
Omnix: an accelerator-centric OS

for omni-programmable systems

Mark Silberstein

Technion – Israel Institute of Technology

Future systems will be omni-programmable: along-

side CPUs, GPUs and FPGAs, they will execute user

code near-storage, near-network, near-memory, or on

other Near-X accelerator Units, NXUs. This paper

explores the design space of OS support for omni-

programmable systems, aiming to simplify the develop-

ment of efficient applications that span multiple hetero-

geneous processors and near-data accelerators. OmniX is

an accelerator-centric OS architecture that extends stan-

dard OS abstractions, such as task execution and I/O,

into NXUs while maintaining a coherent view of the sys-

tem among all the processors. OmniX enables NXUs

to directly invoke tasks and access I/O services among

themselves, excluding the CPU from the performance-

critical control plane operations. The host CPU serves

as a controller – for protection, device configuration and

monitoring. We discuss the hardware trends that motivate

our work, outline OmniX design principles, and sketch

the core implementation ideas while highlighting missing

hardware features, in the hope of motivating hardware

vendors to implement them soon.

Introduction

With CMOS scaling officially set to run its course

by 2021 [39], future systems will rely on hardware spe-

cialization and near-data processing to achieve their per-

formance goals. New “smart” peripherals such as smart

NICs and smart SSDs are already becoming commer-

cially available [14, 15, 25]. They will soon join the mix

of programmable accelerators such as GPUs and FPGAs

that are already deployed in systems of all scales and fla-

vors [12, 35]. These new kinds of accelerators, which

we call Near-X accelerator Units, or NXUs, enable ex-

ecution of user programs on network (NICs) and storage

(SSDs) I/O devices to perform custom processing on the

data while it is being transferred or where it is stored. The

benefits of near-data processing have long been explored

in research, in a wide range of applications ([16, 21,

28, 40, 45] and references therein). It is only now, how-

ever, with the stagnation of CPU performance scaling,

that these ideas are finally being more widely adopted.We

are approaching the era of omni-programmable systems,

where applications will run on a multitude of CPUs,

GPUs and NXUs.

Unfortunately, such heterogeneity of computing re-

sources will pose tremendous challenges to software de-

velopers. There is already a zoo of technologies for pro-

gramming GPUs alone [13, 24, 36], each providing its

own set of interfaces and abstractions. To reflect their in-

herent near-data processing nature and I/O oriented ar-

chitecture, new NXUs will require an entirely different

set of abstractions, as has been the case, for example, for

smart NICs [28].

We argue, however, that the challenges will transcend

the intricacies of programming individual NXUs. Rather,

it will become exceedingly hard to achieve high per-

formance of an application as a whole while gluing to-

gether shards of optimized code scattered across NXUs

and CPUs, and to run multiple such applications securely

and efficiently on a single machine. Operating systems

have always served as an all-encompassing substrate for

building efficient applications from a variety of hardware

and software components. A general and systematic ap-

proach to OS support for omni-programmable systems is

thus the key to realizing their performance potential with-

out heroic development efforts.

To illustrate this point, we sketch a design of an im-

age database server that performs simple image process-

ing functions like resizing and contrast enhancements in

real time, while serving retrieving and storing images

respectively. Similar systems are reportedly deployed in

Flickr [11], for example. The system design is straight-

forward, with a tweak to keep a cache of already resized

images to avoid redundant computations. Figure 1(a)

shows a sketch of the main functional blocks and their

interactions.

The server is a reasonable candidate for acceleration

on NXUs. First, image enhancement operations can be

offloaded to a GPU. Second, (un)marshalling of network

requests is a good fit for smart NICs: it is a relatively sim-

ple, stateless computation that operates on a data stream

and reduces the amount of data transferred to the host.

Moreover, (un)marshalling operations are worthwhile to

accelerate as they form about a third of the so-called

data center tax [27]. Last, image resizing tasks can be

performed by smart SSDs because of their large inter-

nal bandwidth to storage [45] and the potential to dra-

matically reduce storage-to-host bandwidth requirements

(consider generating thumbnail from large images).

Unfortunately, it is too hard to implement such an

NXU-reach design in CPU-centric systems of today.

Smart NICs lack the standard socket abstractions, and ex-

pose raw packets instead [15, 28]. Therefore, one would

have to implement a network transport layer to process

incoming messages. Furthermore, sending the data from

the NIC requires access to an ARP table (on the host).

1

(a) (b)

Figure 1: A functional diagram of an image database server (a) without and (b) with OmniX. (a) The lack of system abstractions requires heavy

CPU involvement (b) Distributed execution over multiple NXUs that directly invoke I/O operations without CPU mediation. The shape color and

the frame color denote the caller and the callee NXU respectively.

Similar issues arise with smart SSDs, which operate on

blocks rather than files. Moreover, the code running on

the SSD NXU may observe a stale version of the data, be-

cause of accessing it directly in the storage layer. Finally,

allowing untrusted application code to access raw packets

and storage blocks directly is obviously insecure. These

issues disappear if we resort to using the CPU OS for net-

work and file I/O, but then the very benefits of near-data

execution on NXUs would become out of reach.

