGX is known to be vulnerable to controlled chan-
nel attacks which learn enclave’s access pattern to EPC
pages [33]. Similar techniques can be used to attack SUVM
EPC++. However, SUVM would not leak any information
beyond the page access pattern, hence it does not improve,
neither reduces the security guarantees of the original SGX
paging.

3.3 Multi-enclave memory allocation
Any EPC page, and in particular EPC++ memory, may be
evicted from the EPC by the SGX driver. Unfortunately, this
renders the SUVM exit-less paging mechanism useless, be-
cause accessing evicted SUVM pages would still result in a
hardware page fault, and even incur additional SUVM trans-
lation penalty. This problem becomes severe with multiple
enclaves, because the driver redistributes the secure memory
dynamically as enclaves get invoked, without notifying the
enclaves of the EPC allocation changes.

We, therefore, extend the SGX driver to coordinate EPC
page eviction and allocation with the untrusted user-space
runtime. Specifically, the runtime periodically queries the
SGX driver to determine the secure memory space available
to the enclave, adjusting the EPC++ allocation accordingly.
To adjust the allocation of running enclaves the runtime
invokes the SUVM swapper thread, which enters the enclave
and frees or adds pages to its EPC++.
Similarity to ballooning. We note that the basic idea of col-
laborative management of EPC++ across enclaves is similar
to that of memory ballooning [31], used by a hypervisor to
manage memory allocation among virtual machines. How-
ever, whereas a hypervisor has no direct control of the OS
memory consumption, the Eleos trusted runtime can directly
modify the enclave’s working set by evicting or adding new
pages to its EPC++.

3.4 Discussion
SUVM offers an alternative design for secure memory man-
agement, enabling application-optimized, simpler, more
flexible and thus more efficient paging mechanisms than
in the original SGX. The exit-less design not only saves
the overheads associated with page-fault induced exits, but
also, requires no complex virtual memory management in-
structions, because the page faults are handled in a trusted
environment.

SUVM targets only a single-application case, which
matches the typical usage scenario for enclaves, similarly
constrained to the context of one process. This simple sce-
nario might not require the full power of generic hardware
paging used in SGX today. Thus, it might enable more effi-
cient hardware support as well, e.g., by adding application-
level unprivileged page faults for certain memory regions.
The SUVM application-level paging system would still be
useful in such a case.

Despite the benefits, we consider SUVM complementary
to the SGX paging system, because it relies on hardware pro-
tection mechanisms and global inter-enclave memory man-
agement.
Usability. Our experience with SUVM shows that using
it for developing new SGX applications is easy. However,
porting existing applications, especially C-based, requires
significant effort as we discuss further in § 5. One option
to improve the usability of SUVM for existing applications



is to employ mechanisms first used in distributed shared
memory systems, e.g., Shasta [23]. This approach also holds
the potential to both reduce current SUVM overheads by
using aggressive compiler-optimizations.
Page size. The EPC++ page size is configured at compilation
time. Increasing the page size may be useful to reduce the
memory consumption of SUVM page tables and free more
space for the application data.
Hardware support. SUVM could benefit from hardware
support, for example, boundary checking [25], to speed up
its critical path for page-fault free cases.

4. Implementation
We implement the Eleos prototype for Linux on Skylake
SGX-enabled CPUs. We omit the details of the RPC mech-
anism, which is fairly straightforward, and focus on SUVM
and SGX driver modifications.

4.1 SUVM implementation

Page tables. SUVM maintains two page tables: (i) The
EPC++ inverse page table, which maps a page in the back-
ing store to the EPC++ page. It stores the reference count of
all linked spointers referring to that page. This small page
table has an entry for every EPC++ page, and is used upon
every page fault. (ii) The crypto-metadata page table, which
holds HMAC and nonce for each page in the backing store.
This table is accessed only during the paging, and may grow
fairly large.

Both tables are stored in EPC, and are implemented as
hash tables with fine-grained locking, using separate spin-
locks for each bucket. To ease contention and minimize
rehashing, we pre-allocate the tables to be large. Under PRM
pressure, unused entries get evicted through native SGX
paging. However, frequently accessed mappings will remain
resident in secure physical memory.
EPC++. We pre-allocate the memory pool for EPC++ pages
in EPC, and keep track of unused pages in a free list. When
EPC++ has to be downsized due to growing PRM pressure,
we remove the pages from the free list and stop using them in
EPC++, but do not de-allocate them. Since they are unused,
the SGX driver eventually evicts them while keeping the
other EPC++ pages intact.
Backing store. The backing store uses a slab memory allo-
cator from the SQLite project [1]. The allocator implements
the standard buddy system to reduce fragmentation, with a
minimum allocation of 16 bytes in our configuration. We al-
locate the slab in the application heap in untrusted memory.

