
Lynx: A SmartNIC-driven Accelerator-centric
Architecture for Network Servers

Maroun Tork
Technion – Israel Institute of

Technology
Haifa, Israel

Lina Maudlej
Technion – Israel Institute of

Technology
Haifa, Israel

Mark Silberstein
Technion – Israel Institute of

Technology
Haifa, Israel

Abstract
This paper explores new opportunities afforded by the grow-
ing deployment of compute and I/O accelerators to improve
the performance and efficiency of hardware-accelerated com-
puting services in data centers.
We propose Lynx, an accelerator-centric network server

architecture that offloads the server data and control planes
to the SmartNIC, and enables direct networking from accel-
erators via a lightweight hardware-friendly I/O mechanism.
Lynx enables the design of hardware-accelerated network
servers that run without CPU involvement, freeing CPU
cores and improving performance isolation for accelerated
services. It is portable across accelerator architectures and al-
lows the management of both local and remote accelerators,
seamlessly scaling beyond a single physical machine.
We implement and evaluate Lynx on GPUs and the In-

tel Visual Compute Accelerator, as well as two SmartNIC
architectures – one with an FPGA, and another with an 8-
core ARM processor. Compared to a traditional host-centric
approach, Lynx achieves over 4× higher throughput for a
GPU-centric face verification server, where it is used for GPU
communications with an external database, and 25% higher
throughput for a GPU-accelerated neural network inference
service. For this workload, we show that a single SmartNIC
may drive 4 local and 8 remote GPUs while achieving linear
performance scaling without using the host CPU.

ACM Reference Format:
Maroun Tork, Lina Maudlej, and Mark Silberstein. 2020. Lynx:
A SmartNIC-driven Accelerator-centric Architecture for Network
Servers. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’20), March 16–20, 2020, Lausanne, Switzerland.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3373376.
3378528

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378528

NIC

AcceleratorCPU

Request

Processing

Network Server

Network I/O

(a) Traditional host-centric

SNIC

Accelerator

Request

Processing

Network Server

Accelerator I/O

Service

Accelerator I/O

Network I/O

(b) Lynx: Accelerator-centric

Figure 1. Accelerated network server architectures.

1 Introduction
Modern data centers are increasingly heterogeneous, with a
variety of compute accelerators deployed to accommodate
growing performance demands. Many cloud vendors lever-
age them to build hardware-accelerated network-attached
computing services. For example, Amazon offers Elastic In-
ference [4] on top of GPUs, Microsoft Azure exposes FPGA-
accelerated ML services [33], and Google runs AutoML ser-
vice on TPUs [15]). In such systems, accelerators run the
dominant fraction of the application logic.
At the same time, growing network rates drive the adop-

tion of programmable Smart Network Adapters to offload
data center networkingworkloads.Microsoft has been among
the first to deploy SmartNICs (SNICs) at scale, with the Cata-
pult FPGA-based SNICs installed in each of over a million of
Azure servers [34]. Today, SNIC adoption by cloud vendors
is on the rise: they are deployed in, e.g., China Mobile [52],
Tencent [28], Huawei [19], and Selectel [45].

So far, SNICs have been used primarily for accelerating
low-level packet processing applications, such as network
functions and software defined networking [14, 28]. How-
ever, we posit that SNICs also create new opportunities
for improving the efficiency and performance of hardware-
accelerated network-attached computing services.

To demonstrate this idea, we propose an accelerator-centric
network server architecture we call Lynx1. Lynx executes
much of the generic server data and control planes on the SNIC,
1Lynx is a wild cat. We allude to its pronunciation as links, i.e., Linking
aXelerators to network

https://doi.org/10.1145/3373376.3378528
https://doi.org/10.1145/3373376.3378528
https://doi.org/10.1145/3373376.3378528

thereby enabling network I/O from and to accelerators with-
out using the host CPU for network processing, and without
running the network stack on accelerators.

In a conventional hardware-accelerated server design (Fig-
ure 1a), the CPU performs two main tasks: (1) it runs the
boilerplate logic, such as packet processing in the network
stack, and interacts with network clients; (2) it dispatches re-
quests to compute accelerators, taking care of the associated
data transfers, accelerator invocation and synchronization.
In contrast, Lynx (Figure 1b) offloads these two tasks to the
SNIC, allowing the application code on accelerators to di-
rectly interact with the network, bypassing the host CPU.
The Lynx architecture provides several benefits over the

traditional CPU-centric design:
Lightweight networking fromaccelerators. Lynx enables
accelerators to communicate with other machines over the
network at any point of the accelerator execution. While
several earlier works have demonstrated the advantages of
GPU-side networking API [8, 26, 39], they run resource-
heavy GPU-side network stack, support only Remote Direct
Memory Access (RDMA) as the primary protocol, and are
only suitable for GPUs. In contrast, Lynx runs a lightweight
API layer on the accelerator, natively supports TCP/UDP,
and is deployable across accelerators of different types (§5.4).
High CPU efficiency. The host CPU is freed from the net-
work processing and accelerator management tasks. As a
result, the host may run other tasks that can better exploit
the latency-optimized CPU architecture. At the same time,
specialized SNIC cores, which are less efficient for general-
purpose computations, are sufficient to drive hardware-acce-
lerated network services with negligible performance cost.
For example, a GPU-accelerated neural network inference
service managed by an SNIC is only 0.02% slower than its
CPU-driven version (§6.3), whereas the extra host CPU core
is better utilized by the memcached key-value store, which
scales linearly with additional CPU cores.
Performance isolation. Lynx achieves strong performance
isolation between the SNIC-driven hardware-accelerated
services and other applications running concurrently on the
same machine (e.g., from other cloud tenants). For example,
as we observe experimentally (§3.2), a memory intensive
noisy neighbor application, co-executed with the hardware-
accelerated network server, leads to high variations in server
response latency, unacceptable in latency-sensitive soft real-
time workloads, e.g., in image processing for autonomous
driving (§6.3).

To achieve these benefits, the Lynx’s design builds on two
key ideas:
Offloading the network server logic to an SNIC. The
SNIC runs a full network stack and a generic network server
that listens on the application-specified ports, and delivers
application messages to and from the accelerators. No appli-
cation development is necessary for the SNIC.

The server dispatches the received messages to the appro-
priate accelerator via message queues (mqueues), retrieves
the responses and sends them back to clients. Accelerators
run a lightweight I/O layer on top of mqueues, providing
zero-copy networking. An mqueue is a user-level abstraction
similar to an RDMA Queue Pair, but optimized to reduce the
complexity of accessing it from the accelerator (§4).
Using SNIC RDMA for portability and scalability. An
accelerator stores the mqueue data and control buffers in its
own memory, whereas the SNIC accesses the mqueues re-
motely, and executes the I/O operations on behalf of the accel-
erator. For remote access, the SNIC uses its internal hardware-
accelerated RDMA engine to efficiently read from/write to
the mqueues via one-sided RDMA. Note that RDMA is used
only between the SNIC and the accelerators, transparently
for the external clients which connect to the accelerated
service via UDP/TCP.

This design choice ensures both Lynx portability and scal-
ability: it allows the SNIC to support a variety of accelerators
without requiring the SNIC to run an accelerator driver (§4.5).
Moreover, the use of RDMA makes it possible to scale be-
yond a single machine, enabling Lynx to seamlessly provide
I/O services to remote accelerators across the network (§5.5).
A key goal of Lynx is to facilitate the implementation

of network servers that follow an accelerator-centric de-
sign which minimizes the host CPU involvement. This is
advantageous in low-latency accelerated servers which may
run entirely on the accelerator [8, 26, 39, 47, 50], but is less
suitable for hybrid applications which must use the CPU.
However, as we discuss in §3, host CPU involvement is often
elided in accelerated applications by emerging optimization
frameworks [7], making them an ideal candidate for Lynx.
We prototype Lynx on a system with multiple local and

remote NVIDIA GPUs, as well as one Intel Visual Compute
Accelerator (VCA) [21] which hosts three Intel E3 proces-
sors with Software Guarded Extensions (SGX) trusted ex-
ecution support. Furthermore, we implement Lynx on the
ARM-based Mellanox Bluefield SNIC, and also prototype on
the Mellanox Innova SNIC with Xilinx FPGA.
We evaluate the system performance and scalability us-

ing microbenchmarks and realistic applications. For exam-
ple, we develop a LeNet [27] model-serving server for digit
recognition, implemented entirely on the GPU. Lynx on Blue-
field achieves 3.5 K requests/sec at 300µsec latency, which is
25% higher throughput and 14% lower latency than an opti-
mized host-centric server, but without using the host CPU.
To demonstrate the scalability, we run a LeNet server with
12 GPUs distributed across three physical machines. Lynx
achieves linear scaling, and is projected to scale up to 100
and 15 GPUs for UDP and TCP network services respectively,
saving CPU cores otherwise required for network processing
and GPU management.

PCIe

FPGA NIC ASIC

Innova

AcceleratorCPU

(a) Innova - FPGA bump in the wire

PCIe

NIC ASIC ARM

PCIe Switch

Bluefield

AcceleratorCPU

(b) Bluefield - ARMmulti host

Figure 2. SNIC architectures.

Lynx generalizes the accelerator-centric server design con-
cepts of prior works beyond GPUs, making them applicable
for other accelerators. To achieve portability and efficiency,
it leverages recent advances in SNIC hardware architecture.
While the current design focuses on servers running on a
single accelerator, Lynx will serve as a stepping stone for a
general infrastructure targeting multi-accelerator systems
which will enable efficient composition of accelerators and
CPUs in a single application.

This paper makes the following contributions:
• We propose Lynx, a new SNIC-driven server architec-
ture that offloads to SNICs the data and control planes
in accelerated network servers.

• We design a system that enables fast network I/O from
accelerators, with minimal requirements imposed on
accelerator hardware and software.

• We prototype Lynx on two different SNICs, local and
remote GPUs, Intel VCA, and show that SNIC-driven
accelerated servers provide high performance and good
scalability.