We present OmniX, an OS architecture which allows

applications such as the image server to achieve their

performance potential on omni-programmable systems.

OmniX hides the system heterogeneity by providing a

set of homogeneous basic OS services and abstractions

across all processors. These abstractions focus on access-

ing files, performing network I/O, and invoking new tasks

on the same or other NXUs. Figure 1(b) demonstrates

the image server implementation on top of OmniX. Here,

the CPU does not run the application logic at all, serving

only for initialization and setup, while the NXUs interact

directly with each other. For example, the NIC invokes

the read and resize operations on the SSD, while the SSD

sends the results back to the NIC, which in turn marshalls

and sends them back to the client. Figure 2 shows the

code sketches for the NIC, SSD and CPU.

OmniX is a single application OS, similar to EbbRT [38]

and Unikernel [30]. It comprises several library OSes

that provide highly optimized implementation of sys-

tem services for each NXU. The library OSes interact to

maintain a unified and coherent view of the system for

applications running on NXUs.

Each library OS implements private and public OS

services. Private services provide OS abstractions acces-

sible to the programs running on the same NXU. For

example, a GPU may run GPUfs [43] which enables

GPU programs to access files while also providing an

on-GPU buffer cache integrated with the buffer caches

of other NXUs and CPUs. Public services are accessi-

ble to other NXUs, and usually match the I/O function-

ality of the NXU on which they execute, i.e. a file sys-

tem service running on a smart SSD. NXU programs

transparently access remote services via remote proce-

dure calls (RPCs), as in Helios [32]. As a result, OmniX

distributes the control plane across NXUs, allowing di-

rect NXU-to-NXU communications that bypass the main

CPU entirely. This idea resembles that of excluding the

OS from the data path [34], but in addition “exterminates

the CPU” 1 from inter-NXU interactions.

The OmniX design combines the principles of cen-

tralized and distributed systems, following the exoker-

nel [22] model of a single privileged entity and late bind-

ings. It relies on a single coherent shared virtual memory

across all NXUs, but has no centralized task scheduler; it

uses the CPU to configure and manage all system devices

and perform privileged operations, but employs capabil-

ities to allow each NXU to access system resources di-

rectly; and it provides shared socket and file descriptors

namespace across all NXUs, but does not support cross-

NXU task migration.

In the following sections we analyze current hardware

trends to understand the expected properties of future

omni-programmable systems that will dictate the OS de-

sign, describe OmniX design principles, discuss the lim-

itations of existing hardware that preclude building it to-

day, and conclude.

Hardware trends

What architectural support for running OS services

will be available in NXUs? While any answer to this

question would be highly speculative, we offer some in-

sights we learn from analyzing the last ten years of the

General Purpose GPUs (GPGPUs) evolution, as a promi-

nent example of the architecture and software develop-

1 Paraphrasing the Exokernel “exterminating the OS” [22]

2

ment path from special-purpose to general-purpose ac-

celeration platform.

GPGPUs emerged as a byproduct of introducing pro-

grammable shaders to fixed-function GPUs. Over the

years, GPU vendors introduced numerous features that

helped improve general purpose programmability, such

as support for memory pointers and double precision.

However, GPGPU computing owes its success primarily

to major architectural improvements in purely graphics-

oriented hardware. In fact, most of the new architectural

enhancements mainly serve to boost the performance of

computer graphics workloads, and improve the GPGPU

applications only as a side effect. Moreover, today, ven-

dors are reluctant to improve features essential for GPG-

PUs but mostly unused for graphics (the poor perfor-

mance of in-GPU function calls is one notable example).

For the same reason, after all these years there is still no

architectural support for implementing OS services on

GPUs, e.g., on-GPU virtual memory management. Evi-

dently the expectations that GPUs would eventually gain

more OS-friendly self-management capabilities, as sug-

gested in prior works on OSes for heterogeneous sys-

tems [32], have not materialize so far.

Emerging NXUs seem to be following the same evo-

lutionary path: they originated from high-end fixed-

function I/O devices, and their vendors are primarily

interested in boosting their performance, rather than in

adding proper architectural support for running an OS.

For example, Mellanox’s Innova smart NIC is essen-

tially a ConnectX-4 Host Channel Adapter (HCA) with a

”bump-on-the-wire” FPGA, without any OS support on

the device. Similarly, smart SSDs [25, 45] execute appli-

cation logic on the existing storage controller-resident

ARM cores, which do not run an OS. The low-risk,

pragmatic approach to NXU development, along with

pressing power constraints, force the vendors to focus on

purely functional system requirements rather than OS-

friendly self-management capabilities.

More generally, to paraphrase the conclusions of the

venerable “The wheel of Reincarnation” paper [31]: the

functionality that can be implemented efficiently else-

where should not be implemented on an accelerator.

Thus, future NXUs will likely become highly efficient for

applications in their respective I/O domains, e.g., string

processing on NICs, but will remain poor candidates

for general purpose computations, and will have limited

support for running systems software.

