Omnix: an accelerator-centric
OS for omni-programmable systems

Rethinking the role of CPUs in modern computers

Mark Silberstein
EE, Technion

Oratorio for CPUs, accelerators and
OS in 4 parts

Part 1: Accelerando con brio

We @ accelerators

Part 2: Amore SOSPenuto appassionato

OS’ CPU K accelerators

Part 3: Subito non-CPUtto

Part 4: Tutti accelerando a capella

OmniX = OS ’ accelerators

Mark Silberstein, Technion 2

2004: The free lunch is over

MNovember 4: Other Concurrency Sessions at PDC

Movember 3: PDC'08: Tutorial & Panel

The Free Lunch Is Over

A Fundamental Turn Toward Concurrency in Software

By Herb Sutter

The biggest sea change in software development since the OO re

This article appeared in Dr. Dobb’s Journal, 30(3), March 2005. .

Update note: The CPU trends araoh last updated August 200¢
first posted here in December 2004.

Mark Silberstein, Technion 3

2015: no more lunch as we know it

The last International Technology
Roadmap for Seminconductors (ITRS)

IEEE Rebooting Computing
Initiative & International
Roadmap of Devices and

I O YStems

Tom Conte, 2015 IEEE Computer Society President,
Co-Chair, IEEE Rebooting Computing Initiative,

Wha t the p ro b I e m is Schools of CS & ECE, Georgia Institute of Technology

= Transistors are getting smaller but not
faster

- From a microarchitect’s perspective:

10nm isn’t any better than 14nm, which
was only marginally better than 22nm

= Moore's Law for 2D really ends in 2021

= Single thread exponential performance
scaling ended in 2005

—Multicore didn’t continue scaling
<4 IEEE

Advancing Technol logy
for Humanity

Mark Silberstein, Technion

Looking beyond CMOS

* Cryogenic computing

* Approximate/stochastic computing
 Neuromorphic computing

* Biological computing/storage

« Quantum computing

Mark Silberstein, Technion

Looking beyond CMOS

Differing Levels of Disruption in Computing Stack

Algorithm

Language

API

Architecture

ISA

Microarchitecture

FU

logic

device

=
New switch,3D
[]

Level 1

Neuromorphic

Quantum

Approximate
Stochastic

Adiabatic,
Reversible,
Unreliable Sw

Cryogenic

2 3 4 5

LEGEND: No Disruption s Total Disruption

From «|EEE rebooting computing»

Mark Silberstein, Technion

What to do until the next revolution?

Performance
A

Birth of new
technology

| -

Today New technology
matured

P7°97°7?77?7

Mark Silberstein, Technion

What to do until the next re .olution?

Performance
A

Birth of new
technology

| -

Today New technology
matured

Mark Silberstein, Technion

Computer hardware: circa ~2017

GPU parallel
accelerator

Network I/O
accelerator

[size ~ transistor count]

Storage |/O accelerator

Central Processing Units (CPUs)
are no longer Central

GPU parallel
accelerator

Network I/O
accelerator

AN T
i

Storage |/O accelerator

10

Omni-programmable system
Near-X-execution Units: NXUs

GPU parallel
accelerator

Network I/O
accelerator

Accelerated

Near-Data Processing
Processing
&/ > Near-Data
¥ Processing

Storage |/O accelerator

11

Part 2: Amore SOSPenuto appassionato

OS’ CPU K accelerators

Challenges of programming
omni-programmable systems

Mark Silberstein, Technion

12

Truisms

Programming acclerators is hard
but

Programming is hard
Writing efficient programs is hard
Multi-threaded programming is hard
SO..."?7

Mark Silberstein, Technion

13

Maintaining whole-application
efficiency will be hard

Programmer ,
Productivity
CPU+GPU+FPGA
Zero
\ \ \ : -
Masochism CPU CPU+GPU Number of
NXUs

Mark Silberstein, Technion 14

Example: image server

1. put: parse — contrast-enhance — store
2. get: parse — resize — store — marshal

&

Mark Silberstein, Technion

PARQNS
ny -6 /'3
a2OAALAR
s BAe " ﬂ
@A&f\ﬂl"}

15

Accelerating with NXUs

1. put: parse — contrast-enhance — store
2. get: parse — resize — store — marshal

Mark Silberstein, Technion

16

Accelerating with NXUs

1. put: parse — contrast-enhance — store
2. get: parse — resize — store — marshal

