
Proceedings on Privacy Enhancing Technologies ..; .. (..):1–18

Pavel Lifshits *, Roni Forte , Yedid Hoshen, Matt Halpern, Manuel Philipose, Mohit Tiwari, and
Mark Silberstein

Power to peep-all: Inference Attacks by
Malicious Batteries on Mobile Devices
Abstract: Mobile devices are equipped with increasingly
smart batteries designed to provide responsiveness and
extended lifetime. However, such smart batteries may
present a threat to users’ privacy. We demonstrate that
the phone’s power trace sampled from the battery at
1KHz holds enough information to recover a variety of
sensitive information.
We show techniques to infer characters typed on a
touchscreen; to accurately recover browsing history in
an open-world setup; and to reliably detect incoming
calls, and the photo shots including their lighting con-
ditions. Combined with a novel exfiltration technique
that establishes a covert channel from the battery to a
remote server via a web browser, these attacks turn the
malicious battery into a stealthy surveillance device.
We deconstruct the attack by analyzing its robustness
to sampling rate and execution conditions. To find mit-
igations we identify the sources of the information leak-
age exploited by the attack. We discover that the GPU
or DRAM power traces alone are sufficient to distin-
guish between different websites. However, the CPU and
power-hungry peripherals such as a touchscreen are the
primary sources of fine-grain information leakage. We
consider and evaluate possible mitigation mechanisms,
highlighting the challenges to defend against the at-
tacks.
In summary, our work shows the feasibility of the ma-
licious battery and motivates further research into sys-
tem and application-level defenses to fully mitigate this
emerging threat.

Keywords: Malicious battery, Power side-channel

DOI Editor to enter DOI
Received ..; revised ..; accepted ...

*Corresponding Author: Pavel Lifshits : Technion
Roni Forte : Technion
Yedid Hoshen: Hebrew University
Matt Halpern: UT Austin
Manuel Philipose: UT Austin
Mohit Tiwari: UT Austin
Mark Silberstein: Technion

1 Introduction
We study a new attack vector to launch power side chan-
nel attacks on mobile devices – a smart battery that
includes storage and processing elements to stealthily
monitor and report user activity, in addition to their be-
nign power management functions. As smart batteries
with increasingly sophisticated logic are gaining popu-
larity [24, 25], the attack we study may turn such bat-
teries into a surveillance device. An attacker may slip a
malicious battery into the phone with only brief physi-
cal access, e.g., an interdiction attack [15] in the supply
chain or at an airport security check. The battery may
then monitor the user’s activity and use covert channels
to communicate the collected private information to the
remote attacker.

A malicious battery may serve as a powerful plat-
form for attacks on user’s privacy. First, such an attack
is hard to detect because it leaves no software foot-
prints on the device. Second, unlike other attacks that
require attaching probes to power charging cable [37] or
intercepting network traffic [35], the malicious battery
may continuously monitor the phone’s activity. Third,
the attack does not involve intrusive hardware modifi-
cations to the phone other than replacing its battery.
Unlike other rogue hardware attacks [27], replacing the
battery is usually a simple procedure that requires no
special equipment. Finally, all the phone’s activities are
exposed, therefore the attacker may amplify the power
of each individual attack by combining several inference
attacks together. For example, the attacker may com-
bine the keystroke inference and the website inference
to dramatically improve their precision.

The attacker, however, faces several unique chal-
lenges. First, the malicious power trace acquisition and
processing device must fit the small form factor and
power envelope of the phone’s battery package. This
constraint limits the signal sampling rate and the com-
putational complexity of the classification algorithms.
We find that the attack can be carried out while sam-
pling the power at a sampling rate two orders of mag-
nitude lower than reported before [37].

Inference Attacks by Malicious Batteries on Mobile Devices 2

0 1 2 3 4 5 6 7 8 9 10

Time [sec]

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

WE L C O M E

Fig. 1. Power trace of typing the word “welcome”

Second, the attacker continuously monitors the
phone’s power draw; therefore she must localize the ac-
tual events and filter out all the irrelevant ones while
processing only those of interest. Since the power signal
is noisy, this open-world classification problem is sig-
nificantly more challenging than the closed-world prob-
lem of distinguishing between different websites in prior
works [37].

Finally, data exfiltration from the battery poses a
challenge. One option is to add an out-of-band transmit-
ter to the battery (e.g, Bluetooth or WiFi). However it
might reveal the presence of the malicious battery. An-
other alternative is to manipulate the output voltage
and current from the battery to covertly communicate
with an app installed on the phone via power moni-
toring software interface. However, the app needs to be
installed on the phone, which falls outside our threat
model that precludes software installation.

This paper addresses these and other challenges,
and demonstrates that the malicious battery attack en-
ables the attacker to build a detailed profile of the
phone’s user. We describe a general data processing
framework for the attack, implement several novel in-
ference attacks, analyze the sources of the information
leakage on the phone, and suggest possible defenses.

We make the following contributions:
Attack vector. We propose a new stealthy attack vec-
tor to launch power channel attacks on mobile phones –
a malicious battery that an attacker can insert in place
of an existing battery. This attack is external to the
phone and thus undetectable by the software tools, and
can be built using cheap off-the-shelf components.
Recovery of diverse information. The attack re-
covers a variety of private information. We show sev-
eral novel examples: (1) soft keyboard keystroke infer-
ence (Figure 1) that recovers up to 36% of the typed
characters, including word delimiters with 88% accu-
racy, and reduces the password search space by three
orders of magnitude on average; (2) website inference
from a watchlist of Alexa top 100 popular websites in an
open-world scenario with 65% precision on average, (3)

incoming phone call and camera shot detection, includ-
ing the fine-grain lighting conditions that enable distin-
guishing between indoor and outdoor shots.
End-to-end attacks. We develop a general data pro-
cessing pipeline for power side channel inference attacks.
The framework includes three stages: activity detector,
novelty detector and a classifier. These stages are im-
plemented for each attack. We implement them for two
end-to-end attacks, web inference and keystroke infer-
ence, and evaluate them on 1-hour raw power traces
of a regular phone activity. We demonstrate successful
attacks on three popular mobile phone models by Sam-
sung and Huawei and show that they are robust to the
sampling rate reduction down to 100Hz.
Battery-browser-website exfiltration channel.
We implement a novel covert channel from the battery
via a web browser to a malicious website. To circumvent
the browser security limits on the battery level sampling
rate, we build a circuit to directly manipulate the bat-
tery charging state from inside the battery, by exploiting
the phone’s wireless charger circuitry. This allows send-
ing up to 1 bit every two seconds, 15× the bandwidth
achievable via the battery charge level JavaScript Bat-
tery Status API. The covert channel is bidirectional;
thus, the exfiltration mechanism can be triggered when
a visit to a malicious website is detected by the battery.
Sources of information leakage. We analyze the ar-
chitectural sources of the attacks. Specifically, we mea-
sure the power draw by individual SoC components
using a development board. We find that the CPU is
best correlated with the overall power draw, but GPU
and DRAM power traces alone are sufficient to in-
fer webpage identities with almost 75% precision. The
keystroke attack is possible because of the touch screen
power draw during key presses, and does not depend on
the CPU.
Defense. We show that using randomized Dynamic
Voltage and Frequency Scaling (DVFS) reduces the ac-
curacy of the website inference. However, it is not effec-
tive against attacks such as keystroke inference that do
not rely on the CPU power consumption. A more tar-
geted keystroke-specific defense we implement does pro-
tect from the keystroke attack. These are partial solu-
tions, but they highlight the challenge of strong protec-
tion in the face of increasingly powerful machine learn-
ing and signal processing techniques.

This work shows that the emerging battery technol-
ogy may enable a new type of power side channel attacks
on mobile devices, and motivates further research to al-
leviate this threat.

Inference Attacks by Malicious Batteries on Mobile Devices 3

2 Motivation
Threat model: interdiction attacks. An attacker
with brief physical access to the mobile device – at the
supply chain, repair shops, workplaces, etc. – can replace
the device’s battery. This is an example of an interdic-
tion attack. Interdiction attacks using malicious VGA
cables have been used to snoop on targeted users [15].
Malicious battery introduces a new attack vector into a
mobile device.

This hardware-based attack is stealthy – it requires
no software components to execute on the phone, has
small hardware footprint, and the malicious hardware
itself consumes only a few milliwatt (§12), hardly no-
ticeable by the victim. Moreover, the attack targets the
phone part often produced by third-party vendors, mak-
ing it hard to detect even by close inspection.

The attack’s low cost and its reliance on replaceable
batteries make it affordable for small-scale attackers.
For example, an attacker might sell the batteries on-line,
attracting clients by lower cost or extended warranty.

One of the most appealing aspects of the battery-
based attack is that the power side channel it exploits is
all-embracing: all the phone activity is exposed. Thus,
the attacker may correlate the information obtained
from multiple attack vectors. For example, she can iden-
tify the context of the keystroke (e.g., the website being
visited), and the events that preceded or followed it in
time, such as a camera shot or a phone call. Together,
these pieces of information reconstruct a coherent por-
trait of the user’s activity, dramatically amplifying the
power of individual attacks.