Discrete or on-die? Why not add the necessary I/O pro-

cessing capabilities to the CPU, and by doing so obviate

the need to run applications on I/O devices? This CPU

on-loading approach [42] is the one used, for example, in

recent Xeon-Phi Intel processors, which integrate Omni-

Path fabric on-die [44].

While the jury is still out, there are a few reasons to

believe that discrete accelerators will remain relevant in

the near future, and in the long run will co-exist with inte-

grated devices. First, the severe power constraints, which

already today lead to the dark silicon effect [46], make it

hard to add the large amount of logic necessary for high

performance I/O support. This is one of the reasons why

on-die devices such as integrated GPUs are much weaker

computationally than their discrete counterparts. Second,

scaling up a system is more easily done by adding more

discrete devices to it. Last, not all the devices can be inte-

grated on-die or even on-package, consider large storage

chips, for example.

What kind of interconnect will NXUs have? All major

memory, CPU and networking hardware vendors are ac-

tively developing new standards for intra-node commu-

nications, such as CAPI and CCIX [1, 4, 10]. A key

feature of these technologies will be their support for co-

herent shared virtual memory and remote memory atom-

ics across all system processors and NXUs. In particu-

lar, memory coherence will allow NXUs to synchronize,

to cache each other’s data and to communicate without

the costly driver-mediated synchronization necessary to-

day, eliminating the CPU from their interaction. Propri-

etary interconnects with a subset of these properties have

already been deployed in production, e.g., NVLINK in

IBM Power 9, which connects CPUs and GPUs.

However, despite the global virtual address space,

omni-programmable systems will have distinctive NUMA

characteristics, in particular in terms of memory band-

width. For example, inter-GPU bandwidth across NVLINK

is about 40GB/s, NVIDIA P100 GPU local bandwidth to

its memory is up to 750GB/s, and the bandwidth to GPU

memory from the NIC (over the PCIe-v3) is 12GB/s.

Data locality thus will remain the key optimization goal.

Design

OmniX aims to enable efficient execution of user ap-

plications on omni-programmable systems. Thus, our

primary goal is to achieve high application performance

at low development cost.

Design alternatives

Distributed vs. centralized. There are two extremes on

the spectrum of possible design approaches.

First is a fully distributed multi-kernel design [17, 32].

Each system processor is treated as an independent self-

contained processing unit that runs its own OS kernel.

Every NXU on a particular I/O device provides a Remote

Procedure Call interface that offers the respective I/O

services. For example, a smart NIC may expose services

to send/receive packets, a smart SSD may implement a

file or block storage server.

The generality and scalability of the multi-kernel ap-

proach are appealing. However, to run a full-fledged OS

kernel, NXUs must provide architectural support for self-

management, such as interrupt handling, privileged exe-

cution, and virtual memory management. As we explain

3

in Section 2, we might need to wait a few hardware gen-

erations until such support becomes available, if at all.

The second extreme is a centralized CPU-centric de-

sign in which the CPU fully controls all the system pro-

cessors and their interaction. Here, data transfers between

NXUs can still be performed in a peer-to-peer manner,

but all NXU accesses to OS services are relayed via the

CPU OS.

The CPU-centric design is clearly feasible already to-

day. Furthermore, it does not preclude the use of tradi-

tional accelerator programming paradigms, thus allow-

ing gradual transition toward the accelerator-centric ap-

proach of OmniX. In fact, previous works on OS abstrac-

tions for GPUs (GPUfs [43] and GPUnet [29]) follow

this design to make their implementation on real hard-

ware possible.

However, the CPU-centric centralized design does

have some fundamental limitations.

The primary problem is that the inter-NXU control

messages, e.g., network I/O requests from the GPU to

the NIC, are relayed via the CPU by a special daemon

which actively copies the messages between the NXUs.

This daemon turns into a critical element with dramatic

influence on the performance of the system as a whole.

First, it causes the inter-NXU request latency to vary sub-

stantially due to the background CPU noise, which might

cause intermittent context switches and daemon eviction.

Moreover, the CPU becomes the system bottleneck, as

it might be overwhelmed by NXU requests, similarly to

the interrupt flooding problem from high-speed I/O de-

vices today. For example, GPUfs [43] requires at least 4

CPU cores per GPU to achieve maximum I/O through-

put from the SSD to the GPU for 4K reads [41]. Last,

the reliance on the CPU greatly affects the system scal-

ing with respect to the number of GPUs it may sup-

port efficiently. For example, an optimized low-latency

server that performs K-Nearest-Neighbor search queries

on multiple GPUs fails to scale beyond nine GPUs be-

cause of the GPU management overheads, even when in-

voked on a server with 64 CPU cores [47].

The performance is further affected by the increased

latency of control messages between NXUs due to the

extra PCIe hop and memory copies in the CPU. For ex-

ample, in GPUnet [29], which relays GPU network I/O

requests via the CPU, the end-to-end network latency is

more than three times higher than the 5µsecs latency of

GPUrdma [20], in which the GPU accesses the NIC di-

rectly. As a result, invoking fine-grain I/O and process-

ing tasks among NXUs becomes inefficient and requires

batching, thereby complicating the code and increasing

the I/O buffer memory consumption to hide the over-

heads. In the case of GPUnet, the maximum bandwidth

of data transfers from the GPU is achieved with network

buffers of size 128KB, versus 16KB for GPUrdma.