2 Background
SNICs are NICs that feature a programmable device to per-
form custom processing of the network traffic. In this paper
we use two SNIC architectures:
Bump-in-the-wire FPGA-based NIC. Each packet pass-
ing through the NIC is processed by the FPGA logic cus-
tomized by the programmer. In this paper, we use Mellanox
Innova Flex SNIC (Figure 2a). The FPGA is located in front of
the Mellanox ConnectX-4 NIC ASIC (relative to the network)
which is used in non-programmable NICs. This architecture
reuses the optimized NIC-to-host data path, and is compati-
ble with the standard I/O software stack. For Lynx, the ap-
plication logic on the FPGA includes a network server that
handles incoming connections and interacts with external
compute accelerators via the PCIe.
Processor-based SNIC. These SNICs vary in their choice
of the processor architecture (i.e., MIPS [6], ARM [29]), in-
ternal connectivity (i.e., PCIe switch between the NIC and
the CPU), and software stack (proprietary OS or embedded
Linux). Figure 2b shows the architecture of the Mellanox
Bluefield SNIC we use in this paper. It features eight 64-bit

ARM A72 cores running at 800 MHz, connected to the NIC
ASIC and to the host via an internal PCIe switch. The CPU
runs BlueOS Linux, and can execute regular applications. The
SNIC may work in several connectivity configurations, but
in this paper we focus on amulti-homed mode. Here the SNIC
CPU runs as a separate machine with its own network stack
and IP address. In addition, the CPU can communicate with
the main host via reliable RDMA connections. We leverage
RDMA to access message queues in accelerator memory.

3 Motivation
We explain that the use of CPUs in accelerated network ser-
vices is often reduced to generic network processing and
accelerator management. However, we claim that executing
these tasks on a CPU hinders system’s efficiency and perfor-
mance isolation, whereas the recent proposals to mitigate
these issues by exposing accelerator-side I/O capabilities in-
cur high resource overheads and have functional limitations.
These factors motivate the SNIC-driven accelerator-centric
server design we propose in Lynx.

3.1 Diminishing role of CPU in accelerated services
Popular cloud services, such as Google AutoML [15] or Ama-
zon elastic inference [4], run on GPUs or other specialized
hardware accelerators. Though the details of their implemen-
tations are not published, a plausible design would include
a frontend running on the host CPU that dispatches client
requests to accelerators, and sends the results back. Yet, it is
worth considering to what extent the host CPU is involved
in the request processing, beyond the boilerplate network
processing logic and accelerator management?

To answer this question, we analyze the optimization tech-
niques employed in GPU-accelerated neural network infer-
ence systems as a representative case of accelerated services
in a cloud. We observe that reducing CPU involvement by
building larger GPU kernels with fewer kernel invocations
is among the most common optimization targets.

There are several reasons for that. First, kernel invocation
involves extra overheads that start dominating the perfor-
mance if the GPU kernel execution is relatively short (see
§3.2). Therefore, GPU kernel fusion [7] is a common tech-
nique used to merge several kernels into a single one to
reduce these overheads. Second, kernel termination causes
the GPU to reset its transient state stored in registers and
per-core scratchpad memory. Recent work [9] has shown
that keeping the GPU kernel state in registers substantially
improves system performance for computations in Recurrent
Neural Networks. Last, having to interleave computations
on the CPU and on the GPU requires also data transfers
between them, which is costly. Therefore, certain tasks are
moved to the GPU, even if they run faster on the CPU, only
to reduce the data transfer overheads.

As a concrete example showing the practice of eliding CPU
involvement, we develop an application to perform neural
network inference for the classical LeNet [27] model using
TensorFlow [1]. We then optimize it for execution on GPUs
using the state-of-the-art TVM optimization compiler for
neural network computations [7]. We observe that the result-
ing implementation does not run any application logic on the
CPU, besides a series of GPU kernel invocation commands.

In fact, the accelerated system design which minimizes the
CPU involvement is not specific to systems with GPUs. For
example, the official TensorFlow-light guide that explains
the generic Delegate API for using custom deep learning
inference accelerators recommends offloading all the com-
putations to the accelerator to avoid costly control and data
transfers between them and the host CPU [48]. Similarly, the
recent Goya inference accelerator from Habana Labs [17]
fully offloads the computations into the accelerator engine.
We conclude that emerging accelerated services are likely

to perform the majority of request processing on accelerators,
whereas the host CPU is occupied primarily by network mes-
sage processing and accelerator management. However, using
the host CPU for these tasks has disadvantages as we discuss
next.

3.2 Disadvantages of the host CPU-driven design

Accelerator invocation overhead. In a CPU-driven net-
work server the CPU performs the accelerator invocation,
synchronization and data movements. These tasks constitute
a significant portion of the end-to-end execution for short
latency sensitive kernels because they all involve interaction
with the accelerator driver.

To verify, we run a simple kernel which implements an
echo server on a GPU. This kernel comprises a single GPU
thread which copies 4 bytes of the input into the output.
Additionally we add a 100-µsecond delay inside the kernel.
We run the pipeline composed of the CPU-GPU transfer,
kernel invocation, and GPU-CPU transfer. We measure the
end-to-end latency of 130µseconds, implying 30µseconds of
the pure GPUmanagement overhead. For short kernels, such
as LeNet neural network inference (§6) of about 300µseconds,
this is about 10% latency overhead per request. Moreover,
recent results show that these overheads are the root cause of
poor multi-GPU scaling in such workloads [50]. Lynx strives
to mimimize kernel invocation and synchronization overheads.
Wasteful use of the CPU. Accelerator management and
network I/O tasks are inherently I/O- and control-bound.
Thus they do not need the full power of super-scalar, out-
of-order X86 CPU architecture to achieve high performance.
For example, most interactions with the accelerator require
access to memory-mapped control registers over PCIe, which
in turn are long-latency, blocking operations. Furthermore,
polling is commonly used to achieve low latency when inter-
acting with the accelerator, but polling can run on a simple

micro-controller instead of wasting the X86 core. Indeed, as
we show in our evaluation using a slower multi-core ARM
processor for these tasks results in negligible end-to-end per-
formance degradation of the accelerated service. At the same
time, latency-sensitive or compute-intensive applications,
i.e., from other cloud tenants, may significantly benefit from
the extra host CPU cores (§6.3).
Thus, the CPU could have been put to better use, if it were

only possible to offload the network server logic and the ac-
celerator management to a processor better suited for these
tasks.
Interference with co-located applications. Many accel-
erated services, such as machine learning model serving,
require sub-millisecond, predictable response latency. In a
multi-tenant system, this requirement translates into the
need for performance isolation among co-executing work-
loads on the same physical machine to prevent the noisy-
neighbor effect.
While the noisy-neighbor is a well-known problem in

CPU-only applications, does it affect accelerated network
services? To answer this question, we measure the response
latency of a simple GPU-accelerated network server which
computes the product of the input vector by a constant. Each
request comprises 256 integers. Wemodel the noisy neighbor
as aMatrix product of two integermatrices of size 1140×1140,
that fully occupies the Last Level Cache on our machine. Con-
current execution of these two workloads on different CPU
cores results in 13× higher 99th percentile latency for the
GPU-accelerated server (from 0.13 mseconds to 1.7 msec-
onds) and 21% slowdown for the matrix product compared
to their execution in isolation.
In some cases, performance isolation can be improved

via Cache Allocation Technology (CAT) in modern proces-
sors [35]. However, it is not always available (as is the case in
the Xeon E5-2620 CPU available in our server), and provides
only a limited number of isolated cache partitions. In general,
cache partitioning is still an open problem in large multi-core
systems and is an area of active research [13, 46, 51].

In summary the CPU-centric design suffers from inefficien-
cies and poor performance isolation.

3.3 Limitations of the GPU-centric server design
Recent research demonstrated the advantages of the GPU-
centric application design whereby the GPU runs a complete
network-intensive application without any CPU code devel-
opment [5, 8, 16, 26, 39]. All these works introduce a GPU-
side networking layer for network I/O from GPU kernels.
In particular, this layer enables the development of GPU-
accelerated servers in which the GPU may run the entire
server pipeline, from receiving and parsing network mes-
sages through request processing to sending the response.
For example, GPUnet proposes a full network socket abstrac-
tion and API in order to enable full server implementation

on a GPU, whereas GPUrdma implements full support for
RDMA verbs. These works show that the GPU-centric de-
sign enables higher performance in certain workloads, is
more efficient and easier to program than the traditional
CPU-driven approach discussed in §3.2.
While promising, there are several challenges in apply-

ing this approach to general hardware-accelerated servers
in data centers. First, accelerators are usually inefficient
at executing control-intensive logic. Even for a GPU, run-
ning a network server requires significant computational
resources to achieve high I/O performance, at the expense
of reduced throughput of the compute-intensive application
logic [26]. Second, accelerator-side complex I/O layers put
additional pressure on hardware resources, such as registers,
and might result in significant performance degradation in
some cases [26]. Third, most of these works require Infini-
band transport to connect to the service running on the GPU,
and do not support UDP/TCP, which significantly restricts
their use in data center systems. Last, the majority of these
works require a few host CPU cores to operate the GPU-side
network I/O; thus they still suffer from the inefficient use
of the CPU and performance interference with co-located
tenants.

Therefore,GPU-side network libraries cannot be easily retro-
fitted beyond GPU systems and Infiniband transport.
Opportunity. Growing availability of fully-programmable
SNICs and emergence of hardware-accelerated network ser-
vices that rely heavily on accelerators, motivates us to ex-
plore new opportunities for improving their efficiency. In
Lynx, we build upon the concepts of GPU-centric server de-
sign, while eliminating its disadvantages by offloading most
of the network communication logic to the SNIC, and freeing
both the CPU and the Accelerator for more suitable tasks.

