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Beyond CMOS: total disruption!

From «IEEE rebooting computing»

OS
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Stagnation of the current processing 
technology

Performance

Today Time
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Next generation is coming soon...
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What to do until the next revolution?

Performance

Today

Birth of new 
technology

New technology 
matured

Hardware specialization and 

near-data accelerators

Time
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Computer hardware: circa ~2021

Network I/O 
accelerator

Storage I/O accelerator

GPU parallel
accelerator
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Central Processing Units (CPUs) 
are no longer Central

Network I/O 
accelerator

Storage I/O accelerator

GPU parallel
accelerator

Programmability
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Omni-programmable system
X- Processing Units: xPUs

Network I/O 
accelerator

Storage I/O accelerator

GPU parallel
accelerator

Near-Data 
Processing

Near-Data 
Processing

Accelerated
Processing

Programmability
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But XPUs create...

Programmability 

wall
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Number of 
XPUs

Programming
complexity

CPU CPU+
GPU

CPU+
GPU+
Smart NIC

Hard to maintain
whole-application efficiency

multi-core
CPU

Number of skillful
developers
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Number of 
XPUs

Programming
complexity

CPU CPU+
GPU

CPU+
GPU+
Smart NIC

Hard to maintain
whole-application efficiency

multi-core
CPU

Number of skillful
developers

Underutilized hardware
Poor application performance

Low efficiency
High costs
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Agenda

● The root cause of the programmability wall

● OmniX: accelerator-centric OS design 

– Principles

– Examples

● Future-proof: OmniX and disaggregated 
systems
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Example: image server

1. put: parse → contrast-enhance →  store 
2. get: parse → resize → store → marshal

put
get

Similar architecture 
used in Flickr
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Example: image server

1. put: parse → contrast-enhance →  store 
2. get: parse → resize → store → marshal

NIC

SSD

GPU

CPU
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Accelerating with XPUs

1. put: parse → contrast-enhance →  store 
2. get: parse → resize → store → marshal

NIC

SSD

GPU

CPU
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Accelerating with XPUs

1. put: parse → contrast-enhance →  store 
2. get: parse → resize → store → marshal

NIC SSD GPU CPU
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Closer look at get

parse req

resize img
store img

marshal resp

SSD
NIC

 parse → resize → store → marshal
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send(resp)

marshal resp

OS services run on CPUs

SSDNIC

get: parse → resize → store → marshal

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)
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send(resp)

marshal resp

Result: offloading overheads dominate

SSDNIC

get: parse → resize → store → marshal

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)
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send(resp)

marshal resp

Result: offloading overheads dominate

SSDNIC

get: parse → resize → store → marshal

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)

No sockets, isolation, 
transport layer … 

No files, 
protection...



May  2021

THETHE problem:
OS architecture is CPU - centric 

GPU
Storage

XPU

CPU

Network
XPU
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THETHE problem is general:
OS architecture is CPU - centric 

GPU Storage
XPU

CPU

Network
XPU

Inference
XPU

….
XPU

Training
XPU
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 OmniX: accelerator-centric OS 
architecture

CPU
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GPU Storage
XPU

Network
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marshal resp

nic_send(resp)

Execution in OmniX

NIC

get: parse → resize → store → marshal

sdd_read(img)parse req

resize img

sdd_write (img)

nic_recv(req)

SSD
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Accelerator-centric 
OS architecture
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Types of OS abstractions 
for accelerators

Accelerator-centric: on-accelerator services
● Networking: GPUnet, GPUrdma, Centaur, LYNX

● Files: GPUfs, ActivePointers

Accelerator-friendly: accelerator-aware host OS 
changes 

● SPIN, GAIA – host-accelerator file sharing

Data-centric: CPU-less inline near-data processing
● NICA – Server acceleration on FPGA-based SmartNICs
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Types of OS abstractions 
for accelerators

Accelerator-centric: on-accelerator services
● Networking: GPUnet, GPUrdma, Centaur, LYNX

● Files: GPUfs, ActivePointers

Accelerator-friendly: accelerator-aware host OS 
changes 

● SPIN, GAIA – host-accelerator file sharing

Data-centric: CPU-less inline near-data processing
● NICA – Server acceleration on FPGA-based SmartNICs

ASPLOS13,TOCS14,OSDI14,TOCS15,ISCA16,SYSTOR16, ROSS16, 
ATC17,HotOS17,ATC19, ATC19-2, TOCS19, PACT19, ASPLOS20
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Storage

Network

On-GPU I/O services

CPU

O
S

 
S

e
rvices 

Operating system

OS Services

O
S

 
S

er
vi

ce
s 

GPU



May  2021

 GPUfs: File system library for GPUs

open(“shared_file”)
m

m
ap

()

open(“shared_file”)
w

rit
e(

)
Host File System

GPUfs

System-wide
shared namespace

CPUs GPU1 GPU2 GPU3

ASPLOS13: S., Keidar, Ford, Witchel
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GPUnet: Network library for GPUs

socket(AF_INET,SOCK_STREAM);
connect(“node0:2340”);

socket(AF_INET,SOCK_STREAM);
connect(“node0:2340”)

GPUnet

GPU  nativenative client

socket(AF_INET,SOCK_STREAM);
listen(:2340)

GPU nativenative server

node0.technion.ac.il

GPUnet

CPU client

Network

OSDI14, S, Kim, Witchel
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Accelerator in full control over its I/O

● I/O without «leaving» the GPU kernel
● Data-driven access to huge DBs
● Full-blown multi-tier GPU network servers
● Multi-GPU Map/Reduce (no user CPU code)

● POSIX-like APIs with slightly modified 
semantics

● Transparency for the rest of the system

● Reduced code complexity

● Unleashed GPU performance potential
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Example: face verification server