Fig. 2. Microcontroller inside the battery of Samsung Galaxy S4

Hardware requirements. Embedding modest com-
puting capabilities in a battery is already feasible (see
Figure 2). Moreover, software-defined batteries [1] lever-
age more advanced microcontrollers to squeeze effi-
ciency from a heterogeneous set of batteries.

The form-factor and power constraints put limits
on the sampling rate of the phone’s power draw. This
rate dictates the processing capacity, power draw, and
storage requirements of the malicious circuit. All the
attacks in the paper are performed at 1KHz, and they
are quite robust to the sample rate reduction (§8). At

this rate, no expensive or bulky sampling hardware is
needed. Further, the trace can be processed in real time
or recorded over long periods. See § 12 for detailed anal-
ysis.
Exfiltration scenarios. For a targeted attack, an at-
tacker may physically access the phone to fetch the ma-
licious battery with the recorded power trace. Alterna-
tively, the battery may manipulate the reported charge
level to force the phone’s owner to connect to a malicious
charger, which in turn may relay the data to an outside
attacker [30]. To trigger this behavior in a specific loca-
tion equipped with malicious chargers, the battery may
identify the browsing event to a gateway for connecting
to a public hotspot.

For a general attack, the exfiltration requires from
the attacker to communicate with the battery remotely.
The battery may establish a covert channel to an app by
encoding information in the charge level exposed to the
phone’s software. However, our threat model assumes
no malicious software installed on the phone.

Instead, the attacker may embed a malicious
JavaScript on her website and use the Battery Status
API to retrieve the battery state, implementing the con-
vert channel via the browser. The phone’s battery de-
tects that the victim visits the website with the mali-
cious JavaScript (e.g., a public hotspot gateway), and
transmits the data. We consider this scenario in §9.
Defense. Power normalization is a common technique
to ensure privacy in cryptographic devices, but a general
purpose computing system like a smartphone cannot be
run at peak power just for privacy. One option that we
evaluate is to obfuscate the power trace by randomiz-
ing the dynamic voltage and frequency scaling settings.
Unfortunately, it is not effective against all the attacks,
which require more targeted defense (§ 11).

3 Related Work
There is a large body of research on mobile phone infer-
ence attacks in general, and power side channel attacks
in particular (see Spreitzer et al. [31] for a comprehen-
sive survey). We briefly discuss the prior art relevant to
this paper and highlight the main differences.
Power side channel attacks on mobile devices. A
number of power side channel attacks have been pub-
lished. However, the attacks’ targets, power acquisition
methods, setups, exfiltration methods and processing
tools differ from ours. Powerspy [18] infers the user’s
driving route by sampling the power via the Android

Inference Attacks by Malicious Batteries on Mobile Devices 4

power monitoring API. Clark et al. [6] uses AC power
consumption to identify 50 webpages with 87% preci-
sion. The threat model is based on a 250kHz sampling
rate (4Mbps), and a complex sampling device to launch
the attack. Our work differs in several respects. We
use DC power sampled at 1KHz and achieve compa-
rable precision (up to 77% for 100 pages). As a result,
our attack can run on simple hardware that satisfies
the energy/form-factor constraints of a malicious bat-
tery. We also show other inference attacks, analyze the
sources of the information leakage, and suggest defenses.

Yang et al. [37] and Chen et al. [5] use power trace
to infer browsed websites and active apps respectively.
While their goals are similar to ours, their methods are
inapplicable to malicious battery settings because they
focus on a closed-world setup. Thus, they can only dis-
tinguish between known activities from the dictionary,
while our attack handles arbitrary inputs. Furthermore,
their classifiers would not be effective in the open-world
scenario for noisy signals such as power.
Sensors. Motion sensors and accelerometers have
been used for numerous attacks, for example, to infer
keystrokes [19, 36], passwords [23], and approximate lo-
cation and driving trajectory [14]. These attacks require
an active malicious application/web page to sample sen-
sor’s values. In contrast, a malicious battery continu-
ously monitors the activity in the background, and con-
nects to a specific website only for exfiltration.
Keystroke inference. Keystroke timing attacks infer
typed characters from the timings of keystrokes. Song
et al. [29] has pioneered this approach to predict key
sequences from the inter-keystroke timing of an SSH
session. Several followup works focus on the ways to
obtain the keystroke timings to enable similar attacks.
Specifically, Foo et al. [10] use the interrupt-timing side
channel, and Zhang et al. [38] leverage the process stack
information available in /procfs in multi-user servers.
Similar attacks have been demonstrated on mobile de-
vices with comparable accuracy. Diao et al. [7] present
inference attacks on Android through interrupt timing
analysis, and Simon et al. [28] utilize interrupt timing
to infer text entered through gesture typing on An-
droid virtual keyboards. To the best of our knowledge,
ours is the first attack that infers keystrokes from the
power trace. Moreover, our attack does not explicitly
rely on timing between the strokes, but uses a convolu-
tional neural network to infer keystrokes directly from
the power signal, which reduces the training complexity
by allowing training from typed text.
Attacks on cryptographic hardware/software.
Power side-channel attacks have targeted fixed-function

(cryptographic) hardware and embedded devices [3, 20].
However, most attacks and defenses are not directly ap-
plicable to a general-purpose program on a mobile de-
vice. Another attack vector is electromagnetic emana-
tions, such as the one by Genkin et al. [12] that demon-
strates ECDSA key extraction. These attacks specifi-
cally target cryptographic software primitives.
Defenses. Most defense techniques are for attacks on
cryptographic applications, and are less applicable here.
For example, one option is to modify the software to use
constant execution path code, or use instructions with a
less leaky power profile. This is not applicable to closed-
source general-purpose applications. Alternatively, in-
stead of reducing the signal, a defender can increase the
(ideally, random) noise in the power trace [34]. Our de-
fense follows the same principles.

4 Attack Overview
The general scheme of the attack is depicted in Figure 3.
Acquisition. An attacker builds a training set by col-
lecting the power trace while performing the target ac-
tivity (e.g., web browsing or typing).
Offline training. For each type of activity an attack-
specific classification pipeline is trained. Each attack-
specific pipeline must be able to function in an open-
world setup.
Inference. The attacker continuously samples the bat-
tery draw on the victim’s device. The trace is processed
by all the classification pipelines of all the attacks inde-
pendently. Each pipeline watches for the user activity
relevant to it, using the respective activity and novelty
detector. Once the activity is detected, the pipeline pro-
cesses the events. We note that the events inferred in
one attack-specific pipeline may improve the accuracy
of another pipeline, e.g., keystrokes on a particular web-
page may be easier to guess.

4.1 Classification pipeline overview

All the attacks are built using the same three-stage pro-
cessing pipeline, where each preceding stage is trained
to narrow down the set of traces for processing in the
following stage.

The activity detector continuously monitors the
power draw at the granularity of few milliseconds (e.g,
100 ms for the webpage inference pipeline). Once the rel-
evant activity has been detected, the system processes

Inference Attacks by Malicious Batteries on Mobile Devices 5

Fig. 3. Attack overview

the trace via a sliding window for a predefined amount
of time. For example, we find that 15 seconds is enough
to fully load most webpages. Thus, the webpage classifi-
cation pipeline records the window of 15 seconds of the
trace every time the web browsing event is detected.

The novelty detector distinguishes the traces that
correspond to some unrelated phone activity from those
that correspond to the events potentially relevant to the
attack’s pipeline.

Finally, the classifier labels the traces by inferring
the events of interest.

In this paper we show several pipelines. We explain
in detail two end-to-end pipelines for the web site infer-
ence (§6.1), and the keystroke inference (§6.2) and then
show and evaluate only the classification stages of the
photo shot and phone call attacks (§6.3).

5 Experimental setup
We evaluate the attacks on three popular mobile phone
models [17] running different versions of the Android OS
and featuring different hardware specs (see Table 1).
Phone Configuration. We use the phone’s default
software stack and default OS settings, including inter-
active DVFS power governor and enabled background
services, in particular, the Gmail app configured with
an active user account. The phone uses wifi to connect
to the Internet.
Recording power traces. We build a simple acquisi-
tion device comprised of a shunt resister, signal condi-
tioning stage (amplification and filtering), and an ADC.
The device is attached between the positive battery ter-
minal and the phone. See §12 for technical details. Un-
less stated otherwise, we sample the output using NI
myDAQ at 1KHz with 16 bits per sample.
Battery vs. controlled power supply. For conve-
nience we connect the phones to a controlled power sup-
ply that replaces the battery. This setup eliminates the
power drift of the real battery-only power supply, which
might seem favorable for the attack. However, we eval-

Mobile
Device

Huawei
Mate 9

Smsng Galaxy
Note 4

Smsng
Galaxy S4

Chipset Hisil. Kirin 960 Snapdrgn 805 Snapdrgn 600
CPU Cortex-A73 &

Cortex-A53
Cortex-A57 &
Cortex-A53

Krait 300

Display 5.9’ 5.7’ 5.0’
OS 7.0 (Nougat) 5.1.1 (Lollipop) 4.4.2 (KitKat)
Browser Chrome 53 Native 6.2 /

Chrome 63
Native 2.1 /
Chrome 43

Battery Li-Po 4000mAh Li-Ion 3220mAh Li-Ion 2600mAh

Table 1. Hardware and software used for evaluation

uate the attacks in both setups and observe no statisti-
cally significant difference in the results.
Online vs. offline attack. The attack can be per-
formed offline or online. In the offline case, the power
trace is recorded on the battery, and the attacker phys-
ically retrieves the battery for offline processing. In the
online case, the trace is processed on the battery and
the results exfiltrated via the covert channel (§9).
Evaluation methodology. All the experiments are
performed offline. For each, we execute the desired
phone activity either manually (e.g., text typing) or by
sending the respective Android intents (e.g., to browse
a website) from a remote machine, while logging the
“ground truth” label for each event. In parallel we record
an unmodified power trace by sampling the power con-
sumption of the phone from its battery and storing the
samples in a file. To evaluate the attack we replay the
entire trace into the respective processing pipeline, and
compare the output labels with the respective ground
truth labels.