4 Design
We first explain the high level design and then describe the
main components in details.

4.1 System overview
Lynx targets the system organization shown in Figure 3. An
accelerated network service runs on accelerators located in
one or multiple physical machines. The SNIC runs a generic
network server which serves as a frontend for the network
service; all the clients connect to the service via the stan-
dard TCP/UDP protocol. Under the hood, the SNIC commu-
nicates with remote accelerators via RDMA using regular
(not-programmable) RDMA-capable NICs located in their
respective machines. All the devices in the same machine
communicate via PCIe peer-to-peer DMA without the CPU
involvement in data/control path.

Our design strives to meet the following requirements:

UDP / TCP
RDMA

SNIC

NIC

P2P PCIe DMA

P2P PCIe DMA

Figure 3. System hardware organization. Lynx runs on the
SNIC and serves requests from clients via TCP/UDP. It man-
ages accelerators connected via PCIe in the same server and
via RDMA-capable NICs in other servers. The host CPUs in
the servers are not involved in request serving.

Provide accelerator-side network I/O.We focus on low-
latency server applications that execute their performance-
critical logic on accelerators. To this end, Lynx provides
network I/O API directly from the accelerator-resident code.
Thus, the accelerator can receive and send data, eliminating
the need to interrupt its execution when performing I/O via
the CPU, thereby reducing the associated overheads.
Avoid running generic server and dispatching logic on
accelerators. Unlike prior works on GPU-side I/O support
(§3.3), Lynx implements accelerator-side network I/O with-
out running a resource-heavy network server and work dis-
patch code on the accelerator. Instead, accelerators use a
lightweight shim layer with minimal resource demands. This
layer can be easily implemented in hardware or software
and ported across different accelerators.
Offload accelerator I/O layer to SNIC. Lynx moves the
network processing and accelerator management tasks to
the SNIC, thereby freeing both the CPU and the accelerators,
and enabling TCP/UDP support for clients. The SNIC runs
generic, application-agnostic code, therefore the developers
of accelerated services do not need to program SNICs.
Maintain portability across accelerators. The SNIC does
not run accelerator-specific code. Therefore, Lynx can easily
add support for new accelerators. At the same time, we lever-
age the existing software stack running on the host CPU
to set up and configure the accelerators, without having to
develop accelerator drivers to run on the SNIC.

4.2 Main components
Figure 4 shows the main Lynx components. The SNIC serves
as a mediator between the network and the accelerators. It
implements the mechanism to relay the messages to/from
the accelerators via message queues, while performing all the
network I/O operations on their behalf. The SNIC dispatches
requests to the accelerators that execute the server logic.

Message
Dispatcher

N
et

w
o

rk
 S

er
ve

r

N
e

tw
o

rk
 I

/O

A
cc

el
er

at
o

r
I/

OSmartNIC

Accelerator 1

Message
Forwarder

Remote MQ
 Manager

Request
Processing

UnitMQ

. . .

MQ

MQ

MQ

MQ

MQ

A
cc

el
er

at
o

r
I/

O

Accelerator n

Request
Processing

Unit

MQ

MQ

MQ

. . . .

Figure 4. Lynx high level design. MQ: Message Queue. Re-
quest Processing Unit represents internal accelerator logic.

Network Server is responsible for handling the network I/O
tasks. It performs TCP/UDP transport layer processing, lis-
tens on the network ports requested by the server developer,
and forwards messages from the network to accelerators and
back.
On the ingress side, the Message Dispatcher dispatches

received messages to appropriate message queues according
to the dispatching policy, e.g. load balancing for stateless
services, or steering messages to specific queues for stateful
ones. On the egress side, Message Forwarder fetches the out-
going messages from the message queues, and sends them
to respective destinations.
Message Queues (mqueues) are used for passing messages
between the accelerator and the SNIC. An mqueue consists
of two producer-consumer ring buffers called receive (RX)
and transmit (TX) queues, and their respective notification
and completion registers for producer-consumer synchro-
nization.
Mqueues and their status registers are located in accel-

erators’ local memory. Therefore, the latency of enqueuing
an I/O operation on the accelerator is exactly the latency
of accelerator local memory access, which is important for
reducing the overhead for the accelerator-side I/O.
Remote Message Queue Manager is a key to maintaining
the mqueues in accelerator memory. It runs on the SNIC,
and uses one-sided RDMA to access the mqueues in the ac-
celerator.

The use of RDMA makes it possible for the Lynx to main-
tain accelerator-agnostic interfaces. Lynx only relies on the
NIC’s RDMA engine, and the ability to access the acceler-
ator’s memory from another PCIe peer, aka peer-to-peer
DMA. For example, peer-to-peer GPU access is readily avail-
able via GPUdirectRDMA [38] in NVIDIA GPUs, and is also
supported by Intel VCA drivers.

In addition, the use of RDMA makes Lynx agnostic to the
actual location of mqueues, as long as it is possible to access
them via RDMA. As a result, Lynx can manage accelerators
spanning multiple physical hosts.

4.3 Accelerator-side networking
The goal of the mqueue abstraction is to support common
communication patterns in servers without providing the
full flexibility of POSIX sockets while gaining simplicity and
implementation efficiency.

We define two types of mqueues: server and client.
Server mqueue is best suited for simple RPC-like request-
response interactions. It is associated with a network port on
which the server is listening. From the receiving accelerator
perspective, the server mqueue is a connection-less messag-
ing abstraction similar to a UDP socket. Namely, two mes-
sages received from the mqueue may be sent from different
clients. However, when the accelerator writes the response
back to the mqueue, the response will be sent to the client
from which the request was originally received. Here we
choose a simpler networking interface over flexibility.
This approach achieves good scalability in terms of the

number of connections by reusing the same mqueue for
multiple client connections instead of creating one per con-
nection.

Each accelerator may have more than one server mqueue
associated with the same port, e.g., to allow higher paral-
lelism. For example, in our implementation of the LeNet infer-
ence server, the GPU has only one server mqueue, whereas
in the Face Verification server there are 28 server mqueues
managed in a round-robin manner (§6).
Clientmqueue serves for sendingmessages to other servers
and for receiving responses from them. Unlike servermqueues,
it cannot be reused for different destinations. The destina-
tion address is assigned when the server is initialized. This
design choice favors simplicity over flexibility of a dynamic
connection establishment. Static connections are sufficient
to support a common communication pattern for servers
to access other back-end services. For example, in the Face
Verification server, we use client mqueues to communicate
with a remote database stored in memcached (§6.4).
Usingmqueues.ACPU is responsible for initializingmqueues
in accelerator memory. It passes the pointers to the mqueues
to their respective accelerators. On the SNIC, it configures the
Network Server to dispatch the messages to these mqueues,
providing the mqueue pointers to the SNIC. Then, it invokes
the accelerator to handle incoming requests, and remains
idle from that point. Both the accelerator and the SNIC use
polling to communicate via mqueues.

4.4 Accelerator hardware requirements
There are two requirements that an accelerator must fulfill
in order to work with Lynx.
First, for the peer-to-peer PCIe DMA to work between

the RDMA-capable NIC and the accelerator, the accelerator
must be able to expose its memory on the PCIe (via its Base
Address Register, BAR). A less efficient and more complex
alternative (from the accelerator’s hardware perspective) is

to use host memory for NIC DMAs, and for the accelerator
to map that memory into its virtual address space. Note
that the host CPU is not involved in the transfers in either
case, but the former is clearly more efficient, and does not
assume virtual memory support in the accelerator. The host
is expected to allocate the memory buffers and configure all
the mappings ahead of the execution.

Second, to allow producer-consumer interaction between
the SNIC and the accelerator over RDMA, the accelerator
must have the means to enforce the memory ordering when
accessing its local memory, as well as to comply with the
PCIe ordering rules for the accesses to its memory from the
NIC via PCIe BAR. These requirements are needed to force
the strict ordering of updates among the data and the data-
ready flag (doorbell) in mqueues, in the transmit and receive
paths respectively. See §5.1 for the discussion about the GPU.

4.5 Discussion

Accelerators with integrated NICs. In certain systems
a NIC is integrated with an accelerator [17]. While such
accelerators might run their own networking library, we
believe that Lynx might still be beneficial for them.
This is because to support TCP access from clients, the

accelerator must run the TCP stack, or implement it in hard-
ware. The former is resource-demanding and inefficient,
whereas the latter has well-known maintainability issues.
Furthermore, the network processing stack should run on
every such accelerator.
Instead, Lynx offloads network processing to the SNIC,

which in turn can be shared across multiple accelerators,
thereby freeing their resources to run the application logic.
Therefore, Lynx can support accelerators with integrated
NICs in a way similar to how it manages remote accelerators
connected via their RDMA-capable NICs.
Difference from RDMA verbs.Mqueue resembles RDMA
Queue Pairs [10] but it is optimized to be used by accelera-
tors. First, an mqueue requires fewer operations to send a
message. For example, sending over RDMA requires prepara-
tion of a Work Queue Element, followed by access to the NIC
doorbell register over PCIe, and lastly polling for comple-
tion. In Lynx all these operations are offloaded to the SNIC;
the accelerator is only required to write a message to the
mqueue and update a control register in its local memory.
This is a key to enabling low-overhead I/O from the accelera-
tor. For comparison, enqueuing a single RDMA send request
(note, the request itself is asynchronous) requires at least
4.8µsec [8]. This is a long blocking operation which affects
multiple GPU threads. Thus, developers are forced to send
large (over 64KB) messages to hide the overheads. In Lynx
this problem is solved.

Second, the memory layout of the mqueue is flexible, and
determined by Lynx runtime rather than RDMA standard.
As a result, it can be tailored for the specific accelerator, i.e.,

eliminating unnecessary fields and aligning the entries as
necessary.
Scaling to multiple connections. Lynx architecture al-
lows the scaling of a large number of concurrent incoming
connections, which is critical for supporting real-life server
workloads. In contrast to prior works [8, 42], where every
connection is associated with an RDMA QP or a socket,
Lynx allows multiplexing multiple connections over the
same server mqueue. In practice, the scalability depends
on the compute capacity of the SNIC to multiple connections
in its network stack.
Scaling to multiple accelerators. Adding new accelera-
tors to a system requires more mqueues, and increases the
load on the Remote Message Queue Manager. As we show
in the evaluation, a Lynx on an SNIC may scale to dozens of
accelerators, as long as the system performance is bounded
by the aggregated throughput of all its accelerators.
Multi-tenancy. Lynx runtime can be shared among multi-
ple servers. For example, users may use different accelerators
for their applications, e.g., subscribing for Lynx’ services.
Lynx is designed to support multiple independent applica-
tions while ensuring full state protection among them.