In OmniX, we combine both distributed and central-

ized designs while striving to reap the benefits of both.

Alternatives to NXU OS abstractions. Earlier alterna-

tive approaches to building multi-accelerator runtime

systems [37, 48] focus on higher-level programming ab-

stractions and are less general. For example, PTask [37],

works well for static dataflow applications like video

streaming, but is less convenient for implementing server

applications such as the image server in Figure 1 because

of the data-dependent control flow. In fact, OmniX can

be used to implement the PTask framework.

Design principles

OmniX is a single-application OS, built as a set of

library OSes linked with the application and executed in

user space. There is one library OS for every processor

(including the CPU), which implements a set of common

interfaces for accessing system I/O services and invoking

NXU tasks.

An application is invoked on the host CPU (see Fig-

ure 2(b) for the code sketch). All the NXUs involved in

the application get initialized and configured by the stan-

dard host OS which runs device drivers, and performs all

privileged operations. In addition, the host OS interacts

with the library OSes to establish a uniform, coherent

view of the system for all processors. For example, all

the processors share file descriptors and sockets.

To achieve high efficiency, OmniX distributes the I/O

and task invocation control plane across NXUs. Specifi-

cally, it allows NXUs to invoke operations, and transfer

data and control messages in a peer-to-peer manner, with-

out disturbing the CPU. However, the host OS, being the

only entity that may execute privileged operations, is in-

volved in the setup and the first access to any resource.

The OS generates a capability that can be cached by the

library OS on the NXU, allowing access to the resource

while bypassing the host OS. The capability may be sub-

sequently revoke at any point. In the next section we dis-

cuss a possible approach to supporting capabilities with

the help of a virtual memory mechanism on NXUs.

Shared coherent virtual memory. All the processors

running application code share a global virtual address

space, safely passing memory references among them.

However, with highly non-uniform memory access per-

formance, NXUs will naturally cache some of the data

they access in remote memories, relying on memory co-

herence among NXUs and remote memory atomics for

synchronizing accesses to shared memory. The host OS is

responsible for the address space initialization and man-

agement, as well as for handling page faults from NXUs,

because all these operations require privileged access to

hardware.

Distributed scheduling and task management. Each

NXU manages its own set of run queue(s), which are

accessible from other NXUs and are also used by the

NXU itself. When a run queue runs out of space, the ap-

4

/ / code s n i p p e t f o r smar t NIC

RECV(){
void o n i n i t (. . .) {

/ / g e t a c c e s s t o t h e image db

i n t db=open (d b f i l e) ;

/ / map t h e maximum s i z e o f t h e f i l e

void d b p t r∗=mmap(db , m a x s i z e) ;

/ / a hash t a b l e key : imgname v a l u e : o f f s e t

Cache cache = i n i t c a c h e () ;

}
/ / c a l l e d when da ta ready t o r e c e i v e

void onr e c v (soc , b u f s i z e){
r e c v (sock , i n d a t a , b u f s i z e) ; / / i n d a t a : NIC b u f f e r

Reques t r e q = u s e r p a r s e (i n d a t a) ; / / NIC u s e r f u n c t i o n

i f (r e q . t y p e ==GET){
/ / check i f t h e r e q u e s t e d image s h o u l d be r e s i z e d

i f ((o f f s e t = cache . g e t (r e q . name)) == FOUND)

{ / / f ound i n cache − re spond from NIC

/ / enqueue t a s k t o i t s e l f

n x e x e c (sock ,MARSHAL, req , d b p t r + o f f s e t) ;

} e l s e {
/ / pas s e x e c u t i o n t o SSD

NX TASK s s d = n x e x e c (db , RESIZE , sock , r e q) ;

n x r u n a f t e r (ssd , [] { / / w a i t e f f i c i e n t y on promise

s i z e t r e s u l t = n x r e s u l t (s s d) ;

i f (r e s u l t >0){ / / i f s u c c e s s f u l , add t o t h e cache

cache . add{ r e q . name , r e s u l t }
} e l s e n x e x c e p t i o n () ;

}
}

. . . .

}

(a)

/ / code s n i p p e t f o r smar t SSD

RESIZE ()

{
. . . .

s i z e t onexec (fd , soc , r e q){
/ / r e s i z e t h e image and w r i t e i t t o l o c a l tmpbuf

u s e r r e s i z e (req , tmpbuf) ;

/ / w r i t e t o d i s k − enqueue t o i t s e l f

NX TASK s s d = n x e x e c (fd , FSAPPEND , tmpbuf) ;

/ / send t h e r e s p o n s e i n p a r a l l e l w i t h t h e d i s k w r i t e

n x e x e c (soc ,MARSHAL, reg , tmpbuf) ;

/ / w a i t f o r t h e w r i t e

s i z e t r e s u l t = n x w a i t (s s d) ;

re turn r e s u l t ;

}

/ / code s n i p p e t f o r CPU

i n t main (){
/ / l oad a l l t h e k e r n e l s

n x l o a d (SSD , RESIZE) ;

n x l o a d (NIC ,RECV) ;

. . . .

