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Oratorio for CPUs, accelerators and
OS in 4 parts

Part 1: Accelerando con brio

We @ accelerators

Part 2: Amore SOSPenuto appassionato

OS’ CPU K accelerators

Part 3: Subito non-CPUtto

Part 4: Tutti accelerando a capella

OmniX = OS ’ accelerators
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2004: The free lunch is over

MNovember 4: Other Concurrency Sessions at PDC

Movember 3: PDC'08: Tutorial & Panel

The Free Lunch Is Over

A Fundamental Turn Toward Concurrency in Software

By Herb Sutter

The biggest sea change in software development since the OO re

This article appeared in Dr. Dobb’s Journal, 30(3), March 2005. .

Update note: The CPU trends araoh last updated August 200¢
first posted here in December 2004.
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2015: no more lunch as we know it

The last International Technology
Roadmap for Seminconductors (ITRS)

IEEE Rebooting Computing
Initiative & International
Roadmap of Devices and

I O YStems

Tom Conte, 2015 IEEE Computer Society President,
Co-Chair, IEEE Rebooting Computing Initiative,

Wha t the p ro b I e m is Schools of CS & ECE, Georgia Institute of Technology

= Transistors are getting smaller but not
faster

- From a microarchitect’s perspective:

10nm isn’t any better than 14nm, which
was only marginally better than 22nm

= Moore's Law for 2D really ends in 2021

= Single thread exponential performance
scaling ended in 2005

—Multicore didn’t continue scaling
<4 IEEE

Advancing Technol logy
for Humanity
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Looking beyond CMOS

* Cryogenic computing

* Approximate/stochastic computing
 Neuromorphic computing

* Biological computing/storage

« Quantum computing
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Looking beyond CMOS

Differing Levels of Disruption in Computing Stack
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LEGEND: No Disruption s Total Disruption

From «|EEE rebooting computing»
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What to do until the next revolution?

Performance
A

Birth of new
technology

| -

Today New technology
matured

P7°97°7?77?7
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Computer hardware: circa ~2017

GPU parallel
accelerator

Network I/O
accelerator

[size ~ transistor count]

Storage |/O accelerator



Central Processing Units (CPUs)
are no longer Central

GPU parallel
accelerator

Network I/O
accelerator

AN T
i

Storage |/O accelerator
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Omni-programmable system
Near-X-execution Units: NXUs

GPU parallel
accelerator

Network I/O
accelerator

Accelerated

Near-Data Processing
Processing
&/ > Near-Data
¥ Processing

Storage |/O accelerator
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Part 2: Amore SOSPenuto appassionato

OS’ CPU K accelerators

Challenges of programming
omni-programmable systems

Mark Silberstein, Technion
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Truisms

Programming acclerators is hard
but

Programming is hard
Writing efficient programs is hard
Multi-threaded programming is hard
SO..."?7

Mark Silberstein, Technion
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Maintaining whole-application
efficiency will be hard

Programmer ,
Productivity
CPU+GPU+FPGA
Zero
\ \ \ : -
Masochism CPU CPU+GPU Number of
NXUs
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Example: image server

1. put: parse — contrast-enhance — store
2. get: parse — resize — store — marshal

&
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Accelerating with NXUs

1. put: parse — contrast-enhance — store
2. get: parse — resize — store — marshal
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Accelerating with NXUs

1. put: parse — contrast-enhance — store
2. get: parse — resize — store — marshal
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Closer look at get

parse — resize — store — marshal

resize 1mg
store img

Mark Silberstein, Technion
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Realtiy: offloading overheads dominate

get: parse — resize — store — marshal

recv (soc, req)

in=open («f»)
c=open («cache»)
read (in, img)

write (c,img)

d(soc, resp)

CPU
C
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NXUs use CPU to access I/O abstractions!

get: parse — resize — store — marshal

recv (soc, req)

in=open («f>»)
c=open («cache»
read (in, img)

write (c, img)

d(soc, resp)

,,,,,,,,,

No sockets, isolation, | No files, L
~ transport layer ... | protection... |

‘ . . . AN /
- ~ Mark Silberstein, Technion ' <v




THE problem:
OS architecture is CPU - centric

Storage
NXU

Mark Silberstein, Technion
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OmniX: accelerator-centric OS
architecture

Network

/

OS Services

| g) 4 u)
()

20 el Storage
“ 5" v T o%
‘o $

L Operating system

Hardware is already here (most)
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Wouldn't it be lovely?

get: parse — resize — store — marshal

Mark Silberstein, Technion
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Part 3: Subito non-CPUtto

OmniX design choices

Mark Silberstein, Technion
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NXU hardware:
What does the future hold?

* Q:General purpose computations?

* Q:Support for self-management: Interrupt handling,
VM management, privileged execution?

* Q:Discrete or integrated?
* Q:Memory organization?
¢ Q:System memory model?

Mark Silberstein, Technion
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Will NXUs support self-
management?