We implement all the cryptographic operations for the
backing store using AES-NI [7] via the native SGX SDK’s
cryptographic library, which in turn relies on the IPPCP
cryptographic library [30].
spointers. A spointer is a C++ templated class. It stores the
address translation data (See Figure 5), which includes the

current page index, in-page offset, dirty bit, and a pointer to
the EPC++ page when the spointer is linked The data used in
address translation of a linked spointer is limited to 16 bytes
to reduce LLC space, which is important to the reduction of
fault-free access overheads.

Eleos uses operator overloading 1, providing the conve-
nience of regular pointers.
SGX driver modifications. We add an ioctl() to query
the amount of PRM available for a given enclave. Today’s
driver splits the PRM evenly among the enclaves, and there-
fore our implementation returns the number of active en-
claves as a simple heuristic.

4.2 Limitations

SUVM space overheads. Our implementation can be im-
proved by reducing the memory consumption of the spointer
object, which might, in turn, speed up applications that use
many spointers. In addition, we are overly conservative in
our choice to store all the cryptographic metadata for the
backing store in EPC. Some of its fields might be stored in
untrusted memory, reducing the EPC consumption.
SUVM metadata eviction. SUVM does not evict its own
metadata, relying on the native SGX paging mechanism.
Direct access to the backing store. Our implementation
currently lacks working support for operating on both direct
access to the backing store and page table access.
Misaligned data. Misaligned data in the backing store ac-
cessed via spointers requires fetching the data from two sub-
sequent entries in the secured backing store. Our current im-
plementation currently lacks support for this mechanism.
EPC++ resizing. Our implementation currently lacks work-
ing support for dynamic EPC++ resizing and thus we resort
to initialization-time configuration.
SUVM for code. SUVM does not support eviction of code.

5. Applications
We evaluate Eleos by using it to execute in enclave two real
server applications, memcached and face verification [18].
We augment them to decrypt/encrypt each request/response
from within the enclave using AES-NI hardware accelera-
tion in CTR mode with a randomized 128-bit key. In this
section, we describe the modifications to allow in-enclave
execution of these applications with Eleos.

5.1 Memcached
Memcached is a popular in-memory key-value store widely
used in production. It is an OS-intensive application with
extensive use of system calls. To run it in the enclave we use
the Graphene in-enclave library OS prototype [4, 29], which
conveniently allows system call invocation from the enclave.

1 spointers currently overload dereference, assignment and arithmetic oper-
ators.



We integrate the Eleos’s RPC mechanism with Graphene to
enable exit-less system calls.
Modifications to memcached. memcached is written in
C, therefore we cannot use the spointers C++ interface, and
instead employ the C API described in Section 3.2.3.

One non-trivial challenge is posed by the memcached
memory allocation system. When integrating it with SUVM,
one obvious option would be to place the memory pool used
by memcached’s allocator in SUVM memory. Such a de-
sign, however, would require significant code modifications.
Specifically, the memcached memory allocator stores the
data (key and value) and metadata, i.e., slab class affiliation,
last access time, together in the same memory pool. A large
part of memcached’s logic accesses the metadata, all via
memory pointers. Manually modifying all these pointers to
use SUVM would require massive code changes.

Fortunately, less intrusive modifications (75 lines of code)
are needed if we limit our use of SUVM only to store key-
value pairs and their respective sizes. The size of a key-
value pair is the only sensitive metadata that requires privacy
and integrity protection of SGX. The rest of the metadata is
security-insensitive, and thus is stored in the clear. This im-
plementation enjoys the benefits of SUVM software paging
because the key-value pairs constitute the main bulk of the
memcached working set.
Implementation. We allocate memcached’s original mem-
ory pool in untrusted memory, and use it to store security-
insensitive metadata. These include the slab class affiliation,
last access time, expiration time, and hash chain pointers. We
then allocate another memory pool via SUVM, and use it to
securely store the keys, values and their sizes while replac-
ing all references to these fields in the original code with
spointers. As a result, the memory pool in SUVM is man-
aged by the memcached original allocator, while SUVM
transparently takes care of demand paging.