5 Implementation
We prototype Lynx using two SNICs: Mellanox Bluefield
with ARM cores and Mellanox Innova Flex with an FPGA
(see §2 for details). We implement a complete version for
the Bluefield SNIC and a partial prototype for Innova. In
addition, the Bluefield version of Lynx is source-compatible
to run on X86 CPU in Linux.

We use NVIDIA K40m and K80 GPUs, and integrate Lynx
with the Intel Visual Compute Accelerator, which requires
only minor modifications.

5.1 Lynx on Bluefield

Using RDMA to access accelerator memory. The main
technical idea that underlies our implementation is the use
of the one-sided RDMA support in Bluefield. Bluefield runs
BlueOS Linux distribution. It includes the Mellanox OFED
stack [30] which we use to implement RDMA access to
mqueues.

How efficient is it to use RDMA to access mqueue in accel-
erator memory compared to using the accelerator’s internal
DMA to do so? The former is used by Lynx and is a device-
agnostic mechanism, whereas the latter is the standard way
to copy data to/from accelerators, but its DMA engine must
be programmed via the driver.
We perform the evaluation on a GPU, and access GPU

memory from the CPU (because we do not have an NVIDIA
driver for SNIC). We build a GPU-accelerated echo server
with a single threadblock that receives data via a single
mqueue, and measure the end-to-end throughput. We eval-
uate three mechanisms for accessing the mqueue from the

20 116 516 1016 1416

Payload Size [Bytes]

0

1

3

5
T

h
ro

u
g

h
p

u
t

S
p

ee
d

u
p

data:CuMemcpyAsync
control:CuMemcpyAsync

data:CuMemcpyAsync
control:gdrcopy

data:RDMA
control:gdrcopy

data:RDMA
control:RDMA

Figure 5. Performance of data transfer mechanisms for man-
aging mqueue, relative to cudaMemcpyAsync.

CPU: cudaMemcpy, gdrcpy [37] and the Ininiband RDMA
from the NIC. gdrcpy is a tool to allow direct mapping of
GPU memory into the CPU virtual address space and to ac-
cess it directly from CPU programs. We use different access
mechanisms for the data path (payload transfers) and control
path (access to status registers).

Figure 5 shows the results. Each bar represents the speedup
relative to the implementation that uses cudaMemcpyAsync.
RDMA performs better than any other mechanism, in par-
ticular for smaller granularity of accesses. This is because
cudaMemcpyAsync incurs a constant overhead of 7-8µsec
dominating small transfers, whereas gdrcopy blocks until
the transfer is completed because it is invoked as a write
access to memory. These write accesses are on the critical
path of the Message Dispatcher, and therefore slow it down.
On the other hand, IB RDMA requires less than 1µsec to
invoke by the CPU [11]; thus it is more efficient. In summary,
the use of RDMA improves system performance compared
to cudaMemcpy, confirming the performance advantages of
our design.
Metadata and data coalescing in mqueues. To reduce
the number of RDMA operations for updating the mqueue,
we append control metadata to each message. The metadata
occupies 4 bytes, and includes (1) total message size, (2) error
status from the Bluefield (if a connection error is detected),
and (3) notification register (doorbell) for the queue. The
accelerator polls this notification register while waiting for
a new message.

Unifying the notification register with the payload works
correctly only if the NIC DMA is performed from lower to
higher virtual addresses; otherwise the register will be set
before the message has arrived. We validated that this is
indeed the case for Mellanox NICs.
Data consistency in GPU memory. We prototype Lynx
using GPUs that run persistent kernels. It is well known
that in such a setup, the peer-to-peer DMA writes from the
NIC to the GPU might not preserve the PCIe ordering [38].

This implies that the updates to the mqueue doorbell and
the data could be reordered, leading to the data corruption
of a received message. We note that we have never observed
such a corruption, and similar results were also reported
earlier [8, 26].
Recently, NVIDIA published an unofficial technique to

overcome the consistency problem [44]. The idea is to use
an RDMA read from the GPU memory as a write barrier
after data update. Thus, in Lynx, each message to the GPU
is performed via three RDMA transactions: RDMA write to
the data, blocking RDMA, and RDMA write to the mqueue
doorbell. We measured that these operations incur extra la-
tency of 5µseconds to each message. This is a significant per-
message overhead that affects the overall system efficiency,
and also disables our metadata/data coalescing optimization.
However, we hope that NVIDIA will provide a more efficient
write barrier in future devices.

We note that for the purpose of this paper, GPU persistent
kernels are used to emulate the behavior of hardware accel-
erators, rather than applied specifically to GPU workloads.
Therefore, in our evaluation we disable the consistency en-
forcement workaround described above.
One RC QP per accelerator. We implement a standard
producer-consumer ring buffer, but use RDMA for updating
the data and the status registers. To create an mqueue, Lynx
initializes an InfiniBand Reliable Connection (RC) QP with
buffers in accelerator memory. To reduce the number of RC
QPs, Lynx coalesces all the mqueues of the same accelerator
to use the same RC QP and the same ring buffer, equally
partitioned among the mqueues.

5.1.1 Network Server
Network server performs many recv/send system calls on
sockets. We observed that ARM cores on Bluefield incur high
system call cost, making the use of Linux kernel I/O stack
on the SNIC too expensive.

Instead, we employ VMA [31], a user-level networking li-
brary that allows direct access from usermode to the network
adapter bypassing the kernel. The use of the library on Blue-
field significantly improves the performance. For example,
for minimum-size UDP packets VMA reduces the processing
latency by a factor of 4. The library is also effecient on the
host CPU resulting in 2× UDP latency reduction.

5.2 Lynx on Innova Flex
We partially implement Lynx on Mellanox Innova Flex SNIC,
equippedwith Xilinx FPGA.We leverageNICA [12], a hardwar-
software co-designed framework for inline acceleration of
server applications on SNICs.
Background: NICA architecture. NICA provides hard-
ware infrastructure to build Accelerated FunctionUnits (AFUs)
on FPGA-based SNICs, and software support to integrate
them with server applications on the host. All the network

traffic passes through the AFU. To simplify AFU develop-
ment, NICA provides an on-FPGA UDP stack, and imple-
ments a network switch to support multiple AFUs.
Our prototype only implements the receive path, so we

explain the receive-side mechanisms. The data passing from
the network through the AFU can be received on the host in
two ways: standard POSIX socket API and a custom ring API
which directly stores application-level messages in receive
buffers bypassing the CPU network stack.
Lynx on NICA. The network server is implemented as an
AFU that listens on a given UDP port, appends the metadata
to each message, and places the payload onto the available
custom ring used as an mqueue. The NICA driver is modified
to allocate custom rings in accelerator memory.

This prototype has two primary limitations. First, it does
not yet support the send path. Second, it requires a CPU
helper thread for the custom ring. This is because NICA uses
InfiniBand Unreliable Connection (UC) QP to implement the
custom ring in the FPGA, which in turn requires a separate
CPU thread to explicitly refill the QP receive queue, and to
take care of the flow control. We believe, however, that the
requirement to use the CPU thread is not fundamental, and
will be removed in the future with the NICA implementation
of custom rings using one-sided RDMA.

5.3 Lynx I/O library for accelerators
The implementation of the I/O library consists of a few wrap-
pers over producer-consumer queues of an mqueue that pro-
vide familiar send and recv calls only with zero-copy.
GPU I/O library. The GPU uses a single thread in a thread-
block to implement the I/O logic. This is in contrast with
other GPU-side network libraries that usemultiple threads [8,
26]. The rest of the implementation is a fairly standard
producer-consumer queue logic.

5.4 Intel Visual Compute Accelerator

Background. Intel VCA packs three independent Intel E3
processors each with its own memory. These CPUs are in-
terconnected via a PCIe switch, which in turn connects to
the PCIe slot on the host. It supports secure computations
via x86 Software Guarded Extensions, SGX [20].

From the software perspective VCA appears as three inde-
pendent machines running Linux, each with its own IP. The
host connects to each processor via standard tools such as
SSH, thanks to the IP over PCIe tunneling.
Lynx on VCA. We implement the I/O layer for the Intel
VCA card as an example of integration of a new accelerator
into the system. All we had to do was to modify 4 lines of
code in Lynx in order to expose the VCA-accessible memory
to the NIC.
Unfortunately, our attempts to allow RDMA into VCA

memory were unsuccessful, most likely due to a bug. There-
fore, we used CPUmemory to store the mqueues but mapped

this memory into VCA. This workaround allows us to esti-
mate the system performance, albeit in a sub-optimal con-
figuration.

5.5 Support for remote accelerators
Lynx can manage remote accelerators just as it manages
the local ones. From the hardware perspective, the only re-
quirement is that each remote accelerator is connected to
InfiniBand via its own network adapter which supports peer-
to-peer PCIe access to the accelerator. A remote host sets up
the RC QP in the accelerator’s memory, and from that point
such a remote accelerator is indistinguishable for RDMA
access from a local one. Indeed, all what is required from
Lynx is to change the accelerator’s host IP to the one of the
remote host.

6 Evaluation
In our evaluation we seek to answer the following questions:

1. How Lynx compares to a host-centric architecture;
2. How well it scales;
3. How SNIC contributes to the server efficiency when

running multiple workloads;
4. How portable Lynx is to run on Intel VCA.
Lynx is available at https://github.com/acsl-technion/lynx.

