
Omnix: an accelerator-centric
OS for omni-programmable systems

Rethinking the role of CPUs in modern computers

Mark Silberstein
EE, Technion

Mark Silberstein, Technion 2

Oratorio for CPUs, accelerators and
OS in 4 parts

accelerators We
Part 1: Accelerando con brio

Part 2: Amore SOSPenuto appassionato

OS CPU accelerators

CPU

Part 4: Tutti accelerando a capella

OmniX = acceleratorsOS

Part 3: Subito non-CPUtto

Mark Silberstein, Technion 3

2004: The free lunch is over

Mark Silberstein, Technion 4

2015: no more lunch as we know it
The last International Technology

Roadmap for Seminconductors (ITRS)

Mark Silberstein, Technion 5

Looking beyond CMOS

● Cryogenic computing
● Approximate/stochastic computing
● Neuromorphic computing
● Biological computing/storage
● Quantum computing

Mark Silberstein, Technion 6

Looking beyond CMOS

From «IEEE rebooting computing»

Mark Silberstein, Technion 7

What to do until the next revolution?

Performance

Today

Birth of new
technology

New technology
matured

?????????

Mark Silberstein, Technion 8

What to do until the next revolution?

Performance

Today

Birth of new
technology

New technology
matured

Hardware specialization and

near-data accelerators

Mark Silberstein, Technion 9

Computer hardware: circa ~2017

Network I/O
accelerator

Storage I/O accelerator

GPU parallel
accelerator

[size ~ transistor count]

Mark Silberstein, Technion 10

Central Processing Units (CPUs)
are no longer Central

Network I/O
accelerator

Storage I/O accelerator

GPU parallel
accelerator

Programmability

Mark Silberstein, Technion 11

Omni-programmable system
Near-X-execution Units: NXUs

Network I/O
accelerator

Storage I/O accelerator

GPU parallel
accelerator

Near-Data
Processing

Near-Data
Processing

Accelerated
Processing

Programmability

Mark Silberstein, Technion 12

Challenges of programming
omni-programmable systems

Part 2: Amore SOSPenuto appassionato

OS acceleratorsCPU

Mark Silberstein, Technion 13

Truisms

Programming acclerators is hard

but

Programming is hard
Writing efficient programs is hard

Multi-threaded programming is hard
so…?

Mark Silberstein, Technion 14

Number of
NXUs

Programmer
Productivity

CPU CPU+GPU

Zero
CPU+GPU+FPGA

Masochism

Maintaining whole-application
efficiency will be hard

Mark Silberstein, Technion 15

Example: image server

1. put: parse → contrast-enhance → store
2. get: parse → resize → store → marshal

put
get

Mark Silberstein, Technion 16

Accelerating with NXUs

1. put: parse → contrast-enhance → store
2. get: parse → resize → store → marshal

NIC SSD GPU CPU

Mark Silberstein, Technion 17

Accelerating with NXUs

1. put: parse → contrast-enhance → store
2. get: parse → resize → store → marshal

NIC SSD GPU CPU

Mark Silberstein, Technion 18

Closer look at get

parse req

resize img
store img

marshal resp

SSD
NIC

 parse → resize → store → marshal

Mark Silberstein, Technion 19

send(soc,resp)

marshal resp

Realtiy: offloading overheads dominate

SSDNIC

get: parse → resize → store → marshal

CPU

recv(soc,req)

in=open(«f»)
c=open(«cache»)
read(in,img)

parse req

resize img

write (c,img)

Mark Silberstein, Technion 20

send(soc,resp)

marshal resp

NXUs use CPU to access I/O abstractions!

SSDNIC

get: parse → resize → store → marshal

CPU

recv(soc,req)

in=open(«f»)
c=open(«cache»)
read(in,img)

parse req

resize img

write (c,img)

No sockets, isolation,
transport layer …

No files,
protection...

Mark Silberstein, Technion 21

THETHE problem:
OS architecture is CPU - centric

GPU
Storage

NXU

CPU

Network
NXU

Mark Silberstein, Technion 22

 OmniX: accelerator-centric OS
architecture

CPU

Hardware is already here (almost)

O
S

S

e
rvices

Operating system

OS Services

O
S

S

e
rv

ic
es

GPU Storage
NXU

Network
NXU

Mark Silberstein, Technion 23

marshal resp

send(soc,resp)

Wouldn't it be lovely?

NIC

get: parse → resize → store → marshal

c=open(«cache»)
read(in,img)

parse req

resize img

write (c,img)

recv(soc,req)

in=open(«f»)

SSD

Mark Silberstein, Technion 24

OmniX design choices

CPU

Part 3: Subito non-CPUtto

Mark Silberstein, Technion 25

NXU hardware:
What does the future hold?

● Q:General purpose computations?

● Q:Support for self-management: Interrupt handling,
VM management, privileged execution?

● Q:Discrete or integrated?

● Q:Memory organization?

● Q:System memory model?

Mark Silberstein, Technion 26

NXU hardware:
What does the future hold?

● Q:General purpose computations?