Mark Silberstein, Technion

17

Closer look at get

parse — resize — store — marshal

resize 1mg
store img

Mark Silberstein, Technion

18

Realtiy: offloading overheads dominate

get: parse — resize — store — marshal

recv (soc, req)

in=open («f»)
c=open («cache»)
read (in, img)

write (c,img)

d(soc, resp)

CPU
C

Mark Silberstein, Technion 19

NXUs use CPU to access I/O abstractions!

get: parse — resize — store — marshal

recv (soc, req)

in=open («f>»)
c=open («cache»
read (in, img)

write (c, img)

d(soc, resp)

,,,,,,,,,

No sockets, isolation, | No files, L
~ transport layer ... | protection... |

‘ . . . AN /
- ~ Mark Silberstein, Technion ' <v

THE problem:
OS architecture is CPU - centric

Storage
NXU

Mark Silberstein, Technion

21

OmniX: accelerator-centric OS
architecture

Network

/

OS Services

| g) 4 u)
()

20 el Storage
“ 5" v T o%
‘o $

L Operating system

Hardware is already here (most)

Mark Silberstein, Technion

22

Wouldn't it be lovely?

get: parse — resize — store — marshal

Mark Silberstein, Technion

23

Part 3: Subito non-CPUtto

OmniX design choices

Mark Silberstein, Technion

24

NXU hardware:
What does the future hold?

* Q:General purpose computations?

* Q:Support for self-management: Interrupt handling,
VM management, privileged execution?

* Q:Discrete or integrated?
* Q:Memory organization?
¢ Q:System memory model?

Mark Silberstein, Technion

25

NXU hardware:
What does the future hold?

* Q:General purpose computations?

* Q:Support for self-management: Interrupt handling,
VM management, privileged execution?

* Q:Discrete or integrated?

* Q:Memory organization?

¢ Q:System memory model?

Mark Silberstein, Technion

26

Will NXUs support self-
management?

» Essential for running an OS:

- Interrupt handling, in-device VM and address
space management, privileged execution

Speculation

Self-management is unlikely in the next
generations of NXUs

Mark Silberstein, Technion

27

Lets learn from GPGPUs

 Emerged as a hack, then endorsed by NVIDIA
* Dramatic programmability improvements

Y Any self-
management
functions «fork/exec» static link fea’?ure’?
~2000 ~2006 recursion ~2016 |
l ; ; ; ; -
C
bointers page faults

Programmable
shaders

random access

Compute Unified Device
Architecture [CUDA]

Shared Virtual Memory

Mark Silberstein, Technion 28

Lets learn from GPGPUs

 Emerged as a hack, then endorsed by NVIDIA
* Dramatic programmability improvements

C++11
functions static link
2000 2006 ancions «fork/exec» ~2016
l ; ; ; ; >

4 C
pointers page faults
random access

Programmable Compute Unified Device Shared Virtual Memory
_ shaders Architecture [CUDA])

Great for graphics:
Major hardware changes: great performance

Mark Silberstein, Technion 29

Lets learn from GPGPUs

 Emerged as a hack, then endorsed by NVIDIA

e Dr: Not needed for graphics: s
¢ Minor hardware changes, Performance so-so!
C++11
functions static link
~2000 2008 o ons «fork/exec» ~2016
l ; ; ; ; -
4 C
pointers page faults
random access
Programmable Compute Unified Device Shared Virtual Memory
_ shaders Architecture [CUDA])

Great for graphics:
Major hardware changes: great performance

Exceptions: double precision, precise exceptions
Mark Silberstein, Technion 30

Speculation Support for
- self-management in GPUSs?

* Improves graphics performance — NO!

* Requires major hardware changes — YES!

* Guess what the answer is (and probably will
be)

Mark Silberstein, Technion 31

Emerging NXUs: similar piggiback
on high-end I/O hardware

* Mellanox Innova: an FPGA glued into Connect-X4 HCA
as a bump-in-the-wire

- No self-management support
 Smart SSDs from Samsung: re-use existing ARM cores.

- Possibly can run an OS, but normaly do not

Mark Silberstein, Technion

32

Emerging NXUs: similar piggiback
on high-end I/O hardware

* Mellanox Innova: an FPGA glued into Connect-X4 HCA
as a bump-in-the-wire

- No self-management support
 Smart SSDs from Samsung: re-use existing ARM cores.