5.2 Face verification
We adapt a biometric identity checking server like the one
used in border and password control kiosks [18] to run in-
enclave. This server stores a large database of sensitive bio-
metric data for each individual using a hash table. A client
queries the server to validate the claimed identity. The server
retrieves the stored biometric data for the given identity and
compares it with the measurements provided by the client.

We store the server’s hash table in SUVM. We use a
standard face recognition benchmark [22] for performance
evaluation. The server receives an encrypted request from
the client over the network. The request contains a person’s
identity and her image. The server fetches the images match-
ing the person’s identity from the hash table and invokes the
LBP face verification algorithm [6] to compare them with
the image in the request. The server then returns an en-
crypted response to the client whether the claimed identity
has been verified. For this workload, the server’s hash table

contains 40-byte keys (the person ID) and 232KB values (the
image histogram).

6. Evaluation
We evaluate Eleos using microbenchmarks and real work-
loads. First, we evaluate RPC and SUVM separately, seeking
to characterize the sources of performance gains and over-
heads under various conditions. We then evaluate the entire
system using the server workloads described in detail in § 5.
Setup. We use a Dell OptiPlex 7040 machine, with Intel
Skylake i7-6700 4-core CPU with 8MB LLC, 128 MB PRM
(about 93MB available for applications), 16 GB RAM, and
256 GB SSD drive. The machine runs Ubuntu Linux 14.04
64-bit, Linux 4.2.0-36, and the latest Intel SGX driver [5],
SDK and platform software (PSW) [3] with our modifica-
tions for performance measurements. We use GCC 4.8.4,
and compile using the SGX SDK Prerelease configuration,
which has the same performance as production enclaves [2].
Measurement methodology. Measuring in-enclave perfor-
mance is a non-trivial challenge: hardware performance
counters cannot be used inside the enclave because reading
them (including RDTSC) from enclave is not supported 2.
In addition, profilers that use them rely on interrupts for
sampling, which in turn induce enclave exits and distort the
actual values of the counters.

Instead, we use a measurement thread outside the enclave
to sample the timer. The thread is signaled from the enclave
via a shared flag to measure in-enclave execution time. The
measurement error is about 200 cycles, which is an order
of magnitude smaller than the values we measure in the
experiments.

Unless specified, we measure end-to-end performance,
run each experiment 60 times, with the first ten invocations
as warm-up, and report the average of the rest. The standard
deviation is within 5% across all the experiments and is not
reported.

6.1 Microbenchmarks
We evaluate the RPC and SUVM mechanisms on several
microbenchmarks. We first report the results for RPC and
then discuss SUVM performance.

6.1.1 RPC for system calls
We use the parameter server described in §2. All the experi-
ments here match the respective experiments in §2.
Eliminating direct costs of EENTER/EEXIT. Figure 6a
shows the slowdown of the server in the enclave compared to
the untrusted run, while serving 100K random single-value
requests (same experiment as in §2.2). The data size is 2MB,
and entirely fits in the LLC. We observe that exit-less system
calls result in 6× improvement for small requests, but are on
par with OCALLS for batches with 64 updates.

2 Attempts to issue RDTSC or RDPMC on our platform resulted in #UD.



(a) Eliminating EENTER/EEXIT costs (end-to-end) (b) Reducing LLC pollution overheads (in-enclave) (c) Eliminating TLB flush overheads (in-enclave)

Figure 6: Slowdown of the parameter server in enclave with and without the RPC mechanism. Lower is better.

Eliminating LLC pollution. We initialize the parameter
server with 64MB of data, while serving only a pool of
8MB of “hot” random requests (which fits in the LLC). We
compare in-enclave execution time (same experiment as in
§2.2.1). Eleos allocates 25% and 75% of the LLC to the RPC
thread and the enclave thread respectively. Figure 6b shows
that cache partitioning enables over 25% improvement, in
particular for larger I/O buffers.
Eliminating TLB flushes. We initialize the parameter server
with 2MB of data, configure the load generator to generate
100k random requests while varying the number of updates
per request, and measure in-enclave execution time. We use
chaining in the parameter server’s hash table to highlight
the effects of TLB misses (same experiment as in §2.2.1).
Figure 6c shows that Eleos eliminates the overheads of TLB
flushes performed as part of enclave exits, resulting in up to
5.5× faster execution.

6.1.2 SUVM

Page-fault intensive workloads: large memory buffers. In
each experiment, the program creates an array of spointers,
each pointing to an SUVM memory buffer allocated with
a separate call to suvm malloc(). The accesses are per-
formed at random array locations via spointers. This ex-
periment emulates the access pattern to a hash table imple-
mented with spointers, but without hash contentions. We set
the EPC++ size to 60MB and run the experiment for arrays
with different numbers of spointers.