6 End-to-end evaluation
In this section we overview the main results. Section 7
elaborates on the technical details and Section 8 dis-
cusses the robustness of the attacks.

Inference Attacks by Malicious Batteries on Mobile Devices 6

% of known web-
sites in the test set

0% 25% 50% 75% 100%

Precision [%] 77% 71% 65% 60% 53%

Table 2. Precision of the end-to-end attack with a different pro-
portion of webpages from the watchlist.

6.1 Website inference

We evaluate the accuracy of the end-to-end attack for
detecting the Alexa top 100 popular websites (their
landing pages) in an open-world scenario. We create an
hour-long activity session with three types of events:
browsing webpages in the watchlist (Alexa top 100),
browsing webpages not in the watchlist (Alexa top 101-
200), and invocations of two popular games – Tem-
ple Run and Angry Birds. The websites in the watch-
list are called known and should be correctly labeled,
whereas all the other events should be marked unknown.
The time between the events is normally distributed
N(30s, 15s).
Software configuration. We use the default con-
figuration with the browser cache enabled. We auto-
mate the experiment by running a shell script on the
phone that initiates the browsing by sending the “an-
droid.intent.action.VIEW” intent. To emulate an inter-
active browsing session we keep the phone’s screen per-
manently turned on using the StayAlive app.
Accuracy calculation. We compute the attack accu-
racy for each test trace by counting the number of cor-
rectly labeled webpage visits. The label is considered
correct when: (1) a known webpage is labeled with the
correct name, (2) an unknown webpage is either ignored
or labeled unknown (3) any other phone activity is ei-
ther ignored or labeled as unknown. Conversely, we con-
sider a misclassification to be any incorrectly labeled
browsing event, any undetected browsing event, or any
nonexistent event labeled as one of the webpages.

6.1.1 Results

We record 1-hour long power traces of several sessions
while varying the proportion of known and unknown
events, and feed them into the processing pipeline
(§7.1). Table 2 shows the precision of the end-to-end
attack on Samsung Galaxy Note 4. The results on the
other phones are within ±3%. On average, the attack
correctly labels 65% of the browsing events across dif-
ferent test sets. The fewer known websites there are in
the test set, the higher the precision. This is because

the unknown websites are filtered by the novelty de-
tector alone. As a result, only the activity and novelty
detectors are active, allowing for higher end-to-end pre-
cision. The traces which contain known events, however,
exercise all the three pipeline stages combined, and, con-
sequently, accumulate the error from all of the stages.

Our notion of precision matches the intuition: 65%
precision end-to-end means that 65 out of 100 activities
in a one-hour trace were labeled correctly. However, this
is a rather conservative coarse-grain measure. First, it
hides the fact that some webpages are better classified
than others. In fact, some webpages are labeled correctly
in 100% of cases, while others are misclassifed.

We also normalize the correctly classified events by
the number of actual browsing events. In practice, how-
ever, the pipeline evaluates 36,000 fragments in one hour
(every 100 ms), filtering out all but about 100 fragments
that correspond to real events. If we count all those
evaluated fragments as correctly labeled, the pipeline
accuracy approaches 100%. Although this value does
not reflect the actual accuracy of the attack, it does in-
dicate that the browsing activity can be distinguished
with very high precision.

Finally, the actual classification task performed by
the pipeline is quite complex. For each fragment in the
power trace, one of the 101 labels (100 watchlist web-
pages and “unknown” for all other events) is assigned.
Hence, a success rate of 65% is 65 times higher than the
1% probability to obtain the correct label at random.

6.2 Keystroke inference

We train the classifiers on the labeled power trace (key
press, key release and key character) of a specific user
typing English text. The text is built such that each
character appears at least 25 times. The set consist of
1200 words and 6964 characters.
Soft keyboards. The reported results are for a Huawei
Mate 9 phone using the default Gboard soft keyboard.
Similar results are obtained with SwiftKey soft key-
board on Huawei Mate 9, and the Samsung default key-
board on Samsung Galaxy Note 4.

6.2.1 Results

We perform three experiments: (1) detection of charac-
ters in a free text, (2) password cracking, and (3) infer-
ence with a constrained dictionary.

Inference Attacks by Malicious Batteries on Mobile Devices 7

j k x z d b g m v y c u s l f r w i p n a h o t espc\n
0

20

40

60

80

100
A

c
c
u

ra
c
y
 [

%
]

Fig. 4. The accuracy of the keystroke inference per character.

Free text inference. We record a 30 min-long raw
power trace created while typing English text with 2400
characters and feed it into the classifier. The attack cor-
rectly guesses 36% characters, which is an order of mag-
nitude better than a random guess. Figure 4 shows the
prediction accuracy for individual characters. “Space”
and “Enter” result in the best precision: 75% and 84%,
respectively. This experiment shows that the attack is
able to recover some information about the text, but
cannot recover the original text, even after spell-check.
Password search space reduction. We randomly
generate 50 character sequences with a uniform distri-
bution of characters 10-13 letters long. We deliberately
choose less popular passwords for this experiment be-
cause guessing more popular ones might be easier using
other methods.

We calculate the search space reduction as follows.
The attack outputs a list of the candidate characters
for each input character. The candidate list is sorted ac-
cording to the classifier confidence value from the most
likely to the least likely candidate. Let ci be the location
of the true letter in the candidate list for the character i

in the input word. The number of more likely candidates
that precede ci is denoted li. We assume that these can-
didate lists guide the exhaustive search when cracking
the password. Thus, the search encounters the correct
password only after scanning through all the candidates
for the largest L = max(li) among all input charac-
ters. Therefore, we compute the search space reduction
as (28|w|

L|w|), where |w| is the word length. We note that
the attack reliably estimates |w|, which alone improves
password guessability. However we do not consider this
factor in the search space reduction metric.

The geometric mean of the search space reduction
is O(103), with up to O(104) reduction in the best case,
and O(102) in the worst case. These results are com-
parable with the results of other key timing inference
attacks. Specifically, Song et al. [29] report 50× search
space reduction on 7-8 character length passwords by in-
ferring key timing from the SSH network transactions.
Zhang et al. [38] infer the key timing from /procfs

0 5 10 15 20 25 30
Time [sec]

P
o

w
e

r
c
o

n
s
u

m
p

ti
o

n

Home screen

Camera on

Camera on + 2 shots

Shot 1
Shot 2

Fig. 5. Example of a power trace during a camera shot.

and report 200×−2000× search space reduction on 15-
character passwords.

Closed dictionary.We evaluate a scenario where a
user types words from a known dictionary, for example,
a flight destination on a flight booking website, or a drug
name on in a drug description portal 1. Thus, inferring
the typed data may reveal sensitive information. In this
scenario, the website inference attack can be used to
narrow down the context of the typed sequence, helping
the attacker identify the closed dictionary used by the
victim.

We evaluate this attack using the list of all 154 des-
tinations (1606 characters) from www.EasyJet.com. We
type them all and infer them from the power trace. The
experiment involves two stages: guessing the keystrokes
via the power trace, and then finding the closest neigh-
bor (Levenshtein distance) from the dictionary.

The attack correctly recovers 18% in the Top 1
guess, 30% in the Top 2, 40% in the Top 3, and 50%
in the Top 5. These results are about a 20-fold improve-
ment over random guess.

6.3 Other attacks

We briefly outline two other attacks that demonstrate
the diversity of the information that can be recovered
from the power channel.

6.3.1 Camera

We evaluate the attack that determines (a) that a shot
was taken (b) whether it used flash (c) its lighting con-
ditions.

The power footprint of the shot is shown in Figure 5.
It is clearly visible when the camera is active (green line)
and when the shots are taken (at 7.5 sec and at 15 sec).
Flash/no flash. We take 60 shots of the same object,
half with and half without using flash. Unsurprisingly,

1 https://druginfo.nlm.nih.gov/drugportal

Inference Attacks by Malicious Batteries on Mobile Devices 8

Idle
Incoming call
Typing

Fig. 6. t-SNE visualization of the low-dimensional embedding of
the power traces of incoming calls vs. phone in idle mode vs. user
typing. The traces of the same activity are naturally clustered.

the flash power footprint is rather unique, so the flash
state is classified correctly in all the test cases.

Precision Recall Sensi-
tivity TPR

Accuracy Specificity

78% 90% 86% 74%

Table 3. The camera attack: distinguishing lighting conditions.