~ = Possibly can run an OS, but normaly do not

~ Performance first, Programmability last
sPec“'#‘t”“ Self-management will be added if it
contributes to performance + has low hardware cost

Mark Silberstein, Technion 33

Emerging NXUs: similar piggiback
on high-end I/O hardware

* Mellanox Innova: an FPGA glued into Connect-X4 HCA
as a bump-in-the-wire

- No self-management support
 Smart SSDs from Samsung: re-use existing ARM cores.

- Possibly can run an OS, but normaly do not

O Performance first, Programmability last
%‘”“ Self-management will be added if it
~ contributes to performance + has low hardware cost

OmniX does not rely on

;Specul

self-management in NXUs

Mark Silberstein, Technion

34

srecuation SYStEmM memory model

» Shared virtual memory with the host
e Coherence + remote atomics
e Extreme NUMA

Mark Silberstein, Technion

35

CAPI/OpenCAPI/CCIX...

 Emerging chip-to-chip interconnects add
support to VM and coherence

Accelerator Interfaces: POWERS

POWERS+
Processor

NVIDIA.

IBM & Partner
Devices

& XILINX R

IBEM Research - Zurich Lab, hl

Mark Silberstein, Technion

36

CAPI/OpenCAPI/CCIX...

 Emerging chip-to-chip interconnects add
support to VM and coherence

Accelerator Interfaces: POWERS

POWERS+
Processor

42 s -'\
ey e 3
it -
\
i L —
i
i
Single FPGA + CAPI 7 Single FPGA + Dual FPGA +

10/40 GbE \ 2TB Flash | 290GB/s Memory BW

Mark Silberstein, Technion 37

Part 4: Tutti accelerando a capella

OmniX = OS ’ accelerators

Mark Silberstein, Technion 38

OmniX design

 Each NXU runs an optimized library OS
« Shared socket/FD namespace

« Shared virtual address space

» Single application OS (unikernel)

* Protection via SRIOV

 NXUs invoke tasks and perform |/O directly on their
peers, without CPU mediation

 CPU used for setup and management

Mark Silberstein, Technion

39

OmniX design

 Each NXU runs an optimized library OS
« Shared socket/FD namespace

« Shared virtual address space

» Single application OS (unikernel)

 NXUs invoke tasks and perform |/O directly on their
peers, without CPU mediation

 CPU used for setup and management
* Protection via SRIOV

Mark Silberstein, Technion 40

Why CPU mediation is bad?

Higher latency

CPU is the bottleneck
Poor scalability

Poor performance isolation

Mark Silberstein, Technion

41

1. Increased |/O latency

GPU-to-GPU roundtrip latency via Infiniband

GPUnet (CPU-mediated): 50 usec
GPUrdma (NIC controled by GPU): 10 usec

Mark Silberstein, Technion

42

2. CPU is the bottleneck

 Example: Image Similarity Search, 6 GPUs

» Dataset statically partitioned, random data
access, 2ms latency per request

e GPU-driven: GPU invocations without CPU

Involvement
60

V4 ¢ —

_/

5 6 7 8 9 10 11 12
Cores

Throughput
(K req/sec)

N &
o

o

+_

.
!
!

=
N
w
HaS

“-CPU Driven GPU Driven

Mark Silberstein, Technion 43

Speedup

o)

3. Poor scaling with #NXUs

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
GPUS

CPU Driven GPU Driven

Mark Silberstein, Technion

44

4. Poor performance isolation

 CPU hog running with multi-GPU server

NSRS O
o O O

Throughput
(K Req / sec)

-

Mark Silberstein, Technion

45

OmniX removes the CPU from both
data and control planes

 NXUs invoke tasks and I/O operations on each
other and on themselves

GPU

nx wait (
nx_ exec (MARSHAL)

) i

MARSHAL(){
send(create_msg())

}

Mark Silberstein, Technion 46

Virtual memory as a capability

 NXU task/IO queues are mapped into the
shared virtual address space

* Without access to the queue the NXU/device
cannot be used

* Mapping/unmapping corresponds to
grant/revoke: a privileged operation

Mark Silberstein, Technion

47

Coherent Virtual Shared Memory

» | ocation and transfer type agnostic

- SSD performs send to the NIC
- NIC passes GPU buffer to code running on SSD

e Coherence essential with local caches

Mark Silberstein, Technion

48

CPU’s role

Do the setup ill vou
Then leave Y |

£

* Not really.

* Handle exceptions, first access to resources
(files, sockets), cleanup, any privileged operations

* Runs the main program

Mark Silberstein, Technion

49

Open questions

* Does it require reimplementing the FS/Network stack on
NXUs?