Hardware setup. We use 2 client and 4 server machines
with Intel Xeon E5-2620 v2 CPU, connected via Mellanox
SN2100 40Gbps switch. One server uses a 25Gbps Mellanox
BlueField SNIC, one with a 40Gbps Mellanox Innova Flex 4
Lx EN SNIC. The two others with ConnectX-4 Lx EN NICs
used for hosting remote GPUs. We use 2× NVIDIA K40m
and 6× K80 dual GPUs, and an Intel VCA. Hyper-threading
and power saving settings are disabled to reduce noise.
Performancemeasurements.We use sockperf [32] with
VMA [31] to evaluate the server performance. sockperf is
a network load generator optimized for Mellanox hardware.
We run each experiment 5 times, 20 seconds (millions of
requests), with 2 seconds warmup. We report the average.
Standard deviation is below 1.5%, not reported.

6.1 Evaluated server designs
• Host-centric (baseline): network messages are re-
ceived by the CPU, which then invokes a GPU kernel
for each request.

• Lynx on Bluefield: We use 7 ARM cores (out of 8);
• Lynx on the host CPU: runs the same code as on
Bluefield;

• Lynx on Innova FPGA-Based SNIC.

6.2 Microbenchmarks
For all the experiments here we use the following GPU server
implementation: In each threadblock there is 1 thread which
copies the input to the output, and waits for a predefined
period emulating request processing.

https://github.com/acsl-technion/lynx

1 1
2

0

2
4

0

1 1
2

0

2
4

0

1 1
2

0

2
4

0

1 1
2

0

2
4

0

Number of Message Queues

1

5

10

15

20

25
T

h
ro

u
g

h
p

u
t

S
p

ee
d

u
p

20µsec 200µsec 800µsec 1600µsec

Host-centric
Lynx on single Xeon core

Lynx on 6 Xeon cores
Lynx on Bluefield

Figure 6. Relative throughput of GPU server implementa-
tions for different request execution times (higher is better).

For a host-centric server, we use a pool of concurrent
CUDA streams, each handling one network request. For each
request, a stream performs data transfer to the GPU, kernel
invocation (1 threadblock), data transfer back to the CPU.
We run on one CPU core because more threads result in a
slowdown due to an NVIDIA driver bottleneck.

For Lynx, we run a persistent GPU kernel with up to 240
threadblocks (maximum number of concurrently executing
threadblocks on NVIDIA K40m). Each threadblock polls its
own mqueue, processes the message and sends the response.
Throughput comparison. We evaluate the performance
across two dimensions: different number of mqueues and
different request execution times. Varying these two parame-
ters effectively changes the rate at which the system handles
execution requests, but their combination stresses differ-
ent components. Higher execution time reduces the load on
the networking logic. Increasing the number of mqueues
is equivalent to increasing the number of parallel requests,
which stresses the dispatching logic and the mqueue man-
ager. Combining both will show the saturation point of the
server. We use 64B UDP messages to stress the system.

Figure 6 shows that the host-centric design performs sig-
nificantly worse than other implementations. Lynx on Blue-
field is faster in particular for short requests with onemqueue
(2×), and even more for a larger number of mqueues (15.3×).
The slowdown is due to GPU management overheads.

When comparing Lynx on the host and on the Bluefield,
we see that the latter is always faster than a single core on
the host, but up to 45% slower than 6 host cores for shorter
requests and 240 mqueues (200µsec and lower). This is ex-
pected because the UDP stack is slower on Bluefield. For
these configurations, we find that one needs 4 host CPU cores
to match the Bluefield performance (not shown in the graph).

For larger requests both Bluefield and 6-core CPU achieve
the same throughput, but a single host core is not enough to
handle 240 mqueues even for 1.6 msec requests.

5 20 50 200 400 800 1600

Request Runtime [µsec]

0.0

1.0

1.2

1.4

L
a

te
n

cy
S

lo
w

d
ow

n

1 Message
Queue

120 Message
Queues

240 Message
Queues

Figure 7. Relative latency of a GPU server with Lynx on
Bluefield vs. Lynx on 6-core CPU (lower is better). Absolute
numbers are in the text.

Latency of Lynx on Bluefield vs. host CPU. As Figure 7
shows, shorter requests are slower on Bluefield, but the dif-
ference diminishes for requests of 150µsec and higher. For
a larger number of mqueues, both platforms spend more
time on handling multiple mqueues (via round-robin), so the
relative performance for any request size is within 10%.
The latency breakdown shows that when running Lynx

on Bluefield, the request spends 14µsec from the point it
completes the UDP processing till the GPU response is ready
to be sent, with a zero-time GPU kernel (copy 20 bytes from
input to output). The same time on the host CPU is 11µsec.
With the end-to-end latency of 25µsec and 19µsec for Blue-
field and CPU respectively, the interaction with the GPU is
the main source of overheads for short requests.

Lynx on Bluefield results in negligible latency overheads for
requests larger than 200µsec.
Bluefield vs. Innova FPGA. This experiment aims to es-
timate the maximum throughput Lynx can achieve when
running on a specialized FPGA hardware.
Since the FPGA prototype is limited to the receive path

alone, we measure the system throughput when receiving
messages on the GPU rather than end-to-end. One more
limitation is that it requires the use of CPU helper threads
(see §5.2).

In the experiment, we use 240 mqueues on a single GPU
and measure the receive throughput for 64B UDP messages.
Innova achieves 7.4M packets/sec compared to 0.5M pack-
ets/sec on Bluefield. The CPU-centric design running on six
cores is 80× slower.

Using specialized SNICs for running Lynx holds significant
performance potential compared to a fully programmable Blue-
field and to the host CPU.
Performance isolation.We run Lynx on Bluefield in par-
allel with the noisy-neighbor application as in Section 3.2.
As expected, we observe no interference between them, in
contrast to its execution on the CPU.

Using Bluefield provides better isolation between different
applications running on the same physical server.
Integration with the Intel VCA.We run a simple secure
computing server inside the SGX enclave on one of the Intel
VCA processors. The server receives an AES-encrypted mes-
sage (4 bytes) via Lynx, decrypts it, multiplies it by a constant,
encrypts it and sends the result back. SGX guarantees that
the encryption key is not accessible to any component on
the server, besides the client code in the enclave. The Lynx
I/O library is small and simple (20 Lines of Code); therefore
it is statically linked with the enclave code and included in
the Trusted Computing Base.
Our baseline is a server that runs inside the VCA but

invokes the enclave on each request. It uses the native Linux
network stack on VCA which receives data via a host-based
network bridge. This is the Intel preferred way to connect
the VCA to the network.
Lynx achieves 56µsec 90th percentile latency, which is

4.3× lower than the baseline under the load of 1K req/sec.
Lynx facilitates the integration of high performance net-

working with accelerators, and shows significant performance
gains compared to their original network I/O design.

6.3 LeNet neural network inference server.
We build an accelerated server to perform written digits
recognition using the standard LeNet Convolutional Neural
Network architecture [27]. A client sends 28×28 grayscale
images from the standard MNIST dataset [53], and the server
returns the recognized digit by running the LeNet inference
on the GPU.
We evaluate three versions of the server: host-centric

(baseline), Lynx on Bluefield, Lynx on CPU.
The LeNet computations for Lynx are performed in a per-

sistent GPU kernel: We use a single GPU thread to poll the
server mqueue. Then, it invokes the GPU kernels that imple-
ment the actual neural network inference using the dynamic
parallelism [36] feature of NVIDIA GPUs that allows spawn-
ing kernels from another kernel. When these kernels termi-
nate, the response is sent back to the client via an mqueue.
We use TVM [7] to generate the GPU-only LeNet imple-

mentation from TensorFlow [1] which does not run any
application logic on the CPU (see §3.1). The host-centric
design runs the TVM code for each request.
LeNet end-to-end performance.Wemeasure the through-
put of all three implementations. We observe that running
Lynx on both Bluefield and a Xeon core achieves 3.5 Kreq/sec,
25% faster compared to 2.8 Kreq/sec using the host-centric
baseline. We note that the theoretic maximum throughput
on a single GPU is 3.6Kreq/sec, only within 3% of the Lynx
on Bluefield.
Figure 8a shows the latency distribution at maximum

throughput for UDP requests. For 90th latency percentile,

Lynx on Xeon and on Bluefield achieve 295µsec and 300µsec
respectively, whereas the host-centric server is 14% slower.

Running the server over TCP (not shown) achieves about
10% lower throughput for Bluefield (3.1Kreq/s, 5% for Xeon
(3.3Kreq/sec), and introduces additional latency. The end-to-
end latency is 322µsec and 346µsec on Xeon and on Bluefield
respectively. This result is expected, because TCP processing
demands more compute resources, and ARM cores suffer
from higher impact.
Comparing CPU efficiency of Lynx and server work-
loads. One of the goals of Lynx has been to achieve higher
system efficiency. In particular, our goal has been to free the
CPU for other tasks by offloading Lynx to the SNIC.
At a high level, we want to demonstrate the following.

Given two concurrently executing applications A1 and A2
(perhaps from different tenants), where A1 is a hardware-
accelerated server and A2 is some other multi-threaded ap-
plication. Lynx makes the system more efficient if offloading
A1 to the SNIC as enabled by Lynx, and giving the freed CPU
cores to A2 results in a higher overall system performance
than mapping them in reverse or keeping them both on CPU.

To illustrate this point, we use a Lynx-basedGPU-accelerated
LeNet server asA1 and a typical server workload, memcached
key-value store as A2.

We compare the performance of both applications in two
configurations: (1) memcached running on all six host CPU
cores (six instances) while the LeNet server is managed by
Bluefield, and (2) memcached running on five host cores and
on Bluefield, and LeNet with Lynx on the sixth host core.
We run memcached on Bluefield in two modes. In the

throughput-optimized mode, we evaluate the system at its
maximum throughput, whereas in the latency-optimized
mode we measure the throughput under a given latency
target.