Identifying lighting conditions. To discover which
properties of a shot can be determined, we perform a
controlled experiment in which we take 50 shots of the
same scene under different lighting conditions: (1) dur-
ing daylight with fluorescent lights, and (2) with win-
dow blinds closed and lights turned off. Table 3 shows
that the lighting conditions can be inferred with high
precision.

Determining lighting conditions can be useful, for
example, to identify indoor-vs-outdoor shots taken dur-
ing the day. To show that, we take 200 pictures, 100 in-
doors and 100 outdoors. The indoor pictures are taken
under normal lighting conditions, in an office and in a
large open space, and contain people as well as vari-
ous objects such as shelves, books, walls. The outdoor
pictures contain trees, buildings, and people. Here 91%
of the outdoor shots, and 100% of the indoor shots are
identified correctly.

We conjecture that lighting conditions are the main
source of the signal. We find that minor changes in the
scene or the distance to the target do not show statisti-
cally significant changes in the power signature.

6.3.2 Incoming phone calls

This attack recovers the communication profile by iden-
tifying incoming calls. We train our classifier on a la-
beled power trace of 24 incoming calls. There are four
groups of settings (6 calls per group): two different ring-
tones, sound muted, and with vibration alone. We then
evaluate it on a 10 minute trace during which 15 incom-
ing calls are received. In the evaluation we use a ringtone
that is different from those two used in the training, and
also test both mute and vibration only traces. The at-
tack correctly identifies the incoming calls in 100% of
the cases.

Figure 6 explains the reason for such a high
precision. It shows t-SNE visualization of the low-
dimensional embedding of the power traces with incom-
ing calls, compared to the traces when the phone is idle
and while typing. The traces of the incoming calls are
clustered.

7 Technical details
We describe the signal processing techniques and pro-
vide more detailed analysis of the results. Throughout
this section, when presented with the choice of signal
processing and classification techniques, we deliberately
choose those with lower computational complexity to
enable the execution of the attack using the device with
low power consumption and compact form-factor to fit
in the battery, as discussed in §12.
Signal representation. There are many known repre-
sentations that reduce the dimensionality of time series
while preserving the fundamental characteristics of the
data, as well as many possible similarity distance mea-
sures [8]. We consider several options for representing
and matching power traces: (1) spectral based repre-
sentations (such as DFT), (2) various distance measures
(such as DTW [2]), and (3) Singular Spectrum Analy-
sis (SSA) as used by Genkin et. al [12]. However, these
techniques result in insignificant (1-2%) improvement
in the accuracy while being computationally demand-
ing. Therefore we use a simple average-based denoising
approach and Euclidean distance.

7.1 Website inference

We explain the attack-specific pipelines in detail, and
evaluate each stage in isolation.

Inference Attacks by Malicious Batteries on Mobile Devices 9

7.1.1 Activity detector

We define the phone activity as any action performed
by the user, e.g., web browsing, running an application,
or reading an email. When the activity is detected, the
detector feeds the adjacent 15-second fragment to the
next processing stage, dropping all the rest.
Implementation. The detector analyzes the power
trace every 100 milliseconds using a sliding window with
15± 1 seconds of samples. The detection comprises the
following steps.
1. Smooth signal by computing a running average

with 1000 samples.
2. Find peaks above a certain threshold, set accord-

ing to previous traces of browsing events.
3. Test energy of the signal in the window of 15000

samples, every 100 samples in the smoothed trace,
starting 1000 samples from the peak. The earliest
point when the signal energy exceeds the threshold
is labeled as the start of the browsing event.

Evaluation. We consider the detection of the brows-
ing event within 300 milliseconds of the ground truth
as correct, because the actual signal used for the next
stages is smoothed using a running average window of
300 samples as we explain below. We evaluate the ac-
tivity detector on 15 hours of the raw power traces used
in the experiments (540,000 overlapping 15-second frag-
ments) and achieve 100% precision and recall.

7.1.2 Novelty detector

The novelty detector receives the original (non-
smoothed) 15-second power trace fragments and acts as
a binary classifier between known and unknown events.
Watchlist dictionary. We collect the power traces
while browsing the websites in the Alexa top 100 web-
sites. The watchlist dictionary contains the labeled
power traces of 10 independent visits to each website
(total of 1000 browsing events for 100 websites), the first
15K samples. Some websites, e.g., YouTube, prompt to
install the relevant app on the first visit. We discard
the prompt to redirect all the subsequent visits to the
mobile version of the page.
Implementation. The novelty detector is implemented
as a set of 100 1-versus-all Support Vector Machine
(SVM) binary classifiers with Radial Basis Function
(RBF) kernels. Each classifier i is trained for each web-
page Wi in the watchlist (hence 100 classifiers), so the
ith classifier’s output is either “not Wi” or “Wi”. For
each input all the classifiers are evaluated at once, and

Actual \predicted Unknown Known
Unknown 77% ± 8% 29% ± 1%
Known 23% ± 8% 71% ± 1%

Table 4. Novelty detector performance.

the input is labeled “unknown” only if classified as “not
Wi” for all i. Other options, such as majority vote among
classifiers, perform worse.
Training. The classifiers are trained separately. We as-
sign weights to the positive samples of the respective
webpage. The weights are inversely proportional to the
ratio of the positive samples in the complete set. For
example, our dictionary contains 10 positive examples
for each webpage, and 1000 traces overall. Thus, the
weights we assign to the traces of webpage Wi when
training the classifier i are 990/10. The use of weights
improves the results significantly, compensating for the
small number of positive samples in the training set.
Evaluation. Our evaluation is the standard 10-fold
cross-validation performed 10 times for different selec-
tion of unknown sites. Specifically, we first select 100
traces of 10 randomly selected webpages (not traces)
which we use as true “unknown” and remove all their
traces from the training set in this iteration. In ad-
dition, we randomly select 10% of the remaining 900
traces as true “known” traces, and also remove them
from the training set. The final result is the training
set with 810 traces, and the test set with 90 samples
of “known” and 100 samples of “unknown” webpages.
Known webpages have a few of their original 10 power
traces in the training set, whereas unknown webpages
have none. We then train 90 classifiers corresponding
to all the “known” webpages, and evaluate the novelty
detector. We repeat this procedure 100 times – for each
new choice of the known and unknown traces in the test
set – and compute the average and standard deviation
across all the performance metrics.

Table 4 summarizes the results. The novelty detec-
tor success rate is about 72%, with slightly better classi-
fication of visits to unknown webpages. This is not sur-
prising because the training set is significantly biased
toward unknown samples. On the other hand, such a
novelty detector performs better in the actual attack in
which the vast majority of the activities are truly un-
known.

Inference Attacks by Malicious Batteries on Mobile Devices 10

Predicted website #

10 20 30 40 50 60 70 80 90 100

A
c
tu

a
l
w

e
b
s
it
e
 #

10

20

30

40

50

60

70

80

90

100 0

10

20

30

40

50

60

70

80

90

100

10% mistaken for usatodaycnn 90% correctly classified &

nytimes 70% correctly classified & 10% mistaken for pinterest, forbes and conservative tribune

Fig. 7. Confusion matrix for the classification stage.

website #

0 20 40 60 80 100

P
re

c
is

io
n
 [
%

]

0

10

20

30

40

50

60

70

80

90

100

Precision post novelty detector

Unknown sites

Precision pre novelty detector

youtube

google
cnn

nytimes

buzzfeed

Fig. 8. Novelty detector and classifier combined

7.1.3 Classifier

The classifier processes the traces which the novelty de-
tector labels as “known”. The classifier uses a simple
1-Nearest Neighbors algorithm, trained to recognize the
webpages in the watchlist dictionary.
Evaluation. We evaluate the classifier using the stan-
dard 10-fold cross-validation. We present the confusion
matrix in Figure 7, and the precision per webpage in
Figure 8. For completeness we also show the precision
of the novelty detector on the same graph (marked with
the cross sign). Unsurprisingly, certain webpages are
classified significantly better than the others. For ex-
ample, youtube.com is classified correctly in 90% of the
visits, while buzzfeed.com is classified correctly only in
26%.
Analysis. We conjecture that webpages are distin-
guishable mainly by their images and JavaScript com-
ponents. To confirm this conjecture, we record the
power traces while browsing with image loading and/or
JavaScript execution disabled in the browser. To reduce
the effects of network latency variations, we install a
caching proxy on a local server. We browse through the
caching proxy after all the requested pages have been
prefetched.

We find that disabling both JavaScript and image
loading reduces the classification accuracy from 77% to
21%, whereas disabling each one separately results in
the accuracy of 44% and 52% respectively. This indi-
cates that these two features together are indeed the
dominating factors contributing to the unique webpage
power signature. Thus, we believe that the low classi-
fication precision for certain websites is partly due to

their frequent content changes which occurred over the
course of the experiment.

7.1.4 Classifier and Novelty detector combined

Figure 8 shows the per-webpage classification success
rate of the novelty detector and classifier combined (de-
noted post-novelty detector in the graph). As expected,
the addition of the novelty detector reduces the overall
precision. More interestingly, the performance degrada-
tion is inconsistent across the webpages, since the nov-
elty detector may incorrectly label a webpage as un-
known, even though the classifier in isolation is likely to
classify it correctly.