/ / i n s t a l l e r r o r h a n d l e r s

NX EXCEPTION r e p =[]{ p r i n t f (” e r r o r ”)} ;

n x i n s t a l l h a n d l e r (& r e p) ;

/ / i n i t t h e s o c k e t

i n t soc = a c c e p t (. . .) ;

whi le (1){
/ / i n v o k e t h e s e r v e r

n x w a i t (n x e x e c (soc , RECV)) ;

}
. . . .

}

(b)

Figure 2: Code sketch of the image server implementation for handling get() requests. New OmniX calls are prefixed with ‘nx ’

propriate exception is forwarded to the CPU. All NXUs

may enqueue new tasks to each other directly without

host OS mediation. The enqueued tasks are then invoked

asynchronously, while the calling processor may wait for

their termination if necessary.

In this model, task scheduling must be performed in

a distributed manner. It is not yet clear whether task

migration across NXUs can be supported, but the di-

versity of underlying hardware platforms makes such a

cross-architecture migration extremely challenging. On

the other hand, task migration across NXUs with the

same architecture might be feasible, yet it poses other

challenges similar to those encountered in process migra-

tion in distributed environments. For example, a task that

sends data from the NIC using a specific socket cannot

be easily migrated to another NIC.

Protection and Isolation. As a single-application OS,

OmniX relies on the hardware virtualization support in

NXUs, i.e., SRIOV, to achieve protection and isolation

from other applications on the same machine, similarly

to EbbRT [38] and Unikernel [30]. This approach might

be too strict, requiring that devices be space partitioned

across applications [8]. Preemptive task scheduling is

possible in theory, but employing one on high speed

devices is likely to perform poorly.

OS services on NXUs

Task discovery. NXUs need to discover the tasks that

can be invoked on other processors or on themselves.

Unlike CPUs that load new binaries for running a pro-

gram, NXUs effectively invoke pre-loaded routines. This

is useful for supporting accelerators that currently lack

dynamic binary loading capabilities, e.g., GPUs and FP-

GAs. In Figure 2, the parameter to nx exec contains the

task name as a constant denoted in all caps.

Task execution and scheduling. Each processor may

asynchronously invocation a task or an I/O request on any

other processor, including itself. I/O operations such as

read and write from smart SSD can be also implemented

as tasks, invoked on the respective I/O device. The calling

task may wait using the invocation handler (NX TASK

handler in Figure 2), and retrieve the return value after

termination. While the wait call is supported, it is more

efficient to use NX TASK handler as a promise (using

the nx run after() API call) with the continuation

as lambda. This would make it easier to support I/O pre-

emption for the waiting tasks in order to improve hard-

ware utilization. As we do not require timer interrupts on

NXUs, we envision a simple version of hardware-assisted

cooperative scheduling implemented using queue pairs

discussed in the next section.

Error handling. NXUs have rather limited ability to

handle system errors. In OmniX, all critical failures are

delivered to the CPU, which may then reset the NXU,

or perform some other privileged operations to recover

from errors.

Storage/Network-specific OS services. Smart storage

and network NXUs must implement special support for

internal access to the I/O device they reside on from their

own code, while providing the same high-level OS ab-

stractions such as files and sockets. For example, the

5

NXU on the SSD must be able to access the files stored

on that SSD via a simple file interface. Among the im-

portant but still unanswered research questions is how to

expose higher-level abstractions without reimplementing

a significant part of the network and file system stack on

the device. We outline one possibility in the next section

when discussing in-storage memory mapped files.

Can we build OmniX today?

In this section we discuss the hardware properties

essential for OmniX implementation, and how realistic

our expectations are to see them in real systems soon.

Peer-to-peer NXU interaction. Peer-to-peer DMA across

NXUs is necessary to allow direct data and control mes-

sage transfers between them.

Feasibility: This feature is already supported in many

accelerators today [5], and has been evaluated in earlier

works for both data and control messages [7, 18, 20, 29].

Shared virtual memory, coherence and atomics. In

OmniX all NXUs share a single application virtual ad-

dress space and support page faults. Using virtual rather

than physical addresses across the NXUs is essential to

allow NXUs to run untrusted application code. More-

over, with a single CPU-managed virtual address space

one might partially leverage existing PCIe translation

mechanisms for managing NXU-resident IOMMUs.

Virtual memory serves the basis for implementing ca-

pabilities. For example, a storage device may expose the

stored data as a virtual memory region, but later revoke

the access without notifying any other NXU holding an

active mapping to that region.

Producer-consumer workloads between NXUs require

hardware support for memory ordering across the devices

to ensure data integrity and avoid inconsistent updates

reported earlier in direct GPU-NIC interaction [20]. Re-

mote atomic operations and inter-device memory coher-

ence are necessary for data sharing across NXUs.

Feasibility: Fortunately, shared virtual memory across

NXUs is already becoming a reality. It is available in

GPUs [9, 19, 26], and will be available soon in NICs [6].