Figure 9 depicts the latency (99th percentile) and through-
put of memcached servers in both configurations. The
performance of the LeNet server does not depend on the con-
figuration (3.5Kreq/sec, not shown); therefore the overall
system performance is dictated by memcached alone.
As we see in Figure 9, memcached on Bluefield achieves

a higher throughput than a Xeon core (400 Ktps vs. 250
Ktps/core), but at the expense of a dramatic latency increase
(160µsec vs. 15µsec). For the latency-optimized configuration,
we set the latency target to not exceed that of the server
latency of 15µsec on Xeon. However, this requirement cannot
be satisfied, since the use of Bluefield necessarily increases
the latency beyond that threshold.

We note that here we allocate only one CPU core for run-
ning Lynx, which might be insufficient for matching the
performance of the Bluefield as observed in the first Experi-
ment. With more cores for Lynx, offloading it to SNIC would
result in even larger performance gains for memcached.

200 300 400 500 600

Latency [µsec]

0.00

0.25

0.50

0.75

1.00

0.90

0.95

1.00

Host-centric

Lynx on Bluefield

Lynx on Xeon

(a) Latency distribution at maximum throughput.

4 local 4 local
4 remote

4 local
8 remote

Number of GPUs

0

10

20

30

40

T
h

ro
u

g
h

p
u

t
[K

re
q

/
se

c]

local server 1 remote server 1 remote server 2

(b) Lynx scaleout to remote GPUs

0 7 15 30 45 60 75 90 105

Number of GPUs

20
50

150

250

350

T
h

ro
u

g
h

p
u

t[
K

re
q

/
se

c]

UDP Lynx on BlueField

UDP Lynx on Xeon

TCP Lynx on BlueField

TCP Lynx on Xeon

(c) Scalability projection with Lynx.

Figure 8. LeNet neural network inference service.

This experiment confirms that Lynx is able to improve
system efficiency via offloading hardware-accelerated server
management to a SNIC.
Scaleout to remote GPUs. We show that Lynx can scale
beyond one physical machine. We configure Lynx to man-
age 12× Tesla K80 GPUs in three machines, one of which
runs Lynx on Bluefield. Figure 8b shows that the system
throughput scales linearly with the number of GPUs, regard-
less whether remote or local2. Using remote GPUs adds about
8µsec latency.
Multi-GPU scalability projection. Once not limited to a
single machine, we ask how many GPUs running LeNet one
Bluefield fully utilize.
To estimate the scalability, we emulate the request pro-

cessing by invoking a kernel with a single thread which
blocks the amount of time equivalent to the LeNet execution
on GPU. We instantiate multiple such kernels on the same
GPU and connect one mqueue to each. All kernels are exe-
cuted concurrently to emulate parallel request processing
on different GPUs.

Figure 8c shows that Lynxwith Bluefield scales linearly for
both UDP and TCP connections. For UDP, Lynx on Bluefield
scales up to 102 GPUs, compared to 74 GPUs on a Xeon core.
For a TCP connection, Lynx with Bluefield scales up to 15
GPUs, compared to 7 GPUs for Lynx on a Xeon core, because
of the TCP processing overheads.
We note that the emulation results precisely match the

performance of Lynx on 12 real GPUs. We believe that this
methodology provides a reliable estimate of the actual sys-
tem performance with multiple GPUs as long as the RDMA
infrastructure is not the bottleneck.

6.4 Support for multi-tier applications: Face
Verification Server.

Face Verification server benchmark has been used in prior
works [26] for measuring GPU-side network I/O perfor-
mance. A client sends a picture (a face) along with a label

2Tesla K80 GPU is slower than K40m and achieves 3300 req/sec at most.

(person ID). The server verifies the person’s identity by com-
paring the picture received with the picture corresponding
to the person’s ID in its own database. The comparison is
performed using a well-known local binary patterns (LBP)
algorithm for Face Verification [3]. The server returns the
comparison result to the client.
This is an example of a multi-tier server: the frontend

tier that receives all the requests communicates with the
database backend tier to fetch data relevant for the request.
In our implementation we use a memcached server to

store the image database. The verification server runs on a
GPU. The server communicates with clients and the database
server (running on a different host) via mqueues. We use
both UDP for communicating with clients, and TCP for inter-
acting with memcached. The goal of this setup is to highlight
the Lynx’s ability to support complex server applications.

We use images from a color FERET Database [23] resized
to 32×32. The labels are random 12-byte strings. Clients issue
uniformly-distributed random queries.

We implement two versions of the server: (1) Host-centric
(baseline); It fetches the database image for a given label
from memcached, and launches a kernel to compare the im-
ages. The access to memcached is asynchronous; the server
may start handling the next request while waiting for the
response from the database. (2) GPU-centric with Lynx. Here,
a persistent GPU kernel issues the request to memcached via
mqueues. We allocate 28 message queues each connected to
a kernel executed by a single threadblock with 1024 threads.
Face Verification performance. Lynx achieves over 4.4×
and 4.6× higher throughput for Bluefield and Xeon core
respectively compared to the host-centric design, because
the overhead of kernel invocation and GPU data transfers are
relatively high vs. the kernel execution time (about 50µsec).
The host-centric implementation uses two CPU cores to

achieve its highest throughput. Using more cores results in
lower performance. Running Lynx on Bluefield is about 5%
slower than on a Xeon core, due to the slower TCP stack
processing on Bluefield when accessing memcached.

5 cores 5 cores
&

BlueField
(Throughput
optimized)

5 cores
&

Bluefield
(Latency

oprimized)

6 cores
0.0

0.5

1.0

1.5

2.0
T

h
ro

u
g

h
p

u
t

[M
tp

s]

50

100

150

L
a

te
n

cy
[µ

se
c]

LatencyXeon core Bluefield

Figure 9. Illustration of the (inefficient) use of Bluefield to
run server workloads (memcached) vs. a single Xeon core.

7 Related work
Hardware for GPU networking. Network communica-
tions from GPUs were first considered in NaNet [5] using
proprietary network protocols and a specialized NIC. An
early work on Infiniband verbs on GPU [40] concluded that
using them is inefficient, and suggested adding specialized
hardware to offload the bookkeeping of communication re-
quests. Later, the GPUrdma project [8] overcame some of
the overheads of on-GPU Verb processing, but also demon-
strated that the latency of posting communication requests
is dominated by the access to NIC control registers and work
request preparation. Lynx has been inspired by these ideas,
but it generalized and implemented them on real hardware.
GPU-side network I/O libraries. Several works focused
on supporting high-level network I/O abstractions from
GPUs. GPUnet [26] implemented the socket abstraction over
reliable Infiniband connections; NVSHMEM [39] implemented
Partitioned Global Address Space abstraction on top of Infini-
band RDMA. dCUDA [16] offered a partial implementation
of Message Passing Interface (MPI) on GPUs. All these works
have a common goal, which is to provide intuitive commu-
nication support for GPUs, but they differ from Lynx in four
aspects: (1) they add a GPU-side network library with com-
plex logic that imposes resource overheads on GPU kernels;
(2) they provide GPU-specific implementations, and do not
generalize easily to other accelerators; (3) they all use the
host CPU to function; (4) they run on Infiniband and provide
no TCP/UDP support.
Peer-to-peer PCIe optimizations. GPUDirectRDMA [38]
is a low-level mechanism inNVIDIAGPUs to enable access to
their memories from other peripherals via PCIe peer-to-peer
communication. It has been used together with the GPU-side
network I/O to optimize MPI libraries in GPU-accelerated
clusters [43]. Lynx also uses GPUDirectRDMA.
Network Servers on GPUs. Building servers on GPUs has
been suggested as an efficient alternative to standard server

architecture. Rhythm [2] introduced a GPU-based server ar-
chitecture to run PHP web services. MemcachedGPU [18]
demonstrated aGPU-based key-value store server. GPUnet [26]
showed a few GPU-native servers and analyzed their per-
formance tradeoffs. Similarly to these works, Lynx also ad-
vocates for GPU-centric server architecture, but improves
efficiency by offloading much of the server logic from GPU
to SNIC.
Networkprocessing acceleration onGPUs. Several works,
among them SSLShader [22], NBA [25], and GASPP [49]
demonstrated how GPUs can be used for accelerating packet
processing and network functions. In contrast, Lynx, in its
current form, focuses on application-level acceleration on
GPUs, and not on packet processing.
SNIC-based acceleration of network applications. The
use of SNICs to accelerate network processing has recently
drawn significant interest. For example, AccelNet [14] en-
ables fast in-network packet processing on top of Microsoft
Catapult SNICs [34]. FlexNIC [24] proposed a new program-
mable networking device architecture for offloading net-
work processing tasks from applications. NICA [12] pro-
poses using FPGA-based SNICs to accelerate network servers.
Floem [41] proposes a compiler to enable simpler application
development to offload computations on SNICs. Lynx also
uses SNICs, with a different goal: instead of accelerating the
application logic, Lynx aims to enable more efficient servers
by running some of their data and control plane.

8 Conclusions
The emerging diversity of compute and I/O accelerators in
data centers calls for new ways of building efficient accel-
erated network services. Lynx introduces an accelerator-
centric server architecture in which the generic server net-
working logic is offloaded to an SNIC, whereas compute
accelerators perform network I/O efficiently, without ad-
ditional architectural burden. Using GPUs and VCA as an
example of accelerator architectures, we prototype Lynx on
two different SNICs and demonstrate its performance and
efficiency benefits over the host CPU.

Our main takeaway is that SNICs offer a viable alternative
to the host CPU for driving compute-bound accelerated net-
work servers. Themore specialized the SNIC architecture, the
higher its performance potential. Yet, as CPU-based SNICs
are evolving and becoming more capable, using them for
managing accelerators is an appealing approach to building
a fast and efficient hardware-accelerated network service.

9 Acknowledgements
We thank our shepherd Chris Rossbach for insightful com-
ments, and Mellanox for hardware donation and assistance.
We greatfully acknowledge support from Israel Science Foun-
dation (Grant 1027/18) and Israeli Innovation Authority.