7.2 Keystroke inference

The keystroke pipeline comprises two stages: keystroke
detector and keystroke labeler. The former identifies the
fragments of the power trace that contain a keystroke.
The labeling classifier is used to label the fragments with
either English character, “Space” or “Enter”.

7.2.1 Keystroke detector

The detector is a binary classifier that receives a power
trace fragment of 100 samples (100 ms) and labels the
fragment as a “keystroke” or “not-keystroke”. We use
the 100 ms window because we find that this is the
shortest time that the key remains depressed (i.e., the
time between the press and release events).

Inference Attacks by Malicious Batteries on Mobile Devices 11

We use a Convolutional Neural Network (CNN)
with a typical topology [16]: five convolutional layers
followed by two fully connected layers and a softmwax
layer with two outputs. Each convolutional layer has
128 1x7 filters followed by 50% pooling, ReLU activa-
tion, batch normalization, and 20% dropout.

The network is trained end-to-end using the cross-
entropy loss function. The ground truth input frag-
ment is tagged according to the activity (key de-
pressed/released) in the center of the fragment.

The keystroke detector finds continuous power trace
fragments that enclose a complete keystroke (i.e., all the
samples when the key is depressed). Since the keystroke
lasts on average 100± 15ms, we search for a continuous
fragment of at least 80 samples such that at least 98%
of them are marked as keystrokes. These fragments are
then fed into the keystroke labeler stage.

We consider the fragment classification to be suc-
cessful if the fragment indeed encloses the keystroke.
When testing on a text with a total of 2664 characters
the classifier achieves high precision of 99.99%.

7.2.2 Keystroke labeler

The labeler uses another CNN with the same architec-
ture, only with much larger input of 2,000 samples and
8 convolutional layers. The convolutional layers are fol-
lowed by two fully connected layers, but the last one
outputs 28 classes (26 letters, “Space” and “Enter”).

We use large 2-second fragments for classification.
The center of the fragment encloses the keystroke sam-
ples identified by the keystroke detector. The size of the
fragment significantly influences the results, with much
lower accuracy for too small or too large windows. Not
only does the network capture the power footprint of the
keystroke, but it also recognizes the flanking keystrokes
adjacent to the central one. The average time between
two keystrokes is about 400-500 ms. Thus, the 2-second
window includes up to four flanking keystrokes, all of
which contribute to the classification of the one in the
middle of the fragment.

The labeler uses an ensemble of 100 classification
results obtained by moving a sliding window centered
over the keystroke. Each input fragment for the CNN
is obtained as follows: for every sample in the fragment
produced by the keystroke detector, an input fragment
is created for the labeler network by taking 2000 flank-
ing samples, 1000 on each side. Since there are about
100 samples in the keystroke detector output, there are
100 inputs for the network per keystroke. The final out-

en
ter

spa
ce a b c d e f g h i j k l m n o p q r s t u v w x y z

Predicted label

enter
space

a
b
c
d
e
f
g
h
i
j
k
l

m
n
o
p
q
r
s
t
u
v
w
x
y
z

Tr
ue

 la
be

l

0.61
0.84

0.43
0.43

0.32
0.21

0.220.22 0.22

0.29

0.30

0.26

0.29 0.21
0.22 0.24

0.24
0.31

0.23

0.23
0.33 0.33 0.33

Confusion Matrix

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 9. Confusion matrix for the keystroke detection for English
text with 1000 characters, including Space and Enter. Only the
probabilities >0.2 are shown. The ideal classifier would have 1-s
(darkest color) only along the diagonal.

come of the labeler is the softmax over all the outputs
of all the 100 classification results.
Evaluation. We evaluate the accuracy by using a text
with 2600 characters as a test set (using the classifier
trained as in Section 6.2). Figure 9 shows the confusion
matrix. There are three classes of characters: more likely
to be recognized (10 out of 30, in particular “Space”),
more likely to be misclassified (consistently confused,
e.g. “b” with “n”), and could not be classified (e.g.,
“w”).

These results show that the inference precision is
about 10× better than random guess. However, they
can be further improved if the attack’s scope is nar-
rowed. For example, one could use the confusion matrix
(produced on some representative input) to take into
account consistent misclassification errors, or boost the
attack precision by using a language model [39]. We
leave these for future work.

7.3 Other attacks

The general pipeline (Section 4) applies also to camera
and incoming call attacks. They rely on the novelty de-
tection stage that identifies the approximate fragment
of the power trace that contains the event of interest,
and then passes the fragment to the classifier. We use
2.5-seconds fragments in both attacks.

Inference Attacks by Malicious Batteries on Mobile Devices 12

The attacks are based on a simple 1-Nearest Neigh-
bors classifier just like the one used for the website in-
ference. The input fragments, however, are not aligned
with the signatures in the dictionary. Thus, the input is
matched with the signatures by first identifying the best
alignment to the signature (compute L2 in a sliding win-
dow over the input signal and the signature, and find
the one with the smallest distance), and then finding
the smallest L2 among all the signatures.

8 Robustness analysis
We seek to determine the accuracy of the attacks un-
der lower sampling rates and under different setups. We
summarize the results in Table 5.
Cross-phone. We consider two cases: attack sensitiv-
ity to the specific device, and to the phone model. To
evaluate the first case we use two Huawei Mate 9 phones
with the same hardware and software configurations. We
train the classifiers on the traces of the first phone and
test them on the second phone. We find no noticeable
accuracy degradation for any of the attacks.

However, the classifiers do not work across the
phone models (e.g., Samsung Galaxy S4 and Note 4).
This is an expected limitation of the power side channel
attack. On the other hand, since different phone models
usually have batteries of different geometry, the attacker
may be able to bundle the correct classifiers to the bat-
tery for the specific model.

8.1 Web site inference

Downsampling. For every value of the sampling rate
we downsample the traces in the dictionary and retrain
the pipeline from scratch. We then downsample the test
trace with 50% known webpages from the end-to-end at-
tack and evaluate the precision. Surprisingly, the overall
attack precision remains about the same down to 100Hz,
and drops to 30% only at 25Hz. This sampling rate is
qualitatively lower than the 7.8KHz minimum sampling
rate reported previously [6]. The novelty detector is af-
fected more than the classifier, which alone achieves a
46% success rate even at 25Hz. In other words, the web-
pages remain distinguishable even at such a low sam-
pling rate.
Network conditions. We use the Orbot Android App
to perform anonymous browsing via Tor, the anonymous

Attack Experiment Outcome
Downsampling Precision above 50% down to

50Hz
Web
browsing

TOR Browsing Cross-dictionary precision
drops to 23%

Cross-browser Requires mixed dictionary
Keystroke
inference

Downsampling Average character accuracy
28% down to 100Hz

Cross-user Detection only
All attacks Cross-phone

(same make)
No degradation

Table 5. Summary of the robustness experiments.

onion routing network. We evaluate the attack precision
in several scenarios.

First, we train on the traces of browsing via a regu-
lar network to classify browsing sessions performed via
Tor. We measure the precision of the attack on three
one-hour traces (100 browsing events per trace) with
50% white-listed webpages. As expected, the precision
of the attack drops from 65% to 23%. We believe that
this drop in precision is due to different network con-
ditions via the Tor overlay, because only disabling the
browser cache even without TOR reduces the precision
to 34%.

Second, we retrain the classifiers on the traces col-
lected while browsing via Tor (about 6.5 hours of brows-
ing) and re-evaluate the attack precision. This time we
achieve a 51% success rate.

Last, we keep the same Tor-trained pipeline as
above, but now collect the test set traces while browsing
via different overlay nodes. The precision is 43%.

We conclude that the dynamic network conditions
may reduce the accuracy of the attack.
Different web browsers. We use native Android
and Google Chrome browsers on a single phone, while
training and testing the pipeline on different browsers.
As expected, the attack’s accuracy drops because the
browsers’ page rendering implementations differ sub-
stantially. However, the attack precision is restored by
merging the dictionaries collected in different setups
into a single combined dictionary. We merge the dic-
tionaries collected for two different browsers, creating a
combined dictionary with 2000 signatures (20 per each
webpage, 10 for each browser) and retrain the pipeline.
We achieve 59% for the end-to-end tests across the
browsers, which is only 6% lower than the precision of
the browser-specific pipeline.

Inference Attacks by Malicious Batteries on Mobile Devices 13

8.2 Keystroke inference

We evaluate the average character accuracy of the end-
to-end attack while reducing the sampling rate. We find
that the accuracy does not change (about 36%) down
to 500Hz, and even 100Hz is enough to obtain 28% ac-
curacy, which is about 10 times higher than the random
guess. However the accuracy drops afterwards, reaching
8% at 20Hz. We find that the per-character accuracy
for all characters but the Space drops to almost zero,
whereas the space character remains clearly distinguish-
able with about 60% accuracy.
Cross-user. We train the classifiers on one user and
test to recognize the typing of another user. We find
that the keystroke detection remains accurate across
users, but the labeler does not work. The reasons for
the user sensitivity of the neural network-based classi-
fier are hard to identify, because the weights of neural
networks are difficult to interpret. However, our conjec-
ture is that the classifier relies on certain user-specific
features, most likely the timing between the keystrokes.
This conjecture is based on the observation that the
Hidden Markov Model used for the keystroke inference
by Song et al. [29] is also highly user-sensitive. This
model is based on the inter-keystroke time. We conclude
that the key inference techniques are suitable primarily
for targeted attacks.