Moreover existing PCIe-v4 standard and emerging chip-

to-chip interconnect technologies targeting future accel-

erators include the functionality to support virtual mem-

ory addressing and memory coherence [1, 10].

Queue Pair control interface. Each processor exposes

multiple Queue Pair (QP)/Completion Queue (CQ) con-

trol structures to allow task invocation from multiple

NXUs. A new task enqueued into the QP is asyn-

chronously executed and its completion is reported via

a CQ. The QP/CQ data structure is mapped to an arbi-

trary virtual memory location, but its physical placement

is optimized for a particular application, as has been ex-

plored in GPUrdma [20]. QP/CQ creation is a privileged

operation, and can be used as a capability for granting/re-

voking access to a particular NXU.

Feasibility: The QP/CQ interface is prevalent in

NICs, NVMe SSDs, and beyond [23, 33, 42]. An im-

portant addition to the existing QP/CQ implementations

is the ability to enqueue requests by the NXU to itself, to

allow I/O operations to be generated on the device, such

as the MARSHAL call in Figure 2. While not available

publicly, this idea has been used in NVM over Fabric 2.

In-storage memory mapped files. It is challenging to

provide efficient file access inside smart SSD without

accessing host OS for obtaining block mappings. One

way of solving this issue is to require a storage device to

expose files as regions of virtual memory (and perform

address-to-block translation in firmware). If available,

this functionality would allow the SSD to become a DMA

slave, thereby making possible unmediated access to files

via DMA. We leverage this storage feature to allow the

NIC to read data directly from the SSD (see In Figure 2),

similarly to the way storage is accessed using DAX [2].

Feasibility: While such a functionality is not available

in SSDs today, emerging NVRAM drive technologies do

allow accessing storage drive via virtual memory inter-

face, e.g., Microsemi Flashtec [3].

Summary

Omni-programmable systems are becoming a reality.

OmniX provides uniform OS abstractions across all sys-

tem processors, transforms NXUs into peer-processors

and reduces programming complexity. By distributing

the control plane among the NXUs, OmniX seeks to reap

the scaling and performance benefits of a distributed sys-

tem design, while retaining the convenience of a coher-

ent view of system resources across all processors, with

modest NXU hardware requirements.

We take a pragmatic approach to OmniX design by

making relatively safe short-term bets about future hard-

ware architectures that we believe are likely to become

available soon. Our hope is that this work will encour-

age NXU designers to extend their architectural support

for running systems software in the future. Thus, as NXU

hardware acquires more OS-friendly features, our design

choices might change, for example, by shifting some core

OS functionality to NXUs. We believe, however, that the

main principles behind the OmniX design will remain

valid regardless of the future changes in the NXU archi-

tecture.

Acknowledgements

We would like to thank Boris Grot, Haggai Eran, Amir

Watad and the members of the Technion Accelerator

Computer Systems Lab for useful discussions and feed-

back on the early versions of the paper.

References
[1] Cache Coherent Interconnect for Accelerators (CCIX).

2 Mellanox, personal communications

6

http://www.ccixconsortium.com/.

[2] DAX: Page cach bypass for filesystems on memory stor-

age. https://lwn.net/Articles/618064/.

[3] Flashtec NVRAM Drives. http://www.microsemi.

com/products/storage/flashtec-nvram-

drives/flashtec-nvram-drives.

[4] Gen-Z. http://genzconsortium.org/.

[5] GPUDirectRDMA technology. http://docs.

nvidia.com/cuda/gpudirect-rdma/index.

html.

[6] Interconnect Your Future with Mellanox 100Gb

EDR Interconnects and CAPI. https://

openpowerfoundation.org/blogs/

interconnect-your-future-mellanox-

100gb-edr-capi-infiniband-and-

interconnects/.

[7] MVAPICH2: High Performance MPI over InfiniBand,

iWARP and RoCE. http://mvapich.cse.ohio-

state.edu.

[8] NVIDIA GRID Virtual GPU Technology. http://www.

nvidia.com/object/grid-technology.html.

[9] NVIDIA TESLA P100. https://www.nvidia.com/

object/tesla-p100.html.

[10] OpenCAPI. http://opencapi.org/.

[11] A Year Without A Byte. https://code.flickr.

net/2017/01/05/a-year-without-a-byte/.

Accessed: 2017-01-25.

[12] AWS announces seven new compute services, Nov

2016. http://www.businesswire.com/news/

home/20161130006132/en/.

[13] CUDA C Programming guide, 2016. Nvidia.

[14] Mellanox Innova SmartNIC, Jun 2016. http://

www.businesswire.com/news/home/

20160615005424/en/.

[15] Netronome Brings Efficient Hardware-Accelerated Open-

Stack Networking to a Wide Range of Cloud Applications.

April 2016.

[16] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno,

R. Murphy, R. Nair, and S. Swanson. Near-Data Process-

ing: Insights from a MICRO-46 Workshop. IEEE Micro,

34(4):36–42, July 2014.

[17] A. Baumann, P. Barham, P.-E. Dagand, T. Harris,

R. Isaacs, S. Peter, T. Roscoe, A. Schüpbach, and A. Sing-

hania. The multikernel: a new OS architecture for scal-

able multicore systems. In Proceedings of the ACM

SIGOPS Symposium on Operating Systems Principles

(SOSP), pages 29–44. ACM, 2009.