References
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry
Moore, Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan,
Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. 2016.
TensorFlow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
16). 265–283. https://www.usenix.org/system/files/conference/osdi16/
osdi16-abadi.pdf

[2] Sandeep R. Agrawal, Valentin Pistol, Jun Pang, John Tran, David Tar-
jan, and Alvin R. Lebeck. 2014. Rhythm: harnessing data parallel
hardware for server workloads. In Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS ’14, Salt Lake City, UT,
USA, March 1-5, 2014. 19–34. https://doi.org/10.1145/2541940.2541956

[3] Timo Ahonen, Abdenour Hadid, and Matti Pietikäinen. 2006. Face
Description with Local Binary Patterns: Application to Face Recog-
nition. IEEE Trans. Pattern Anal. Mach. Intell. (2006), 2037–2041.
https://doi.org/10.1109/TPAMI.2006.244

[4] Amazon Elastic Inference. [n.d.]. Amazon Elastic Inference: Add
GPU acceleration to any Amazon EC2 instance for faster inference at
much lower cost. https://aws.amazon.com/machine-learning/elastic-
inference/.

[5] Roberto Ammendola, Andrea Biagioni, Ottorino Frezza, G. Lamanna,
Alessandro Lonardo, Francesca Lo Cicero, Pier Stanislao Paolucci, F.
Pantaleo, Davide Rossetti, Francesco Simula, M. Sozzi, Laura Tosoratto,
and Piero Vicini. 2014. NaNet: a flexible and configurable low-latency
NIC for real-time trigger systems based on GPUs. JINST (2014). https:
//arxiv.org/pdf/1311.4007.pdf

[6] Cavium. [n.d.]. LiquidIO SmartNIC family of intelligent
adapters provides high performance industry-leading pro-
grammable server adapter solutions for various data center
deployments. https://www.marvell.com/ethernet-adapters-and-
controllers/liquidio-smart-nics/index.jsp.

[7] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis
Ceze, Carlos Guestrin, and Arvind Krishnamurthy. 2018. TVM: An
Automated End-to-End Optimizing Compiler for Deep Learning. In
13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18). USENIX Association, Carlsbad, CA, 578–594.
https://www.usenix.org/conference/osdi18/presentation/chen

[8] Feras Daoud, AmirWatad, andMark Silberstein. 2016. GPUrdma: GPU-
side Library for High Performance Networking from GPU Kernels.
ACM, New York, NY, USA, 6:1–6:8.

[9] Gregory Diamos, Shubho Sengupta, Bryan Catanzaro, Mike
Chrzanowski, Adam Coates, Erich Elsen, Jesse Engel, Awni Hannun,
and Sanjeev Satheesh. 2016. Persistent RNNs: Stashing Recurrent
Weights On-chip. In Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48 (ICML’16).
JMLR.org, 2024–2033. http://proceedings.mlr.press/v48/diamos16.pdf

[10] Dotan Barak. [n.d.]. RDMAmojo âĂŞ blog on RDMA technology and
programming. https://www.rdmamojo.com/2013/06/01/which-queue-
pair-type-to-use/.

[11] Dotan Barak. [n.d.]. RDMAmojo âĂŞ blog on RDMA technology
and programming. https://www.rdmamojo.com/2013/01/26/ibv_post_
send/.

[12] Hagai Eran, Lior Zeno, Gabi Malka, and Mark Silberstein. 2017.
NICA: OS Support for Near-data Network Application Accelera-
tors. In International Workshop on Multi-core and Rack-scale Sys-
tems (MARS17). http://acsl.eelabs.technion.ac.il/publications/nica-
os-support-for-near-data-network-application-accelerators/

[13] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr, and Dejan Kostic.
2019. Make the Most out of Last Level Cache in Intel Processors
(EuroSys ’19). https://people.kth.se/~farshin/documents/slice-aware-

eurosys19.pdf
[14] Daniel Firestone, Andrew Putnam, SambhramaMundkur, Derek Chiou,

Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.
Azure Accelerated Networking: SmartNICs in the Public Cloud. In
15th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 18). USENIX Association, Renton, WA, 51–66. https:
//www.usenix.org/conference/nsdi18/presentation/firestone

[15] Google AutoML. [n.d.]. AutoML: Train high-quality custom machine
learning models with minimal effort and machine learning expertise.
https://cloud.google.com/automl/.

[16] Tobias Gysi, Jeremia Bär, and Torsten Hoefler. 2016. dCUDA: hardware
supported overlap of computation and communication. In Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2016, Salt Lake City, UT, USA,
November 13-18, 2016. 609–620. https://doi.org/10.1109/SC.2016.51

[17] Habana. [n.d.]. Goya deep learning inference accelerator:
White paper. https://habana.ai/wp-content/uploads/2019/06/Goya-
Whitepaper-Inference-Performance.pdf.

[18] Tayler H. Hetherington, Mike O’Connor, and Tor M. Aamodt. 2015.
MemcachedGPU: scaling-up scale-out key-value stores. In Proceedings
of the Sixth ACM Symposium on Cloud Computing, SoCC 2015, Kohala
Coast, Hawaii, USA, August 27-29, 2015. 43–57. https://doi.org/10.1145/
2806777.2806836

[19] Huawei. [n.d.]. FPGA-Accelerated Cloud Server. https://www.
huaweicloud.com/en-us/product/fcs.html.

[20] Intel. [n.d.]. IntelÂő Software Guard Extensions (IntelÂő
SGX). https://www.intel.com/content/www/us/en/architecture-and-
technology/software-guard-extensions.html.

[21] Intel. [n.d.]. IntelÂő Visual Compute Accelerator (IntelÂő VCA) Prod-
uct Brief. https://www.intel.com/content/www/us/en/servers/media-
and-graphics/visual-compute-accelerator-brief.html.

[22] Keon Jang, Sangjin Han, Seungyeop Han, Sue B. Moon, and KyoungSoo
Park. 2011. SSLShader: Cheap SSL Acceleration with Commodity Pro-
cessors. In Proceedings of the 8th USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2011, Boston, MA, USA, March 30
- April 1, 2011. https://www.usenix.org/conference/nsdi11/sslshader-
cheap-ssl-acceleration-commodity-processors

[23] Jonathon Phillips. [n.d.]. color FERET Database. https://www.nist.gov/
itl/iad/image-group/color-feret-database.

[24] Antoine Kaufmann, Simon Peter, Thomas E. Anderson, and Arvind
Krishnamurthy. 2015. FlexNIC: Rethinking Network DMA. In 15th
Workshop on Hot Topics in Operating Systems, HotOS XV, Kartause Ittin-
gen, Switzerland, May 18-20, 2015. https://www.usenix.org/conference/
hotos15/workshop-program/presentation/kaufmann

[25] Joongi Kim, Keon Jang, Keunhong Lee, Sangwook Ma, Junhyun
Shim, and Sue Moon. 2015. NBA (Network Balancing Act): A High-
performance Packet Processing Framework for Heterogeneous Pro-
cessors. ACM, 22:1–22:14.

[26] Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu, Amir Wated,
Emmett Witchel, and Mark Silberstein. 2014. GPUnet: Networking Ab-
stractions for GPU Programs. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 201–216. https://www.usenix.org/conference/osdi14/
technical-sessions/presentation/kim

[27] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. [n.d.].
Gradient-Based Learning Applied to Document Recognition. In Pro-
ceedings of the IEEE, november 1998. http://yann.lecun.com/exdb/
publis/pdf/lecun-01a.pdf

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://doi.org/10.1145/2541940.2541956
https://doi.org/10.1109/TPAMI.2006.244
https://aws.amazon.com/machine-learning/elastic-inference/
https://aws.amazon.com/machine-learning/elastic-inference/
https://arxiv.org/pdf/1311.4007.pdf
https://arxiv.org/pdf/1311.4007.pdf
https://www.marvell.com/ethernet-adapters-and-controllers/liquidio-smart-nics/index.jsp
https://www.marvell.com/ethernet-adapters-and-controllers/liquidio-smart-nics/index.jsp
https://www.usenix.org/conference/osdi18/presentation/chen
http://proceedings.mlr.press/v48/diamos16.pdf
https://www.rdmamojo.com/2013/06/01/which-queue-pair-type-to-use/
https://www.rdmamojo.com/2013/06/01/which-queue-pair-type-to-use/
https://www.rdmamojo.com/2013/01/26/ibv_post_send/
https://www.rdmamojo.com/2013/01/26/ibv_post_send/
http://acsl.eelabs.technion.ac.il/publications/nica-os-support-for-near-data-network-application-accelerators/
http://acsl.eelabs.technion.ac.il/publications/nica-os-support-for-near-data-network-application-accelerators/
https://people.kth.se/~farshin/documents/slice-aware-eurosys19.pdf
https://people.kth.se/~farshin/documents/slice-aware-eurosys19.pdf
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://cloud.google.com/automl/
https://doi.org/10.1109/SC.2016.51
https://habana.ai/wp-content/uploads/2019/06/Goya-Whitepaper-Inference-Performance.pdf
https://habana.ai/wp-content/uploads/2019/06/Goya-Whitepaper-Inference-Performance.pdf
https://doi.org/10.1145/2806777.2806836
https://doi.org/10.1145/2806777.2806836
https://www.huaweicloud.com/en-us/product/fcs.html
https://www.huaweicloud.com/en-us/product/fcs.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/architecture-and-technology/software-guard-extensions.html
https://www.intel.com/content/www/us/en/servers/media-and-graphics/visual-compute-accelerator-brief.html
https://www.intel.com/content/www/us/en/servers/media-and-graphics/visual-compute-accelerator-brief.html
https://www.usenix.org/conference/nsdi11/sslshader-cheap-ssl-acceleration-commodity-processors
https://www.usenix.org/conference/nsdi11/sslshader-cheap-ssl-acceleration-commodity-processors
https://www.nist.gov/itl/iad/image-group/color-feret-database
https://www.nist.gov/itl/iad/image-group/color-feret-database
https://www.usenix.org/conference/hotos15/workshop-program/presentation/kaufmann
https://www.usenix.org/conference/hotos15/workshop-program/presentation/kaufmann
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kim
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/kim
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

[28] Layong Larry Luo. 2018. Towards Converged SmartNIC Architecture
for Bare Metal & Public Clouds. https://conferences.sigcomm.org/
events/apnet2018/slides/larry.pdf. 2nd Asia-Pacific Workshop on
Networking (APNet 2018).