9 Exfiltration
We establish a covert channel between the battery and
a remote attacker, by manipulating a software-visible
charging state from the battery, and then retrieving it
from JavaScript running in a browser via the HTML5
Battery Status API.

The Battery Status API has long raised privacy con-
cerns [21, 22], which eventually led to its removal from
several popular browsers, most notably Mozilla Firefox
(from V.52). However, we confirm that it is still sup-
ported in the recent (May 2018) Chrome V.63, making
our exfiltration mechanism broadly deployable.

The API exposes three parameters: time to full
(dis)charge, battery level and charging state. Unfortu-
nately, the charge level and time to charge values are not
suitable for the covert channel. First, the charge level
exposed to the Battery Status API does not reflect the
actual battery charge; instead it is the outcome of an
opaque vendor-dependent model. Thus, it is quite chal-
lenging to reliably manipulate the charge-related values

from the battery, in particular without any feedback for
calibration. Second, the Battery Status API sampling
rate is limited to a single update every 30 seconds.

Interestingly, it appears that no sampling rate con-
straints are enforced on the battery charging state. We
find that the JavaScript app in a browser and a native
app both detect the charging state changes immediately.

The main challenge is thus to manipulate the charg-
ing state from the battery. There is no simple way to do
so for a wired charger, because the state switching is
not controlled from within the battery.

Instead, the wireless charging technology, increas-
ingly used in modern phones, can be exploited for that
purpose. A resonant inductive charger relies on two cou-
pled inductors, with the primary coil in the transmitter
(the charging pad) and the secondary coil in the re-
ceiver (the mobile device). The charging state changes
when the presence of an active transmitter is detected
by the receiver. Thus, we can control the charging state
without a physical connector by placing the malicious
transmitter’s coil inside the battery.

We implement the transmitter using a standard
resonant wireless charger and a control transistor for
switching it on and off. This circuit is placed into the
battery, and controlled by the internal in-battery con-
troller, allowing bit-by-bit transmission from the bat-
tery. For the transfer we use a well-known self-clocking
phase encoding – Manchester code [32], which encodes
the bits using state transitions, and a UART protocol
for byte-coding with 1 start bit, 8 data bits and 1 parity.

The receiver is a JavaScript that subscribes to Bat-
tery Status events. It decodes the data and sends it to
the web server using AJAX.

9.1 Evaluation

We use Samsung Galaxy S4 equipped with a wireless
power receiver extension module in the battery com-
partment. For the transmitter we add a gate transistor
to a standard Qi charging pad to switch its on/of status
by using an external microcontroller.

We measure the maximum frequency at which the
charging state can be changed from the battery and can
be observed by the JavaScript running in the browser.
Since the browser does not seem to limit the update
rate, the state change depends entirely on the phone’s
software and the charging pad state transition rate. We
find that the time to detect the transition from not-
charging to charging (Tdc) is 3.9 seconds, and the tran-

Inference Attacks by Malicious Batteries on Mobile Devices 14

sition back to not-charging (Tcd) is 1.6 seconds. Thus,
the actual transmission rate is about 0.17 bit/second.

To isolate the sources of the delays we measure the
charging state transition time for a wired charger. Here
we obtain about 3× faster transitions, with the possible
bit rate of about 0.5 bit/second. We believe that the
wireless charger can be further improved to reach similar
rates.

10 Deconstructing the Power
Side-Channel

We drill down into the mobile device to locate the source
of the information leakage in the power channel. Under-
standing the real reasons why the attack is successful
helps assess the opportunities for defenses against it.

10.1 Website inference

We seek to answer the question: what is the contribution
of the SoC and its individual components to the power
channel information leakage? The SoC is known to con-
sume significant power in mobile devices [4, 13], but
there are other potential sources, e.g, display. Clearly,
different answers to this question dictate different ap-
proaches to the attack mitigation.

We need to measure the SoC power draw di-
rectly from the Power Management Integrated Circuit
(PMIC). If the original attack on these traces yields high
precision, it would imply that the SoC is the primary
source of the information leakage. Obtaining such fine-
grained measurements in a mobile phone is challenging
without low-level access to PMIC. Instead, we perform
the experiments on the TI OMAP5432 EVM [33] devel-
opment board. The board includes a 1.5 GHz dual-core
A15 multi-core processor, a dual core SGX544 graphics
processor, and 2 GB of DDR3L RAM. These specifica-
tions are representative of mobile SoC hardware [13].
We connect to the built-in sense resistors to measure
the PMIC, CPU, GPU, and DRAM power rails.

10.1.1 Results

We collect the power traces from the PMIC and the in-
dividual SoC components while browsing the Alexa top
100 websites. We only employ the classifier phase of the

Fig. 10. Distribution of the website precision for attacks on CPU,
GPU, DRAM and PMIC.

attack to determine the ability to distinguish between
websites.
PMIC. Figure 10 presents the classification precision
for the websites we study. More than 10% of the pages
are distinguished 100% of the time and about 25% of
them are distinguished with accuracy greater than 90%.
The precision is even higher than that obtained from
the phone in Section 7, which indicates that the SoC is
indeed the primary source of the information leakage.
CPU,GPU,DRAM. The CPU, GPU, and DRAM are
each individually vulnerable to the power side-channel
attack. Figure 10 shows the classification accuracy for
these three components separately. The accuracy of each
of the channels is only 10% worse, with the attack on
the CPU traces being the most accurate of the three.

We find that the CPU’s power consumption con-
tributes most significantly to the overall power side-
channel. The Pearson correlation between the PMIC
power consumption and each component is the highest
for the CPU (r=0.94 – strongly correlated), while only
0.61 and 0.70 for the DRAM and GPU respectively. This
motivates us to focus on the CPU power management
as a possible way to protect against the attack.

10.2 Keystroke inference

The keystroke inference attack relies on the observa-
tion that touching a keyboard character on the phone’s
touchscreen results in a distinguishable power signature.
Importantly, the power footprint of the soft keyboard
keystrokes is distinguishable from other screen touches.
Thus, the information leaks in the power signature may
have several sources: capacitive touchscreen, text post-
processing or the related software stack [9, 11].

Inference Attacks by Malicious Batteries on Mobile Devices 15

0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25
Interactive - Variation across Websites and Trials

PCA 0

P
C
A

1

bing
cnn
craigslist
linkedin
paypal
pinterest
reddit
yahoo

Fig. 11. PCA of the baseline attack

0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09 0.095 0.1
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2
Random DVFS - Variation across Websites and Trials

PCA 0

P
C
A

1

bing

cnn

craigslist

lin kedin

paypal

pinterest

reddit

yahoo

Fig. 12. PCA with randomized DVFS governor

To identify the real source, we connect a Bluetooth
keyboard to the phone and measure the power while
typing text with the soft keyboard displayed on the
screen, with the predictive dictionary and autocorrec-
tion activated. In other words, the only observable dif-
ference is the use of a physical keyboard instead of the
soft one. We observe no power signature for keystrokes
in this experiment.

This result indicates that the main source of the
power signature is the touch screen. This result is im-
portant when devising the defense against the attack in
the next section.

11 Defense
We present a promising approach to protect against
website inference attacks, but find that targeted de-
fenses are required to protect against the other attacks.
We show the defense against the keystroke attacks as a
representative example.
Toward a DVFS-based defense. A promising ap-
proach is to leverage the DVFS mechanism to obfus-
cate the power trace. Such an approach has already
proved successful on cryptoprocessors, but its efficacy
for general-purpose workloads is unclear.

We made several attempts at constructing an effec-
tive DVFS-based defense. Two of the failed attempts are
worth noting: fixed frequency and power normalization.
Operating at a fixed frequency actually improves the
accuracy of the attack by 9% (apparently reducing the
noise from the dynamic behavior of DVFS itself). The
second approach is to manipulate DVFS to maintain
roughly constant power consumption when the CPU is

idle (high frequency) vs. when it is fully loaded (mini-
mal frequency). Here, the attack accuracy remained un-
changed.

In contrast, a DVFS governor that randomly selects
a DVFS state at one millisecond intervals reduces the at-
tack success rate for website prediction to less than 5%.
Figure 11 and Figure 12 show the Principle Component
Analysis (PCA) of the power signatures for the subset
of 16 websites obtained without and with the random-
ized DVFS governor respectively. We observe that the
websites are less clustered with the deployed defense.
While the results are encouraging, they are incomplete:
the defense works only against one classifier – the 1-
Nearest Neighbors (kNN) algorithm. Interestingly, the
loosely clustered data (Figure 11), which aids the kNN
also makes it sensitive to noise added by the random
governor.
Targeted defenses. DVFS manipulation is not ef-
fective against attacks that exploit information leak-
age from peripherals. For example, it does not defend
against the keystroke attack, because the information
leakage occurs due to the touchscreen (§10). We note
that prior defenses against the keystroke inference via
software interrupt injection [26] are also ineffective here,
because the keystroke power footprint differs from that
of the software interrupt.