● Q:Support for self-management: Interrupt handling,
VM management, privileged execution?

● Q:Discrete or integrated?

● Q:Memory organization?

● Q:System memory model?

Mark Silberstein, Technion 27

Will NXUs support self-
management?

● Essential for running an OS:
– Interrupt handling, in-device VM and address

space management, privileged execution

Self-management is unlikely in the next
generations of NXUs

Speculation

Mark Silberstein, Technion 28

Lets learn from GPGPUs

● Emerged as a hack, then endorsed by NVIDIA
● Dramatic programmability improvements

~2000

Programmable
shaders

~2006

Compute Unified Device
Architecture [CUDA]

C
pointers
random access

functions
recursion

«fork/exec»

page faults

C++11
static link

~2016

Shared Virtual Memory

Any self-
management

feature?

Mark Silberstein, Technion 29

Lets learn from GPGPUs

● Emerged as a hack, then endorsed by NVIDIA
● Dramatic programmability improvements

~2000

Programmable
shaders

~2006

Compute Unified Device
Architecture [CUDA]

C
pointers
random access

functions
recursion

«fork/exec»

page faults

C++11
static link

~2016

Shared Virtual Memory

Great for graphics:
Major hardware changes: great performance

Mark Silberstein, Technion 30

Lets learn from GPGPUs

● Emerged as a hack, then endorsed by NVIDIA
● Dramatic programmability improvements

~2000

Programmable
shaders

~2006

Compute Unified Device
Architecture [CUDA]

C
pointers
random access

functions
recursion

«fork/exec»

page faults

C++11
static link

~2016

Shared Virtual Memory

Great for graphics:
Major hardware changes: great performance

Not needed for graphics:
Minor hardware changes, Performance so-so!

Exceptions: double precision, precise exceptions

Mark Silberstein, Technion 31

Support for
self-management in GPUs?

● Improves graphics performance — NO!
● Requires major hardware changes — YES!
● Guess what the answer is (and probably will

be)

Speculation

Mark Silberstein, Technion 32

Emerging NXUs: similar piggiback
on high-end I/O hardware

● Mellanox Innova: an FPGA glued into Connect-X4 HCA
as a bump-in-the-wire

– No self-management support
● Smart SSDs from Samsung: re-use existing ARM cores.

– Possibly can run an OS, but normaly do not

Mark Silberstein, Technion 33

Emerging NXUs: similar piggiback
on high-end I/O hardware

● Mellanox Innova: an FPGA glued into Connect-X4 HCA
as a bump-in-the-wire

– No self-management support
● Smart SSDs from Samsung: re-use existing ARM cores.

– Possibly can run an OS, but normaly do not

Performance first, Programmability last
Self-management will be added if it

contributes to performance + has low hardware cost

Speculation

Mark Silberstein, Technion 34

Emerging NXUs: similar piggiback
on high-end I/O hardware

● Mellanox Innova: an FPGA glued into Connect-X4 HCA
as a bump-in-the-wire

– No self-management support
● Smart SSDs from Samsung: re-use existing ARM cores.

– Possibly can run an OS, but normaly do not

OmniX does not rely on
self-management in NXUs

Performance first, Programmability last
Self-management will be added if it

contributes to performance + has low hardware cost

Speculation

Mark Silberstein, Technion 35

System memory model

● Shared virtual memory with the host
● Coherence + remote atomics
● Extreme NUMA

Speculation

Mark Silberstein, Technion 36

CAPI/OpenCAPI/CCIX...

● Emerging chip-to-chip interconnects add
support to VM and coherence

Mark Silberstein, Technion 37

CAPI/OpenCAPI/CCIX...

● Emerging chip-to-chip interconnects add
support to VM and coherence

Mark Silberstein, Technion 38

Part 4: Tutti accelerando a capella

OmniX = acceleratorsOS

Mark Silberstein, Technion 39

OmniX design

● Each NXU runs an optimized library OS
● Shared socket/FD namespace
● Shared virtual address space
● Single application OS (unikernel)
● Protection via SRIOV

● NXUs invoke tasks and perform I/O directly on their
peers, without CPU mediation

● CPU used for setup and management

Mark Silberstein, Technion 40

OmniX design

● Each NXU runs an optimized library OS
● Shared socket/FD namespace
● Shared virtual address space
● Single application OS (unikernel)

● NXUs invoke tasks and perform I/O directly on their
peers, without CPU mediation

● CPU used for setup and management
● Protection via SRIOV

Mark Silberstein, Technion 41

Why CPU mediation is bad?