» Essential for running an OS:

- Interrupt handling, in-device VM and address
space management, privileged execution

Speculation

Self-management is unlikely in the next
generations of NXUs

Mark Silberstein, Technion
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Lets learn from GPGPUs

 Emerged as a hack, then endorsed by NVIDIA
* Dramatic programmability improvements

Y Any self-
management
functions  «fork/exec» static link fea’?ure’?
~2000 ~2006  recursion ~2016 |
l ; ; ; ; -
C
bointers page faults

Programmable
shaders

random access

Compute Unified Device
Architecture [CUDA]

Shared Virtual Memory
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Lets learn from GPGPUs

 Emerged as a hack, then endorsed by NVIDIA
* Dramatic programmability improvements

C++11
functions static link
2000 2006 ancions «fork/exec» ~2016
l ; ; ; ; >

4 C
pointers page faults
random access

Programmable  Compute Unified Device Shared Virtual Memory
\_ shaders Architecture [CUDA] )

Great for graphics:
Major hardware changes: great performance
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Lets learn from GPGPUs

 Emerged as a hack, then endorsed by NVIDIA

e Dr: Not needed for graphics: s
¢ Minor hardware changes, Performance so-so!
C++11
functions static link
~2000 2008 o ons «fork/exec» ~2016
l ; ; ; ; -
4 C
pointers page faults
random access
Programmable  Compute Unified Device Shared Virtual Memory
\_ shaders Architecture [CUDA] )

Great for graphics:
Major hardware changes: great performance

Exceptions: double precision, precise exceptions
Mark Silberstein, Technion 30



Speculation Support for
- self-management in GPUSs?

* Improves graphics performance — NO!

* Requires major hardware changes — YES!

* Guess what the answer is (and probably will
be)
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Emerging NXUs: similar piggiback
on high-end I/O hardware

* Mellanox Innova: an FPGA glued into Connect-X4 HCA
as a bump-in-the-wire

- No self-management support
 Smart SSDs from Samsung: re-use existing ARM cores.

- Possibly can run an OS, but normaly do not

Mark Silberstein, Technion
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Emerging NXUs: similar piggiback
on high-end I/O hardware

* Mellanox Innova: an FPGA glued into Connect-X4 HCA
as a bump-in-the-wire

- No self-management support
 Smart SSDs from Samsung: re-use existing ARM cores.

~ = Possibly can run an OS, but normaly do not

~ Performance first, Programmability last
sPec“'#‘t”“ Self-management will be added if it
contributes to performance + has low hardware cost
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Emerging NXUs: similar piggiback
on high-end I/O hardware

* Mellanox Innova: an FPGA glued into Connect-X4 HCA
as a bump-in-the-wire

- No self-management support
 Smart SSDs from Samsung: re-use existing ARM cores.

- Possibly can run an OS, but normaly do not

O Performance first, Programmability last
%‘”“ Self-management will be added if it
~ contributes to performance + has low hardware cost

OmniX does not rely on

;Specul

self-management in NXUs

Mark Silberstein, Technion
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srecuation SYStEmM memory model

» Shared virtual memory with the host
e Coherence + remote atomics
e Extreme NUMA

Mark Silberstein, Technion
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CAPI/OpenCAPI/CCIX...

 Emerging chip-to-chip interconnects add
support to VM and coherence

Accelerator Interfaces: POWERS

POWERS+
Processor

NVIDIA.

IBM & Partner
Devices

& XILINX R

IBEM Research - Zurich Lab, hl

Mark Silberstein, Technion
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CAPI/OpenCAPI/CCIX...

 Emerging chip-to-chip interconnects add
support to VM and coherence

Accelerator Interfaces: POWERS

POWERS+
Processor

42 s -'\
ey e 3
it -
\
i L —
i
i
Single FPGA + CAPI 7 Single FPGA + Dual FPGA +

10/40 GbE \ 2TB Flash | 290GB/s Memory BW
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Part 4: Tutti accelerando a capella

OmniX = OS ’ accelerators
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OmniX design

 Each NXU runs an optimized library OS
« Shared socket/FD namespace

« Shared virtual address space

» Single application OS (unikernel)

* Protection via SRIOV

 NXUs invoke tasks and perform |/O directly on their
peers, without CPU mediation

 CPU used for setup and management

Mark Silberstein, Technion
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OmniX design

 Each NXU runs an optimized library OS
« Shared socket/FD namespace

« Shared virtual address space

» Single application OS (unikernel)

 NXUs invoke tasks and perform |/O directly on their
peers, without CPU mediation

 CPU used for setup and management
* Protection via SRIOV
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Why CPU mediation is bad?