We resort to a targeted defense, whose purpose is
to deliberately reduce the accuracy of the keystroke de-
tector and therefore disable the attack. The idea is to
inject random spikes into the power trace after each key
release event. However, a defense-aware attacker may
train the classifier to distinguish between the real and
the artificial keystrokes. We empirically find that run-
ning a compute-heavy loop with a large randomly se-

Inference Attacks by Malicious Batteries on Mobile Devices 16

lected number of iterations fools the keystroke detector,
reducing the detection accuracy to zero.

This defense, however, shares the weakness of DVFS
randomization: it is effective against a particular clas-
sifier, but may fail against others. Further, this defense
works only for a particular hardware model, and does
not apply to other attacks, e.g., camera and phone calls.
These weaknesses motivate more research seeking a sys-
tematic approach for defending against malicious bat-
tery attacks.

12 Malicious battery hardware
We now discuss the characteristics of the hardware used
to mount the attack. A complete implementation is out-
side the scope of this work, so we provide only best-effort
estimates.
Power trace acquisition. Our power acquisition de-
vice is based on high-side current sensing using a shunt
resistor between the positive battery terminal and the
phone. Our early attempts to build the device were un-
successful: the phone would not turn on due to high
resistance of the shunt resister. Using smaller resistance
(0.02 Ohm) does allow the phone to work, but it re-
duces the effective voltage drop and is more susceptible
to noise, which requires the amplifier circuitry in place.
Trace storage for offline processing. There are
many low-power off-the-shelf devices that provide all the
required components in a compact form-factor that may
fit under the battery sticker. For example, an off-the-
shelf Arduino Nano with ATmega328 (with an ADC)
with an amplifier and a storage controller is about
1.5 mm thick (likely even thinner on a custom board).
This device consumes up to 50 mA at full activity, and
1-15 mA additionally consumed for writes to the SD
drive. In total, its consumption is equivalent to that of
a phone at rest (70 mA [4]). Importantly, it runs at 16
MHz, sufficient to execute activity and novelty detection
at real time and write to storage at up to 650 KB/s.
Storage requirements. The storage requirements de-
pend on the sampling rate and width. With the 200 Hz
sampling rate, which results in negligible loss of preci-
sion, and 13 bits/sample we effectively use in the ex-
periments, a continuous recording of an uncompressed
trace over 1 month (about 2.6*106 seconds) results in
0.8 GB/month, while requiring small write throughput
of 325 bytes/second. Using compression and filtering the
inactivity periods may reduce these requirements even
further.

Online processing and exfiltration. The online sce-
nario requires more powerful processors and uses our ex-
filtration technique (§9). For example, the online attack
may run on a Texas Instruments Digital Signal Pro-
cessor (DSP) TI C5504. This processor consumes less
than 10 mA, and runs at 100 MHz, sufficient to perform
complex computations, including Neural Network infer-
ence. In addition, it hosts 128MB DRAM that consumes
45 mA. This memory is large enough to hold a large
power signature dictionary for the classifiers. The exfil-
tration coil is a sticker, with a small additional circuit. It
is active only for exfiltration when the user is browsing
a malicious website, and consumes about 8.6 J/bit.

To summarize, the low cost, simple construction,
small size and low sample rate make the power mea-
surement circuitry quite easy to integrate into a phone
battery.

13 Conclusions
We introduce a novel malicious battery attack that
stealthily records phone’s power trace from the bat-
tery and successfully infers sensitive private information
about the user. We demonstrate several novel attacks,
evaluate them end-to-end on three popular phones and
study their robustness under varying sampling rates and
execution conditions. We then analyze the root causes
for their success using low-level power measurements,
devise a new data exfiltration technique from the bat-
tery directly to the remote server via a web browser,
and discuss the steps towards attack mitigation.

Our findings clearly demonstrate that the malicious
battery attack is powerful and feasible, it requires only
cheap and compact components due to its low sampling
rate requirements, and it is hard to mitigate completely,
motivating further research into scalable and efficient
defense mechanisms.

Acknowledgements
We are grateful to the anonymous reviewers, and to our
shepherds Pepe Vila and Paolo Gasti for their construc-
tive feedback. This research was partially supported by
the Technion Center for Security Science and Technol-
ogy (CSST), Hiroshi Fujiwara Cyber Security Research
Center and the Israel Cyber Bureau.

Inference Attacks by Malicious Batteries on Mobile Devices 17

References
[1] Anirudh Badam, Ranveer Chandra, Jon Dutra, Anthony

Ferrese, Steve Hodges, Pan Hu, Julia Meinershagen,
Thomas Moscibroda, Bodhi Priyantha, and Evangelia
Skiani. 2015. Software Defined Batteries. In Proceed-
ings of the 25th Symposium on Operating Systems Prin-
ciples (SOSP ’15). ACM, New York, NY, USA, 215–229.
https://doi.org/10.1145/2815400.2815429

[2] Donald J Berndt and James Clifford. 1994. Using dynamic
time warping to find patterns in time series. In KDD work-
shop, Vol. 10. Seattle, WA, 359–370.

[3] Bert den Boer, Kerstin Lemke, and Guntram Wicke. 2003.
A DPA Attack Against the Modular Reduction Within a
CRT Implementation of RSA. In Revised Papers from the
4th International Workshop on Cryptographic Hardware
and Embedded Systems (CHES ’02). Springer-Verlag, Lon-
don,UK, 228–243. http://dl.acm.org/citation.cfm?id=
648255.752718

[4] Aaron Carroll and Gernot Heiser. 2010. An Analysis of
Power Consumption in a Smartphone. In Proceedings of
the 2010 USENIX Conference on USENIX Annual Technical
Conference (USENIXATC’10), Vol. 14. USENIX Association,
Berkeley, CA, USA, 21–21. http://dl.acm.org/citation.cfm?
id=1855840.1855861

[5] Yimin Chen, Xiaocong Jin, Jingchao Sun, Rui Zhang, and
Yanchao Zhang. 2017. POWERFUL: Mobile app fingerprint-
ing via power analysis. In Conference on Computer Commu-
nications (INFOCOM). IEEE, 1–9.

[6] Shane S. Clark, Hossen Mustafa, Benjamin Ransford, Ja-
cob Sorber, Kevin Fu, and Wenyuan Xu. 2013. Current
Events: Identifying Webpages by Tapping the Electrical Out-
let. In Computer Security – ESORICS 2013, Jason Cramp-
ton, Sushil Jajodia, and Keith Mayes (Eds.). Lecture Notes
in Computer Science, Vol. 8134. Springer Berlin Heidelberg,
700–717. https://doi.org/10.1007/978-3-642-40203-6_39

[7] Wenrui Diao, Xiangyu Liu, Zhou Li, and Kehuan Zhang.
2016. No pardon for the interruption: New inference attacks
on android through interrupt timing analysis. In 2016 IEEE
Symposium on Security and Privacy (SP). IEEE, 414–432.

[8] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue
Wang, and Eamonn Keogh. 2008. Querying and mining of
time series data: experimental comparison of representations
and distance measures. Proceedings of the VLDB Endow-
ment 1, 2 (2008), 1542–1552.

[9] Li Du. 2016. An Overview of Mobile Capacitive Touch Tech-
nologies Trends. arXiv preprint arXiv:1612.08227 (2016).

[10] Denis Foo Kune and Yongdae Kim. 2010. Timing attacks
on pin input devices. In Proceedings of the 17th ACM con-
ference on Computer and Communications Security. ACM,
678–680.

[11] Shuo Gao, Jackson Lai, and Arokia Nathan. 2016. Fast
Readout and Low Power Consumption in Capacitive Touch
Screen Panel by Downsampling. Journal of Display Technol-
ogy 12, 11 (2016), 1417–1422.

[12] Daniel Genkin, Lev Pachmanov, Itamar Pipman, Eran
Tromer, and Yuval Yarom. 2016. ECDSA key extraction
from mobile devices via nonintrusive physical side channels.
In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security. ACM, 1626–1638.
[13] Matthew Halpern, Yuhao Zhu, and Vijay Janapa Reddi.

2016. Mobile CPU’s rise to power: Quantifying the impact
of generational mobile CPU design trends on performance,
energy, and user satisfaction. In 2016 IEEE International
Symposium on High Performance Computer Architecture
(HPCA). 64–76.

[14] Jun Han, Emmanuel Owusu, Le T Nguyen, Adrian Per-
rig, and Joy Zhang. 2012. Accomplice: Location inference
using accelerometers on smartphones. In Fourth Interna-
tional Conference on Communication Systems and Networks
(COMSNETS). IEEE, 1–9.

[15] Judith Horchert Jacob Appelbaum and Christian Stöcker.
2013. Der Spiegel. Shopping for Spy Gear: Catalog Ad-
vertises NSA Toolbox. https://nsa.gov1.info/dni/nsa-
ant-catalog/, http://www.spiegel.de/international/world/
catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-
940994.html. (2013).

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
2012. ImageNet Classification with Deep Convolutional
Neural Networks. In Advances in Neural Information Pro-
cessing Systems 25, F. Pereira, C. J. C. Burges, L. Bot-
tou, and K. Q. Weinberger (Eds.). Curran Associates, Inc.,
1097–1105. http://papers.nips.cc/paper/4824-imagenet-
classification-with-deep-convolutional-neural-networks.pdf

[17] Alexander Maxham. 2013. Android Headlines: Sam-
sung Reaching 80 Million Galaxy S4 Sales. http://www.
androidheadlines.com/2013/05/samsung-reaching-80-
million-galaxy-s4-sales-in-2013.html. (2013).