Figure 7a shows the speedup of SUVM over native SGX
for one thread, together with the number of hardware page
faults in each setup. When the application buffer exceeds the
available EPC, SUVM is about 5.5× and 3× faster for reads
and writes respectively. Writes are slower than reads due to
the write-back of pages upon eviction. For buffers of up to
1GB, SUVM eliminates all the hardware page faults, but as
the application working set grows, SUVM management data
structures get evicted from EPC.
Multi-threaded runs and TLB shootdown. Figure 7b
shows the SUVM performance with multiple enclave threads.
SUVM speedup is higher than in a single-threaded exper-
iment. The SGX performance is slower due to the extra

Threads #IPI #Faults Speedup
in enclave SGX(SUVM) SGX(SUVM)

1 50.2e3 (84) 116.1e3 (151.2e3) 4.5×
4 77.9e3 (119) 115.1e3 (151.2e3) 5.5×

Table 2: Inter Processor Interrupts (IPIs) in SGX (SUVM), and
SGX page faults (SUVM page faults) for 100k random 4K reads
from 200MB buffer.

penalty of TLB shootdowns and associated Inter Processor
Interrupts (IPIs) issued by the SGX driver.

To confirm this hypothesis, we measure the number of
IPIs and SUVM software/SGX hardware page faults for
100k random 4KB reads from a 200MB buffer. Table 2
shows that SUVM handles more faults, because it is con-
figured with 60MB of EPC++, compared to about 90MB
of PRM space available to SGX. Changing the number of
threads has a negligible effect on the number of page faults.
However, with multiple enclave threads the SGX driver per-
forms 1.5× more IPIs than with one thread 3. In contrast,
no IPIs during SUVM execution are issued regardless of the
number of threads, suggesting that the lack of IPIs is the pri-
mary reason for better SUVM multithreaded performance.
Page-fault free workloads: small memory buffers. We
evaluate the overheads of memory accesses through spointers
by allocating a large array in SUVM with a single
suvm malloc() and accessing it through an spointer at
page-aligned locations. To avoid major page faults, the array
is pre-fetched into EPC++. We vary the size of accessed el-
ements to estimate the granularity of access at which minor
page fault cost becomes amortized. We use two configura-
tions: when the array fits into the LLC (the worst case for
spointers due to the low memory access cost), and when it
fits into PRM (LLC miss, no page faults).

Figure 8a shows that spointers introduce up to 22% over-
head for reads and up to 25% for writes, while when the
working set exceeds the LLC in Figure 8b the overhead is
less than 20%.

3 There are IPIs even for single-threaded enclaves due to an asynchronous
swapper thread in the driver.



(a) 4K random accesses, one thread. Higher is better. (b) 4K random accesses, four threads. Higher is better.

Figure 7: SUVM speedup over native SGX paging mechanism.

(a) Data in LLC (2MB). Lower is better. (b) Data in PRM (60MB). Lower is better.

Figure 8: SUVM slowdown for fault-free accesses over regular access to memory.

Direct access to the backing store. Table 3 compares the
performance of direct accesses with sub-page granularity
(1KB sub-pages) vs. EPC++ accesses (4KB pages). Short
reads enjoy up to 58% improvement, but larger ones are on
par or slower than EPC++. There are two reasons: (a) the
overhead of handling extra sub-page encryption and integrity
checks when reading more than one sub-page, (b) about 25%
of EPC++ accesses are hits.

Figure 9: EPC++ resizing: slowdown of running two enclaves with
SGX and incorrectly configured EPC++ over two enclaves with
correct EPC++ size. Lower is better.

Bytes/access 16 256 2048 4096
Speedup 58% 41% -3% -17%

Table 3: Direct accesses with 1KB sub-page granularity vs. EPC++
accesses with 4KB pages.

Coordinated allocation of EPC++ across enclaves. Each
experiment measures the throughput of 4K random reads
for three different sizes of arrays. We test three configura-
tions: native SGX, SUVM with correctly configured EPC++
=30MB (fitting in PRM with two enclaves), and SUVM with
incorrectly configured EPC++ =50MB (which causes thrash-
ing with two enclaves). Figure 9 confirms that the EPC++
size has to be adjusted in response to PRM pressure. Run-
ning two enclaves with incorrectly configured EPC++ causes
both SUVM and SGX faults, which results in up to 3.4×
lower throughput compared to correctly configured EPC++.
SUVM software page faults vs. SGX hardware page
faults. We measure the latency (in CPU cycles) of SUVM
page faults as observed by the application, similarly to the
way we evaluate native SGX faults in §2. Handling native
SGX faults (including page eviction and paging in) requires
about 40k CPU cycles (see §2). In SUVM, the combined
cost of evicting and paging-in a page (as occurs in write



Figure 10: Face verification throughput. Higher is better.