● Higher latency
● CPU is the bottleneck
● Poor scalability
● Poor performance isolation

Mark Silberstein, Technion 42

1. Increased I/O latency

GPU-to-GPU roundtrip latency via Infiniband

GPUnet (CPU-mediated): 50 usec

GPUrdma (NIC controled by GPU): 10 usec

Mark Silberstein, Technion 43

2. CPU is the bottleneck
● Example: Image Similarity Search, 6 GPUs
● Dataset statically partitioned, random data

access, 2ms latency per request
● GPU-driven: GPU invocations without CPU

involvement

GPU Driven

Mark Silberstein, Technion 44

3. Poor scaling with #NXUs

GPU DrivenCPU Driven

Mark Silberstein, Technion 45

4. Poor performance isolation

● CPU hog running with multi-GPU server

GPU DrivenCPU Driven

Mark Silberstein, Technion 46

OmniX removes the CPU from both
data and control planes

● NXUs invoke tasks and I/O operations on each
other and on themselves

NIC
GPU

nx_wait(
nx_exec(MARSHAL)

); NXU

QP/CQ

MARSHAL(){
 send(create_msg())
 }

Mark Silberstein, Technion 47

Virtual memory as a capability

● NXU task/IO queues are mapped into the
shared virtual address space

● Without access to the queue the NXU/device
cannot be used

● Mapping/unmapping corresponds to
grant/revoke: a privileged operation

Mark Silberstein, Technion 48

Coherent Virtual Shared Memory

● Location and transfer type agnostic
– SSD performs send to the NIC

– NIC passes GPU buffer to code running on SSD

● Coherence essential with local caches

Mark Silberstein, Technion 49

Role of the CPU

● Not really.
● Handle exceptions, first access to resources

(files, sockets), cleanup, any privileged operations
● Runs the main program

Mark Silberstein, Technion 50

Open questions

● Does it require reimplementing the FS/Network stack on
NXUs?

● Support for near-memory computations
● How do we do scheduling?
● Support for asynchronous execution on non-premptive

devices

Observation: the problem is similar to that
of RDMA access to file server

Mark Silberstein, Technion 51

First steps:
OS services for GPUs/NICs

● GPUfs: file system access from GPUs
(ASPLOS13,TOCS14,CACM15)

● GPUnet: network abstractions for GPUs
(OSDI14,TOCS16)

● GPUrdma: native RDMA for GPUs
 (ROSS16)

● ActivePointers: In-GPU VM Management
(ISCA16)

● GPUPipe: CPU-less network servers (under
submission)

● NICA: network application accelerators
(ongoing)

Mark Silberstein, Technion 52

OmniX is an ongoing work in
Accelerator Computer Systems Lab

● Haggai Eran, Amir Watad, Shai Bergman, Tanya
Brokhman, Vasilis Dimistas, Lior Zeno, Maroun Tork, Meni
Orenbach, Shai Vakhnin, Lev Rosenblit, Marina Minkin,
Pavel Lifshits and Gabi Malka

Mark Silberstein, Technion 53

OmniX: Accelerator-centric OS
is essential for

efficiency and programmability of

omni-programmable systems

mark@ee.technion.ac.il

Mark Silberstein, Technion 54

backup

Mark Silberstein, Technion 55

NXU hardware:
What does the future hold?

● Q:General purpose
computations?

A: Slow

● Q:Support for self-management:

A: Limited or absent

● Q:Discrete or integrated?

A: Both, but discrete will be faster

● Q:Memory organization?

A: NUMA (NUM-B)

● Q:System memory model?

A: Coherent Shared Virtual Memory

Mark Silberstein, Technion 56

OmniX design implications

● Q:General purpose
computations?

A: Slow

● Q:Support for self-management:

A: Limited or absent

● Q:Discrete or integrated?

A: Both, but discrete will be faster

● Q:Memory organization?

A: NUMA (NUM-B)

● Q:System memory model?

A: Coherent Shared Virtual Memory

Run hardware-optimized
tasks

User-space code only
Need CPU for privileged ops

Locality is critical

Use VM for protection

Mark Silberstein, Technion 57

On-NXU I/O services
● Internal services

– I/O abstractions for NXU programs

GPU application
using GPUfs File API

OS File System Interface

GPU Memory
(Page cache)
CPU Memory

GPUfs Distributed Buffer Cache

Unchanged applications
using OS File API

GPUfs hooks GPUfs GPU
File I/O library

CPU GPU

Mark Silberstein, Technion 58

On-NXU I/O services

● I/O services for the hosting device
– Networking on NICs, files on SSDs

● Interfaces
– CQ/QP: for networking

– mmap: for storage

● Requirements from hardware
– Isolation and QoS

– Security, e.g., avoid spoofing or listen on arbitrary port

Mark Silberstein, Technion 59

Direct local/remote task invocation

Mark Silberstein, Technion 60

Direct local/remote task invocation

NIC
GPU

nx_wait(
nx_exec(MARSHAL)

);

callee

SSD
h=nx_exec(SEND);
nx_run_after(h,[]{
 printf(«done»);
}

NXU

QP/CQ

→ SEND

Mark Silberstein, Technion 61

Direct local/remote task invocation

NIC
GPU

nx_wait(
nx_exec(MARSHAL)

);

callee

SSD
h=nx_exec(SEND);
nx_run_after(h,[]{
 printf(«done»);
}

NXU

QP/CQ

→ SEND

We implement (almost) that today with GPUs
GPUrdma: direct control of the NIC from the GPU

GPUpipe: direct task invocation among GPUs

Mark Silberstein, Technion 62

Case in point:
CAPI improves performance!