[18] S. Bergman, T. Brookman, T. Cohen, and M. Silberstein.

SPIN: Seamless Operating System Integration of Peer-to-

Peer DMA Between SSDs and GPUs. In Proceedings

of the Seventeenth USENIX Annual Technical Conference,

USENIX ATC ’17, page to appear. USENIX, 2017.

[19] P. Boudier and G. Sellers. Memory system on APUs. AMD

fusion developer summit, 2011.

[20] F. Daoud, A. Watad, and M. Silberstein. GPUrdma: GPU-

side library for high performance networking from GPU

kernels. In Proceedings of the 6th International Workshop

on Runtime and Operating Systems for Supercomputers,

page 6. ACM, 2016.

[21] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J.

DeWitt. Query Processing on Smart SSDs: Opportunities

and Challenges. In Proceedings of the 2013 ACM SIG-

MOD International Conference on Management of Data,

SIGMOD ’13, pages 1221–1230, New York, NY, USA,

2013. ACM.

[22] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exok-

ernel: An Operating System Architecture for Application-

level Resource Management. SOSP ’95. ACM, New York,

NY, USA, 1995.

[23] S. D. Girolamo, P. Jolivet, K. D. Underwood, and T. Hoe-

fler. Exploiting Offload-Enabled Network Interfaces.

IEEE Micro, 36(4):6–17, July 2016.

[24] K. Group. OpenCL - the open standard for parallel pro-

gramming of heterogeneous systems. http://www.

khronos.org/opencl.

[25] B. Gu, A. S. Yoon, D.-H. Bae, I. Jo, J. Lee, J. Yoon, J.-U.

Kang, M. Kwon, C. Yoon, S. Cho, et al. Biscuit: A frame-

work for near-data processing of big data workloads. In

Computer Architecture (ISCA), 2016 ACM/IEEE 43rd An-

nual International Symposium on, pages 153–165. IEEE,

2016.

[26] S. Junkins. The Compute Architecture of Intel R© Proces-

sor Graphics Gen9. Intel whitepaper v1, 2014.

[27] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan,

T. Moseley, G.-Y. Wei, and D. Brooks. Profiling a

warehouse-scale computer. In Computer Architecture

(ISCA), 2015 ACM/IEEE 42nd Annual International Sym-

posium on, pages 158–169. IEEE, 2015.

[28] A. Kaufmann, S. Peter, N. K. Sharma, T. Anderson, and

A. Krishnamurthy. High Performance Packet Processing

with FlexNIC. In Proceedings of the Twenty-First Interna-

tional Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS ’16,

pages 67–81, New York, NY, USA, 2016. ACM.

[29] S. Kim, S. Huh, Y. Hu, X. Zhang, E. Witchel, A. Wated,

and M. Silberstein. GPUnet: Networking Abstractions for

GPU Programs. In Proceedings of the 11th USENIX Con-

ference on Operating Systems Design and Implementa-

tion, OSDI’14, pages 201–216, Berkeley, CA, USA, 2014.

USENIX Association.

[30] A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott,

B. Singh, T. Gazagnaire, S. Smith, S. Hand, and

J. Crowcroft. Unikernels: Library Operating Systems for

the Cloud. In Proceedings of the Eighteenth Interna-

tional Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS ’13,

pages 461–472, New York, NY, USA, 2013. ACM.

[31] T. Myer and I. E. Sutherland. On the design of display

processors. Communications of the ACM, 11(6):410–414,

1968.

[32] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel,

and G. Hunt. Helios: Heterogeneous Multiprocessing with

Satellite Kernels. In Proceedings of the ACM SIGOPS

7

http://www.ccixconsortium.com/
https://lwn.net/Articles/618064/
http://www.microsemi.com/products/storage/flashtec-nvram-drives/flashtec-nvram-drives
http://www.microsemi.com/products/storage/flashtec-nvram-drives/flashtec-nvram-drives
http://www.microsemi.com/products/storage/flashtec-nvram-drives/flashtec-nvram-drives
http://genzconsortium.org/
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://openpowerfoundation.org/blogs/interconnect-your-future-mellanox-100gb-edr-capi-infiniband-and-interconnects/
https://openpowerfoundation.org/blogs/interconnect-your-future-mellanox-100gb-edr-capi-infiniband-and-interconnects/
https://openpowerfoundation.org/blogs/interconnect-your-future-mellanox-100gb-edr-capi-infiniband-and-interconnects/
https://openpowerfoundation.org/blogs/interconnect-your-future-mellanox-100gb-edr-capi-infiniband-and-interconnects/
https://openpowerfoundation.org/blogs/interconnect-your-future-mellanox-100gb-edr-capi-infiniband-and-interconnects/
http://mvapich.cse.ohio-state.edu
http://mvapich.cse.ohio-state.edu
http://www.nvidia.com/object/grid-technology.html
http://www.nvidia.com/object/grid-technology.html
https://www.nvidia.com/object/tesla-p100.html
https://www.nvidia.com/object/tesla-p100.html
http://opencapi.org/
https://code.flickr.net/2017/01/05/a-year-without-a-byte/
https://code.flickr.net/2017/01/05/a-year-without-a-byte/
http://www.businesswire.com/news/home/20161130006132/en/
http://www.businesswire.com/news/home/20161130006132/en/
http://www.businesswire.com/news/home/20160615005424/en/
http://www.businesswire.com/news/home/20160615005424/en/
http://www.businesswire.com/news/home/20160615005424/en/
http://www.khronos.org/opencl
http://www.khronos.org/opencl

22Nd Symposium on Operating Systems Principles, SOSP

’09, pages 221–234, New York, NY, USA, 2009. ACM.