[29] Mellanox Technologies. [n.d.]. BlueField SmartNIC. http:
//www.mellanox.com/page/products_dyn?product_family=275&
mtag=bluefield_smart_nic.

[30] Mellanox Technologies. [n.d.]. Mellanox OpenFabrics Enterprise Dis-
tribution for Linux (MLNX_OFED). http://www.mellanox.com/page/
products_dyn?product_family=26.

[31] Mellanox Technologies. 2018. libvma: Linux user-space library for
network socket acceleration based on RDMA compatible network
adaptors. https://github.com/Mellanox/libvma.

[32] Mellanox Technologies. 2018. sockperf: Network Benchmarking Utility.
https://github.com/Mellanox/sockperf.

[33] Microsoft Brainwave. [n.d.]. Brainwave: a deep learning platform
for real-time AI serving in the cloud. https://www.microsoft.com/en-
us/research/project/project-brainwave/.

[34] Microsoft Catapult. [n.d.]. Microsoft Catapult: Transforming cloud
computing by augmenting CPUs with an interconnected and con-
figurable compute layer composed of programmable silicon. https:
//www.microsoft.com/en-us/research/project/project-catapult/.

[35] Nguyen, Khang T. [n.d.]. Introduction to Cache Allocation Technology
in the IntelÂő XeonÂő Processor E5 v4 Family. https://software.intel.
com/en-us/articles/introduction-to-cache-allocation-technology.

[36] NVIDIA. [n.d.]. CUDA Dynamic Parallelism API and Principles. https:
//devblogs.nvidia.com/cuda-dynamic-parallelism-api-principles/.

[37] NVIDIA. [n.d.]. A fast GPU memory copy library based on NVIDIA
GPUDirect RDMA technology. https://github.com/NVIDIA/gdrcopy.

[38] NVIDIA. [n.d.]. GPUDirect RDMA: Developing a Linux Kernel Module
using GPUDirect RDMA. https://docs.nvidia.com/cuda/gpudirect-
rdma/index.html.

[39] NVSHMEM. [n.d.]. GPU-side API for remote data access, collectives
and synchronization. http://www.openshmem.org/site/sites/default/
site_files/SC2017-BOF-NVIDIA.pdf.

[40] Lena Oden and Holger Fröning. 2017. InfiniBand Verbs on GPU: a
case study of controlling an InfiniBand network device from the GPU.
IJHPCA (2017), 274–284. https://doi.org/10.1177/1094342015588142

[41] Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Si-
mon Peter, Rastislav Bodík, and Thomas E. Anderson. 2018. Floem: A
Programming System for NIC-Accelerated Network Applications. In
13th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018. 663–679. https:
//www.usenix.org/conference/osdi18/presentation/phothilimthana

[42] Sreeram Potluri, Anshuman Goswami, Davide Rossetti, C. J. Newburn,
Manjunath Gorentla Venkata, and Neena Imam. 2017. GPU-Centric

Communication on NVIDIA GPU Clusters with InfiniBand: A Case
Study with OpenSHMEM. In 24th IEEE International Conference on
High Performance Computing, HiPC 2017, Jaipur, India, December 18-
21, 2017. 253–262. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=8287756

[43] Sreeram Potluri, Khaled Hamidouche, Akshay Venkatesh, Devendar
Bureddy, and Dhabaleswar K. Panda. 2013. Efficient Inter-node MPI
Communication Using GPUDirect RDMA for InfiniBand Clusters with
NVIDIA GPUs. In 42nd International Conference on Parallel Processing,
ICPP 2013, Lyon, France, October 1-4, 2013. 80–89. https://doi.org/10.
1109/ICPP.2013.17

[44] Davide Rossetti and Elena Agostini. [n.d.]. How tomake your life easier
in the age of exascale computing using NVIDIA GPUDirect technolo-
gies. https://developer.download.nvidia.com/video/gputechconf/gtc/
2019/presentation/s9653-how-to-make-your-life-easier-in-the-age-
of-exascale-computing-using-nvidia-gpudirect-technologies.pdf.

[45] Selectel. 2018. FPGA-accelerators go into the clouds [Russian]. https:
//blog.selectel.ru/fpga-uskoriteli-uxodyat-v-oblaka/.

[46] Vicent Selfa, Julio Sahuquillo, Lieven Eeckhout, Salvador Petit, and
María Engracia Gómez. 2017. Application Clustering Policies to Ad-
dress System Fairness with IntelâĂŹs Cache Allocation Technology.
2017 26th International Conference on Parallel Architectures and Com-
pilation Techniques (PACT). https://users.elis.ugent.be/~leeckhou/
papers/pact17.pdf

[47] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2014.
GPUfs: Integrating a File System with GPUs. ACM Trans. Comput.
Syst. https://doi.org/10.1145/2553081

[48] TensorFlow Light manual. [n.d.]. TensorFlow Light Delegates. https:
//www.tensorflow.org/lite/performance/delegates.

[49] Giorgos Vasiliadis, Lazaros Koromilas, Michalis Polychronakis, and
Sotiris Ioannidis. 2014. GASPP: A GPU-Accelerated Stateful Packet
Processing Framework. In 2014 USENIX Annual Technical Conference,
USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014. 321–332.

[50] Amir Watad, Alexander Libov, Ohad Shacham, Edward Bortnikov, and
Mark Silberstein. 2019. Achieving scalability in a k-NN multi-GPU
network service with Centaur. In The 28th International Conference on
Parallel Architectures and Compilation Techniques Seatltle, WA, USA.

[51] Yaocheng Xiang, Xiaolin Wang, Zihui Huang, Zeyu Wang, Yingwei
Luo, and Zhenlin Wang. 2018. DCAPS: Dynamic Cache Allocation
with Partial Sharing. ACM.

[52] Wang Xu. 2018. Hardware Acceleration over NFV in China Mo-
bile. https://wiki.opnfv.org/download/attachments/20745096/opnfv_
Acc.pdf?version=1&modificationDate=1528124448000&api=v2.

[53] Yann LeCun. [n.d.]. THE MNIST DATABASE of handwritten digits.
http://yann.lecun.com/exdb/mnist/.

https://conferences.sigcomm.org/events/apnet2018/slides/larry.pdf
https://conferences.sigcomm.org/events/apnet2018/slides/larry.pdf
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
http://www.mellanox.com/page/products_dyn?product_family=275&mtag=bluefield_smart_nic
http://www.mellanox.com/page/products_dyn?product_family=26
http://www.mellanox.com/page/products_dyn?product_family=26
https://github.com/Mellanox/libvma
https://github.com/Mellanox/sockperf
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://www.microsoft.com/en-us/research/project/project-brainwave/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://www.microsoft.com/en-us/research/project/project-catapult/
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://software.intel.com/en-us/articles/introduction-to-cache-allocation-technology
https://devblogs.nvidia.com/cuda-dynamic-parallelism-api-principles/
https://devblogs.nvidia.com/cuda-dynamic-parallelism-api-principles/
https://github.com/NVIDIA/gdrcopy
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://www.openshmem.org/site/sites/default/site_files/SC2017-BOF-NVIDIA.pdf
http://www.openshmem.org/site/sites/default/site_files/SC2017-BOF-NVIDIA.pdf
https://doi.org/10.1177/1094342015588142
https://www.usenix.org/conference/osdi18/presentation/phothilimthana
https://www.usenix.org/conference/osdi18/presentation/phothilimthana
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8287756
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8287756
https://doi.org/10.1109/ICPP.2013.17
https://doi.org/10.1109/ICPP.2013.17
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9653-how-to-make-your-life-easier-in-the-age-of-exascale-computing-using-nvidia-gpudirect-technologies.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9653-how-to-make-your-life-easier-in-the-age-of-exascale-computing-using-nvidia-gpudirect-technologies.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9653-how-to-make-your-life-easier-in-the-age-of-exascale-computing-using-nvidia-gpudirect-technologies.pdf
https://blog.selectel.ru/fpga-uskoriteli-uxodyat-v-oblaka/
https://blog.selectel.ru/fpga-uskoriteli-uxodyat-v-oblaka/
https://users.elis.ugent.be/~leeckhou/papers/pact17.pdf
https://users.elis.ugent.be/~leeckhou/papers/pact17.pdf
https://doi.org/10.1145/2553081
https://www.tensorflow.org/lite/performance/delegates
https://www.tensorflow.org/lite/performance/delegates
https://wiki.opnfv.org/download/attachments/20745096/opnfv_Acc.pdf?version=1&modificationDate=1528124448000&api=v2
https://wiki.opnfv.org/download/attachments/20745096/opnfv_Acc.pdf?version=1&modificationDate=1528124448000&api=v2
http://yann.lecun.com/exdb/mnist/

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	3.1 Diminishing role of CPU in accelerated services
	3.2 Disadvantages of the host CPU-driven design
	3.3 Limitations of the GPU-centric server design

	4 Design
	4.1 System overview
	4.2 Main components
	4.3 Accelerator-side networking
	4.4 Accelerator hardware requirements
	4.5 Discussion

	5 Implementation
	5.1 Lynx on Bluefield
	5.2 Lynx on Innova Flex
	5.3 Lynx I/O library for accelerators
	5.4 Intel Visual Compute Accelerator
	5.5 Support for remote accelerators

	6 Evaluation
	6.1 Evaluated server designs
	6.2 Microbenchmarks
	6.3 LeNet neural network inference server.
	6.4 Support for multi-tier applications: Face Verification Server.

	7 Related work
	8 Conclusions
	9 Acknowledgements
	References