Value Threads SGX Eleos Native
size in enclave +Graphene +Graphene
1KB 1 21.4 (11.1×) 43.4 (5.2×) 229
1KB 4 57.8 (7.1×) 128 (3.2×) 406
4KB 1 16.6 (10×) 36 (4.5×) 163
4KB 4 41.8 (6.6×) 86 (3.2×) 274

Table 4: Throughput (Kops/s) of memcached running in enclave
with and without Eleos vs. native execution (Slowdown factor).

workloads) is about 14K cycles, whereas the cost of paging
in alone (read-only accesses) is about 8.5K cycles. Thus,
software page faults are about 5× faster for read workloads
and about 3× faster for write workloads, which correlates
well with the results shown in Figure 7a.

6.2 End-to-end evaluation
We run all the experiments by using a separate machine for
load generation. We use a 6-core Intel Xeon CPU E5-2608
v3 at 2GHz with 32 GB of RAM running Ubuntu 14.04. The
server and the client machines are connected back to back
via a 10Gb NIC.

6.2.1 Face verification server
We use a standard FERET face recognition benchmark [22].
Each image is resized to 512x512 and reformatted as raw
grayscale. The data set is preprocessed and stored in a hash
table, consuming 450 MB of memory. We use a request gen-
erator on a separate machine to saturate the server. We mea-
sure the throughput for different number of server threads.

We measure the throughput of a native server (no SGX),
vanilla SGX run, and then Eleos with RPC mechanism
alone, and finally with SUVM. Each request yields a sin-
gle has table read of 232KB.

Figure 10 shows that the throughput of the native server
is bounded by the network. Eleos’s RPC alone is not ef-
fective, because the OCALL cost is hidden by network la-
tency. The use of SUVM recovers most of the native perfor-
mance, achieving 95% of the maximum throughput with two
threads.

6.2.2 Memcached
We evaluate memcached using the popular memaslsap
[34] load generation for memcached servers, which mea-

Figure 11: Throughput of memcached for different value sizes
normalized to vanilla Graphene-SGX run. Higher is better.

sures end-to-end throughput. We use memaslap to simulate
enough clients to saturate the server. The client first inserts
items to fill up memcached with values, and then requests
these values via a GET command. We configure memaslap
to issue requests to all the items stored in the memory pool
(500MB, 4.5× the size of PRM). Finally, we set the key size
to 20B, and experiment with two value sizes of 1KB or 4KB.

We use memcached with Graphene as a baseline. To
evaluate memcached with Eleos we modify Graphene to
use Eleos’s RPC mechanism, and run SUVM in two con-
figurations: with EPC++ and with direct access (1KB sub-
pages). To determine the upper bound on the SGX execution
of memcached with Graphene, we evaluate a page fault-
free execution with a small dataset (20MB) that fits into EPC
entirely.

Figure 11 and Table 4 show the results. We observe
that RPC is only effective while running memcached in 1
thread. SUVM with direct access offers the highest speedup
of up to 2.2× over Graphene. Eleos with large data set
achieves within 17% of the throughput of a page-fault free
execution with Graphene. Finally, SUVM with direct ac-
cess to the backing store is faster than EPC++ for shorter
reads, but slower for larger accesses, matching the results of
microbenchmarks (§6.1.2).
Metadata in untrusted memory. We evaluate the perfor-
mance improvements due our changes to store the metadata
in untrusted memory (§5). The modified version is about 3%-
7% faster than the original one which stores all its data in
trusted memory. Therefore, this change is not the primary
source of the performance gains we report here.

7. Related Work
We are not aware of prior work which investigates exit-
less user-managed virtual memory. However, Eleos draws
on similar ideas that have been considered in other contexts,
such as optimized I/O and memory management in virtual
machines and GPUs, and low-overhead system calls.
System support for trusted execution. Intel SGX SDK
[8, 13, 16, 20] introduces the OCALL interface to allow un-
trusted function calls from enclaves, which force the enclave



to exit to perform such a call. Eleos replaces OCALL with a
more efficient exit-less implementation.