[33] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and

B. Grot. Scale-out NUMA. In Proceedings of the 19th In-

ternational Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, ASPLOS

’14, pages 3–18, New York, NY, USA, 2014. ACM.

[34] S. Peter, J. Li, I. Zhang, D. R. Ports, D. Woos, A. Krish-

namurthy, T. Anderson, and T. Roscoe. Arrakis: The op-

erating system is the control plane. ACM Transactions on

Computer Systems (TOCS), 33(4):11, 2016.

[35] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,

K. Constantinides, J. Demme, H. Esmaeilzadeh, J. Fow-

ers, G. P. Gopal, J. Gray, et al. A reconfigurable fabric for

accelerating large-scale datacenter services. IEEE Micro,

35(3):10–22, 2015.

[36] P. Rogers and A. Fellow. Heterogeneous system architec-

ture overview. In Hot Chips, volume 25, 2013.

[37] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and

E. Witchel. PTask: operating system abstractions to man-

age GPUs as compute devices. In Proceedings of the

ACM SIGOPS Symposium on Operating Systems Princi-

ples (SOSP), pages 233–248, 2011.

[38] D. Schatzberg, J. Cadden, H. Dong, O. Krieger, and J. Ap-

pavoo. EbbRT: a framework for building per-application

library operating systems. In 12th USENIX Symposium

on Operating Systems Design and Implementation (OSDI

16), pages 671–688. USENIX Association, 2016.

[39] Semiconductor Industry Association. 2015 International

Technology Roadmap for Semiconductors (ITRS), 2015.

[40] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De,

Y. Jin, Y. Liu, and S. Swanson. Willow: A User-

Programmable SSD. In 11th USENIX Symposium on Op-

erating Systems Design and Implementation (OSDI 14),

pages 67–80, Broomfield, CO, 2014. USENIX Associa-

tion.

[41] S. Shahar, S. Bergman, and M. Silberstein. ActivePoint-

ers: a case for software address translation on GPUs.

In Proceedings of the 43rd International Symposium on

Computer Architecture, pages 596–608. IEEE Press, 2016.

[42] G. Shainer. Offloading vs. Onloading: The Case of CPU

Utilization. https://www.hpcwire.com/2016/

06/18/offloading-vs-onloading-case-

cpu-utilization/. Accessed: 2017-01-25.

[43] M. Silberstein, B. Ford, I. Keidar, and E. Witchel. GPUfs:

integrating file systems with GPUs. In Proceedings of the

ACM International Conference on Architectural Support

for Programming Languages and Operating Systems (AS-

PLOS). ACM, 2013.

[44] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod,

S. Chinthamani, S. Hutsell, R. Agarwal, and Y.-C. Liu.

Knights landing: Second-generation Intel Xeon Phi prod-

uct. IEEE Micro, 36(2):34–46, 2016.

[45] H.-W. Tseng, Q. Zhao, Y. Zhou, M. Gahagan, and

S. Swanson. Morpheus: creating application objects ef-

ficiently for heterogeneous computing. In Computer Ar-

chitecture (ISCA), 2016 ACM/IEEE 43rd Annual Interna-

tional Symposium on, pages 53–65. IEEE, 2016.

[46] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia,

V. Bryksin, J. Lugo-Martinez, S. Swanson, and M. B. Tay-

lor. Conservation Cores: Reducing the Energy of Mature

Computations. pages 205–218, 2010.

[47] A. Watad and M. Silberstein. GPUmore: Scalable Multi-

GPU Dataset Centric Network Servers. In Proceedings of

the 2017 Workshop on Multi-core and Rack-scale Systems,

MARS’17, 2017.

[48] Y. Weinsberg, D. Dolev, T. Anker, M. Ben-Yehuda, and

P. Wyckoff. Tapping into the fountain of CPUs: on operat-

ing system support for programmable devices. In 13th In-

ternational Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS

’08), Mar. 2008.

8

https://www.hpcwire.com/2016/06/18/offloading-vs-onloading-case-cpu-utilization/
https://www.hpcwire.com/2016/06/18/offloading-vs-onloading-case-cpu-utilization/
https://www.hpcwire.com/2016/06/18/offloading-vs-onloading-case-cpu-utilization/

	Introduction
	Hardware trends
	Design
	Design alternatives
	Design principles
	OS services on NXUs

	Can we build OmniX today?
	Summary
	Acknowledgements