Higher latency

CPU is the bottleneck
Poor scalability

Poor performance isolation

Mark Silberstein, Technion
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1. Increased |/O latency

GPU-to-GPU roundtrip latency via Infiniband

GPUnet (CPU-mediated): 50 usec
GPUrdma (NIC controled by GPU): 10 usec

Mark Silberstein, Technion
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2. CPU is the bottleneck

 Example: Image Similarity Search, 6 GPUs

» Dataset statically partitioned, random data
access, 2ms latency per request

e GPU-driven: GPU invocations without CPU

Involvement
60
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Speedup

o)

3. Poor scaling with #NXUs

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# GPUS

CPU Driven GPU Driven
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4. Poor performance isolation

 CPU hog running with multi-GPU server

NSRS O
o O O

Throughput
(K Req / sec)

-
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OmniX removes the CPU from both
data and control planes

 NXUs invoke tasks and I/O operations on each
other and on themselves

GPU

nx wait (
nx_ exec (MARSHAL)

) i

MARSHAL(){
send(create_msg())

}
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Virtual memory as a capability

 NXU task/IO queues are mapped into the
shared virtual address space

* Without access to the queue the NXU/device
cannot be used

* Mapping/unmapping corresponds to
grant/revoke: a privileged operation

Mark Silberstein, Technion
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Coherent Virtual Shared Memory

» | ocation and transfer type agnostic

- SSD performs send to the NIC
- NIC passes GPU buffer to code running on SSD

e Coherence essential with local caches

Mark Silberstein, Technion
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CPU’s role

Do the setup ill vou
Then leave Y |

£

* Not really.

* Handle exceptions, first access to resources
(files, sockets), cleanup, any privileged operations

* Runs the main program

Mark Silberstein, Technion
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Open questions

* Does it require reimplementing the FS/Network stack on
NXUs?

Observation: the problem is similar to that
of RDMA access to file server

e Support for near-memory computations
 How do we do scheduling?

« Support for asynchronous execution on non-premptive
devices

Mark Silberstein, Technion
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First steps:
OS services for GPUs/NICs

 GPUfs: file system access from GPUs
(ASPLOS13,TOCS14,CACM15)

e GPUnet: network abstractions for GPUs
(OSDI14,TOCS16)

e GPUrdma: native RDMA for GPUs

(ROSS16)

» ActivePointers: In-GPU VM Management

(ISCA16)

« GPUPIpe: CPU-less network servers wnder

submission)

* NICA: network application accelerators
(ongoing)

Mark Silberstein, Technion
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OmniX is an ongoing work in
Accelerator Computer Systems Lab

 Haggai Eran, Amir Watad, Shai Bergman, Tanya
Brokhman, Vasilis Dimistas, Lior Zeno, Maroun Tork, Meni
Orenbach, Shai Vakhnin, Lev Rosenblit, Marina Minkin,
Pavel Lifshits and Gabi Malka
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OmniX: Accelerator-centric OS
IS essential for

efficiency and programmability of

omni-programmable systems

2l mark@ee.technion.ac.il
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backup
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NXU hardware:
What does the future hold?

* Q:General purpose
computations?

A: Slow
* Q:Support for self-management:
A: Limited or absent
* Q:Discrete or integrated?
A: Both, but discrete will be faster
* Q:Memory organization?
A: NUMA (NUM-B)
* Q:System memory model?
A: Coherent Shared Virtual Memory
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OmniX design implications

* Q:General purpose

computations? Run hardware-optimized

A: Slow tasks

* Q:Support for self-management: User-space code only

A: Limited or absent Need CPU for privileged ops
 Q:Discrete or integrated?

A: Both, but discrete will be faster
* Q:Memory organization?

A: NUMA (NUM-B)
* Q:System memory model?

Use VM for protection
A: Coherent Shared Virtual Memory
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On-NXU |/O services

 Internal services
- 1/O abstractions for NXU programs

CPU GPU

GPUfs GPU
File I/O library

GPUfs hooks

GPUfs Distributed Buffer Cache
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On-NXU 1/O services

* |/O services for the hosting device
- Networking on NICs, files on SSDs
* |Interfaces

- CQ/QP: for networking
- mmap: for storage

* Requirements from hardware

- Isolation and QoS
- Security, e.g., avoid spoofing or listen on arbitrary port

Mark Silberstein, Technion
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Direct local/remote task invocation
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Direct local/remote task invocation

GPU
nx wait (
nx_ exec (MARSHAL)
)i

SSD

h=nx exec(SEND);
nx run after(h,[]{
printf («done»);

}

Mark Silberstein, Technion
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Direct local/remote task invocation

GPU

nx wait (

nx exec (MARSHAL)
)

SSD

h=nx exec(SEND);

nx_run_after(h,[]{

printf («done») ;

QP/CQ

HEEN

IIIR

NIC

callee

We implement (almost) that today with GPUs
GPUrdma: direct control of the NIC from the GPU
GPUpipe: direct task invocation among GPUs
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Case in point:
CAPI improves performance!

CAPI ... Coherent Accelerator Processor Interface

Standard I/O Model Flow
' DD Call '—-[CnpwPin ~—MMIO Nntify—-[Accelerate-*[ Poll / Int —-[CnpwUnpin—-heturn DD

Flow with a Coherent Model

( Shared Mem. Shared Memory
Notify Accelerator Completion

— {Accelerate —-(

... for a single CAPI FFT call is
» 10% higher than CPU (can be improved as the AFU is bandwidth optimized)
* 4x better compared to a PCle version using OpenCL

CPU
Com

FPGA using CAPI

FPGA using PCle (OpenCL)

NVIDI K80 using cuFFT

0 50 100 150 200 250 300 350 400
Runtime in micro seconds for one 4k-input complex FFT from cache

IBM Research - Zurich Lab, hl rich.ibm