[18] Yan Michalevsky, Aaron Schulman, Gunaa Arumugam Veer-
apandian, Dan Boneh, and Gabi Nakibly. 2015. PowerSpy:
Location Tracking Using Mobile Device Power Analysis. In
24th USENIX Security Symposium (USENIX Security 15).
USENIX Association, Washington, D.C., 785–800. https:
//www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/michalevsky

[19] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakr-
ishnan, and Romit Roy Choudhury. 2012. Tapprints: Your
Finger Taps Have Fingerprints. In Proceedings of the 10th
International Conference on Mobile Systems, Applications,
and Services (MobiSys ’12). ACM, New York, NY, USA,
323–336. https://doi.org/10.1145/2307636.2307666

[20] Roman Novak. 2002. SPA-Based Adaptive Chosen-
Ciphertext Attack on RSA Implementation. In Proceedings
of the 5th International Workshop on Practice and The-
ory in Public Key Cryptosystems: Public Key Cryptogra-
phy (PKC ’02). Springer-Verlag, London, UK, 252–262.
http://dl.acm.org/citation.cfm?id=648119.761233

[21] Lukasz Olejnik, Gunes Acar, Claude Castelluccia, and Clau-
dia Diaz. 2016. The Leaking Battery. In Revised Selected
Papers of the 10th International Workshop on Data Pri-
vacy Management, and Security Assurance - Volume 9481.
Springer-Verlag New York, Inc., New York, NY, USA, 254–
263.

[22] Lukasz Olejnik, Steven Englehardt, and Arvind Narayanan.
2017. Battery Status Not Included: Assessing Privacy in
Web Standards. In 3rd International Workshop on Privacy
Engineering (IWPE’17).

[23] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and
Joy Zhang. 2012. ACCessory: password inference using ac-

https://doi.org/10.1145/2815400.2815429
http://dl.acm.org/citation.cfm?id=648255.752718
http://dl.acm.org/citation.cfm?id=648255.752718
http://dl.acm.org/citation.cfm?id=1855840.1855861
http://dl.acm.org/citation.cfm?id=1855840.1855861
https://doi.org/10.1007/978-3-642-40203-6_39
https://nsa.gov1.info/dni/nsa-ant-catalog/
https://nsa.gov1.info/dni/nsa-ant-catalog/
http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
http://www.spiegel.de/international/world/catalog-reveals-nsa-has-back-doors-for-numerous-devices-a-940994.html
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://www.androidheadlines.com/2013/05/samsung-reaching-80-million-galaxy-s4-sales-in-2013.html
http://www.androidheadlines.com/2013/05/samsung-reaching-80-million-galaxy-s4-sales-in-2013.html
http://www.androidheadlines.com/2013/05/samsung-reaching-80-million-galaxy-s4-sales-in-2013.html
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/michalevsky
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/michalevsky
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/michalevsky
https://doi.org/10.1145/2307636.2307666
http://dl.acm.org/citation.cfm?id=648119.761233

Inference Attacks by Malicious Batteries on Mobile Devices 18

celerometers on smartphones. In Proceedings of the Twelfth
Workshop on Mobile Computing Systems & Applications.
ACM, 9–16.

[24] Power Flash 2016. Power Flash 1Cell SBS-compliant gauge
IC for rechargeable smart battery pack applications. http:
//www.powerflash.com.tw/Product-1Cell.html. (2016).

[25] Morten Reintz. 2005. Atmel’s ATmega406 AVR Micro-
controller Provides Full Smart Battery and Battery Pro-
tection Functionality for 2 - 4 Li-ion Cells in a Single Chip.
http://www.atmel.com/images/doc4083_mega406.pdf.
(2005).

[26] Michael Schwarz, Moritz Lipp, Daniel Gruss, Samuel Weiser,
Clémentine Maurice, Raphael Spreitzer, and Stefan Man-
gard. 2017. KeyDrown: Eliminating Keystroke Timing Side-
Channel Attacks. arXiv preprint arXiv:1706.06381 (2017).

[27] Omer Shwartz, Amir Cohen, Asaf Shabtai, and Yossi
Oren. 2017. Shattered Trust: When Replacement Smart-
phone Components Attack. In 11th USENIX Work-
shop on Offensive Technologies, WOOT ’17, Vancouver,
BC, Canada, August 14-15, 2017. USENIX Association.
https://www.usenix.org/conference/woot17/workshop-
program/presentation/shwartz

[28] Laurent Simon, Wenduan Xu, and Ross Anderson. 2016.
Don’t Interrupt Me While I Type: Inferring Text Entered
Through Gesture Typing on Android Keyboards. Proceed-
ings on Privacy Enhancing Technologies 2016, 3 (2016),
136–154.

[29] Dawn Xiaodong Song, David Wagner, and Xuqing Tian.
2001. Timing Analysis of Keystrokes and Timing Attacks on
SSH.. In USENIX Security Symposium, Vol. 2001.

[30] Riccardo Spolaor, Laila Abudahi, Veelasha Moonsamy,
Mauro Conti, and Radha Poovendran. 2017. No Free Charge
Theorem: A Covert Channel via USB Charging Cable on
Mobile Devices. In International Conference on Applied
Cryptography and Network Security. Springer, 83–102.

[31] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and
Stefan Mangard. 2017. Systematic Classification of Side-
Channel Attacks: A Case Study for Mobile Devices. IEEE
Communications Surveys & Tutorials (2017).

[32] Andrew Tanenbaum. 2002. Computer Networks (4th ed.).
Prentice Hall Professional Technical Reference.

[33] Texas Instruments OMAP5432 Processor-based EVM 2013.
OMAP5432 EVM System Reference Guide. http://www.ti.
com/tool/OMAP5432-EVM. (2013).

[34] Kris Tiri and Ingrid Verbauwhede. 2005. Design Method for
Constant Power Consumption of Differential Logic Circuits.
In Proceedings of the Conference on Design, Automation
and Test in Europe - Volume 1 (DATE ’05). IEEE Computer
Society, Washington, DC, USA, 628–633. https://doi.org/
10.1109/DATE.2005.113

[35] Qinglong Wang, Amir Yahyavi, Bettina Kemme, and Wenbo
He. 2015. I know what you did on your smartphone: Infer-
ring app usage over encrypted data traffic. In Communica-
tions and Network Security (CNS), 2015 IEEE Conference
on. IEEE, 433–441.

[36] Zhi Xu, Kun Bai, and Sencun Zhu. 2012. Taplogger: Infer-
ring user inputs on smartphone touchscreens using on-board
motion sensors. In Proceedings of the fifth ACM conference
on Security and Privacy in Wireless and Mobile Networks.
ACM, 113–124.

[37] Qing Yang, Paolo Gasti, Gang Zhou, Aydin Farajidavar, and
Kiran S Balagani. 2017. On Inferring Browsing Activity on
Smartphones via USB Power Analysis Side-Channel. IEEE
Transactions on Information Forensics and Security 12, 5
(2017), 1056–1066.

[38] Kehuan Zhang and XiaoFeng Wang. 2009. Peeping tom in
the neighborhood: Keystroke eavesdropping on multi-user
systems. (2009), 17–32.

[39] Li Zhuang, Feng Zhou, and J Doug Tygar. 2009. Keyboard
acoustic emanations revisited. ACM Transactions on Infor-
mation and System Security (TISSEC) 13, 1 (2009), 1–26.

http://www.powerflash.com.tw/Product-1Cell.html
http://www.powerflash.com.tw/Product-1Cell.html
http://www.atmel.com/images/doc4083_mega406.pdf
https://www.usenix.org/conference/woot17/workshop-program/presentation/shwartz
https://www.usenix.org/conference/woot17/workshop-program/presentation/shwartz
http://www.ti.com/tool/OMAP5432-EVM
http://www.ti.com/tool/OMAP5432-EVM
https://doi.org/10.1109/DATE.2005.113
https://doi.org/10.1109/DATE.2005.113

	Power to peep-all: Inference Attacks by Malicious Batteries on Mobile Devices
	1 Introduction
	2 Motivation
	3 Related Work
	4 Attack Overview
	4.1 Classification pipeline overview

	5 Experimental setup
	6 End-to-end evaluation
	6.1 Website inference
	6.1.1 Results

	6.2 Keystroke inference
	6.2.1 Results

	6.3 Other attacks
	6.3.1 Camera
	6.3.2 Incoming phone calls

	7 Technical details
	7.1 Website inference
	7.1.1 Activity detector
	7.1.2 Novelty detector
	7.1.3 Classifier
	7.1.4 Classifier and Novelty detector combined

	7.2 Keystroke inference
	7.2.1 Keystroke detector
	7.2.2 Keystroke labeler

	7.3 Other attacks

	8 Robustness analysis
	8.1 Web site inference
	8.2 Keystroke inference

	9 Exfiltration
	9.1 Evaluation

	10 Deconstructing the Power Side-Channel
	10.1 Website inference
	10.1.1 Results

	10.2 Keystroke inference

	11 Defense
	12 Malicious battery hardware
	13 Conclusions