Observation: the problem is similar to that
of RDMA access to file server

e Support for near-memory computations
 How do we do scheduling?

« Support for asynchronous execution on non-premptive
devices

Mark Silberstein, Technion

50

First steps:
OS services for GPUs/NICs

 GPUfs: file system access from GPUs
(ASPLOS13,TOCS14,CACM15)

e GPUnet: network abstractions for GPUs
(OSDI14,TOCS16)

e GPUrdma: native RDMA for GPUs

(ROSS16)

» ActivePointers: In-GPU VM Management

(ISCA16)

« GPUPIpe: CPU-less network servers wnder

submission)

* NICA: network application accelerators
(ongoing)

Mark Silberstein, Technion

51

OmniX is an ongoing work in
Accelerator Computer Systems Lab

 Haggai Eran, Amir Watad, Shai Bergman, Tanya
Brokhman, Vasilis Dimistas, Lior Zeno, Maroun Tork, Meni
Orenbach, Shai Vakhnin, Lev Rosenblit, Marina Minkin,
Pavel Lifshits and Gabi Malka

Mark Silberstein, Technion 52

OmniX: Accelerator-centric OS
IS essential for

efficiency and programmability of

omni-programmable systems

2l mark@ee.technion.ac.il

Mark Silberstein, Technion

53

backup

Mark Silberstein, Technion

54

NXU hardware:
What does the future hold?

* Q:General purpose
computations?

A: Slow
* Q:Support for self-management:
A: Limited or absent
* Q:Discrete or integrated?
A: Both, but discrete will be faster
* Q:Memory organization?
A: NUMA (NUM-B)
* Q:System memory model?
A: Coherent Shared Virtual Memory

Mark Silberstein, Technion

OmniX design implications

* Q:General purpose

computations? Run hardware-optimized

A: Slow tasks

* Q:Support for self-management: User-space code only

A: Limited or absent Need CPU for privileged ops
 Q:Discrete or integrated?

A: Both, but discrete will be faster
* Q:Memory organization?

A: NUMA (NUM-B)
* Q:System memory model?

Use VM for protection
A: Coherent Shared Virtual Memory

Mark Silberstein, Technion 56

On-NXU |/O services

 Internal services
- 1/O abstractions for NXU programs

CPU GPU

GPUfs GPU
File I/O library

GPUfs hooks

GPUfs Distributed Buffer Cache

Mark Silberstein, Technion

On-NXU 1/O services

* |/O services for the hosting device
- Networking on NICs, files on SSDs
* |Interfaces

- CQ/QP: for networking
- mmap: for storage

* Requirements from hardware

- Isolation and QoS
- Security, e.g., avoid spoofing or listen on arbitrary port

Mark Silberstein, Technion

58

Direct local/remote task invocation

Mark Silberstein, Technion

59

Direct local/remote task invocation

GPU
nx wait (
nx_ exec (MARSHAL)
)i

SSD

h=nx exec(SEND);
nx run after(h,[]{
printf («done»);

}

Mark Silberstein, Technion

60

-
Y
AN

Direct local/remote task invocation

GPU

nx wait (

nx exec (MARSHAL)
)

SSD

h=nx exec(SEND);

nx_run_after(h,[]{

printf («done») ;

QP/CQ

HEEN

IIIR

NIC

callee

We implement (almost) that today with GPUs
GPUrdma: direct control of the NIC from the GPU
GPUpipe: direct task invocation among GPUs

Mark Silberstein, Technion

61

Case in point:
CAPI improves performance!

CAPI ... Coherent Accelerator Processor Interface

Standard I/O Model Flow
' DD Call '—-[CnpwPin ~—MMIO Nntify—-[Accelerate-*[Poll / Int —-[CnpwUnpin—-heturn DD

Flow with a Coherent Model

(Shared Mem. Shared Memory
Notify Accelerator Completion

— {Accelerate —-(

... for a single CAPI FFT call is
» 10% higher than CPU (can be improved as the AFU is bandwidth optimized)
* 4x better compared to a PCle version using OpenCL

CPU
Com

FPGA using CAPI

FPGA using PCle (OpenCL)

NVIDI K80 using cuFFT

0 50 100 150 200 250 300 350 400
Runtime in micro seconds for one 4k-input complex FFT from cache

IBM Research - Zurich Lab, hl rich.ibm