The authors of Intel SGX 2 [19, 32] acknowledges the
performance overheads of OCALL. However, they do not
consider indirect costs.

Haven [10], Graphene [29] and PANOPLY [26] provide
secure execution for legacy applications inside SGX en-
claves without application code modifications, by providing
a compatibility layer that deals with enclave execution. Our
work is complementary, and can be used to improve applica-
tions performance, as we do with Graphene (§ 6). Finally, the
integration of Eleos adds only a few hundred lines of code
into the TCB.

VC3 [24] uses SGX to achieve confidentiality and in-
tegrity as part of the MapReduce framework. Ryoan [17] is a
system used to execute enclaves in a sandbox and distributed
environment. Ryoan proposed use cases include health anal-
ysis and image processing modules, which like VC3 are both
I/O and memory-demanding. Thus, using Eleos with it might
be beneficial.

Closest to our work, SCONE [9] leverages SGX to pro-
vide isolated execution for Linux containers [21]. SCONE
employs an independently developed technique that is simi-
lar to Eleos’s RPC mechanism. However, the authors do not
analyze the costs of exits, as we do in this paper. Further-
more, Eleos enhances the RPC mechanism to reduce LLC
pollution by using CAT. Finally, we extend the scope of exit-
less services to virtual memory, and show significant perfor-
mance benefits for workloads exceeding the size of PRM.
Asynchronous system calls. The authors of FlexSC [28]
observe the need to reduce user/kernel transitions to opti-
mize the system call performance, proposing asynchronous
system call execution with batching. Eleos’s RPC service is
similar. Furthermore, our analysis of LLC pollution and TLB
flushes was inspired by that of FlexSC.
System services for GPUs. This work adapts some of the
ideas introduced earlier to provide system services on GPUs.
Specifically, GPUfs [27] and GPUnet[18] are systems for ef-
ficient I/O abstractions for GPUs. Like them, Eleos uses an
RPC infrastructure to reduce transition costs. ActivePoint-
ers [25] is a software address translation system for GPUs
that provides support for memory mapped files. Eleos adopts
this concept for spointers but extends it by redesigning its
paging system to support secure paging and optimizing it
for execution on CPUs.
Virtual machine ballooning. Eleos applies the idea of coor-
dinated memory management among virtual machines [31]
to enclaves. Thus enclaves, like virtual machines, may evict
pages according to their eviction policy. However, unlike
VM ballooning, Eleos adds its own trusted swapping thread,
and can directly modify the enclave’s working set.
Distributed shared memory. Shasta [23] is a software
based distributed shared memory system, which supports
a shared address space across a cluster. To maintaining co-

herency in fine-grain granularity, Shasta instruments load
and store instructions to test for memory state validity. Eleos,
adapts this concept into spointers, yet extends it to support
full virtual memory management in a secure fashion.
Exit-less interrupts for optimized I/O in VMs. The con-
cept of exit-less interrupt handling in Virtual Machines in-
troduced in ELI [14] inspired us to consider techniques for
eliminating costly exits in enclaves. ELI, however, focuses
on interrupt handling in the context of optimized I/O per-
formance, and does not consider avoiding exits due to page
faults.

8. Conclusions
We introduce Eleos, an in-enclave trusted runtime for accel-
erating the execution of I/O and memory intensive applica-
tions in SGX enclaves. Eleos achieves its performance gains
by mitigating the costs of exits in SGX enclaves. It offers
an exit-less RPC mechanism to reduce the overhead of un-
trusted OS services invocation, and Secure User-managed
Virtual Memory with exit-less page faults to reduce the cost
of SGX secure memory paging.

Our evaluation shows that Eleos can significantly im-
prove the performance of I/O and memory intensive appli-
cations executing in enclave, for example, up to 2.2× better
throughput for memcached and a face verification server
operating on datasets 5× larger than the secure physical
memory.

Eleos advocates for moving system management and con-
trol into enclave, thereby exposing more opportunities for
application-specific performance optimizations in the con-
strained enclave environment. Further, following this philos-
ophy, Eleos might be extended to provide new services, i.e.,
inter-enclave shared memory, which are not currently sup-
ported in SGX. Last, we believe that future hardware support
for enhanced execution control and memory management in-
side the enclave might not only help improve performance of
Eleos in future systems, but will also help strengthen SGX
security guarantees, reducing the reliance on untrusted OS
services.

The source code for Eleos and all the enclave applications
used in this paper is publicly available at
https://github.com/acsl-technion/eleos.
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