=?

memcached
(unmodified)

GPU server
(GPUnet)

CPU client
(unmodified)
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Face verification: 
Different implementations

1 GPU
(no GPUnet)

1 GPU
GPUnet

CPU
6 cores

500

1000

1500

2000

2500

La
te

nc
y 

 (
μ

se
c)

34 5423

Throughput (KReq/sec)

1.9x throughput
1/3x latency
(500usec)

½ code size
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Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)
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– User-land abstraction implementation (libOSes)

● Single name space with the CPU OS

– Same socket space, same file name space

● Extensive SW layer on the GPU 

– Handles massive API parallelism

– Implements consistency model (FS)

– Implements flow control (sockets)

● Seamless data path optimization

– Eliminates CPU from data path

– Exploits data locality



May  2021

Optimized I/O: no CPU in data path

● SSD/NIC may perform DMA directly into/from 
GPU memory without the CPU (P2P DMA)

● Why?

– Lower latency 

– Less buffering/complexity for thpt

– No CPU involvement
GPU

NIC Memory

PCIe bus
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Optimized I/O: no CPU in data path

● SSD/NIC may perform DMA directly into/from 
GPU memory without the CPU (P2P DMA)

Challenge: the OS is on the CPU!
I/O device sharing, multiplexing,  

transport layer

Examples: 
● GPU and CPU both need to access the network
● TCP on GPU?
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GPUnet: offloading transport layer to 
the NIC (via RDMA)

CPU GPU

NIC

Message
buffers

Message
buffers

Reliable 
RDMA

Streaming
logic
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Summary so far...

● Accelerator-centric OS services 

– Simplify code development

– Enable transparent performance optimization

● But what if we cannot add code to an 
accelerator?

– Accelerators are inefficient when running OS logic

– Some systems use close-source accelerated libs



May  2021

Summary so far...

● Accelerator-centric OS services 

– Simplify code development

– Enable transparent performance optimization

● But what if we cannot add code to an 
accelerator?

– Accelerators are inefficient when running OS logic

– Some systems use close-source accelerated libs

Make host OS accelerator-aware
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Storage: OS integration of P2P DMA
between SSD and GPUs

● Accelerator-aware modification to host FS API

● Allows using GPU memory buffers in read/write

– Transparently selects page cache or P2P DMA

– Maintains POSIX FS consistency 

– Integrates with OS prefetcher

– Compatible with OS block layer  (i.e., software RAID)

● Results: 

– 5.2GB/s from SSDs to GPU

– 2-3x speedup in applications

SPIN: USENIX ATC17, partially adopted by NVIDIA
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Storage: Extending CPU page 
cache into GPU memory

● Accelerator-aware modification to host page cache to use GPU 
page faults

● Enables  mmap for GPU 

● Enables CPU-GPU file sharing 

● May cache/prefetch file data in GPU memory 

● Insights: 

– Slim GPU driver API for enabling host page cache integration

– Page cache release consistency model for high performance

– OS page cache and Linux kernel modifications for consistency support

GAIA: USENIX ATC19
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Question: can we use strong 
consistency in the page cache?

But GPU page is 64KB!
False sharing inevitable
(also in real applications)

● Current practice in NVIDIA Unified Virtual 
Memory

● Single owner semantics: the page migrates to 
the requesting processor
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Extreme false sharing is 
devastating 28x slowdown!
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Lazy Release Consistency to rescue

● Transparent for legacy CPU processes

● Transparent for legacy GPU kernels

int fd=open(«shared_file»);
void* ptr=mmap(…,ON_GPU,fd);
macquire(ptr);
gpu_kernel<<<>>>(ptr);
mrelease(ptr);

GPU management code on the CPU

40% app improvement
over strong consistency
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Summary so far...

● Accelerator-centric OS services 

– Simplify code development for accelerators

– Enable transparent performance optimization

● Accelerator-aware host OS services

– Optimize I/O for unmodified accelerators

– Coordinate sharing with the host OS

● But can we remove host CPUs altogether?
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Operating system

CPU

CPU-less design: 
no CPU in control and data path

OS Services

O
S

 
S

er
vi

ce
s 

GPU Storage
NXU

Network
XPU

O
S

 
S

e
rvices 

Lower latency (no CPU roundtrip)
Better scalability (no CPU load)

Lower costs (wimpy CPUs)
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CPU's role
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CPU-less systems
● GPUrdma [ROSS'16]

– RDMA VERBs from GPUs

– Achieves 2-3 usec latency and high throughput

● Centaur [PACT'19]

– Multi-GPU UNIX sockets and data flow runtime

– Multi-GPU scaling with zero CPU utilization

● NICA [ATC'19]

– Inline server acceleration on FPGA-based SmartNICs

● LYNX [ASPLOS'20]

– Accelerator-centric server architecture on SmartNICs
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The case for CPU-less multi-GPU
server design

Image Similarity Search

S3

S2

S1

Brute 
force

search

Choose
best

Cluster
KNN

Brute 
force

search

Brute 
force

search

Client
request

Client
response



March  2021

Traditional design: 
CPU controls GPU invocation and 

data movements

S3

S2

S1

Brute 
force

search

Choose
best

Cluster
KNN

Brute 
force

search

Brute 
force

search

Client
request

Client
response

Offload to 
multiple GPUs
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Traditional design: 
CPU controls GPU invocation and 

data movements
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Lets add more CPU cores
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12 CPU cores needed!
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12 CPUs are not enough to scale!



March  2021

12 CPUs are not enough to scale!

The problem is inherent in the CPU-driven design
[PACT19]
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The case for CPU-less multi-GPU 
server design 

PACT 19

S3

S2

S1

Brute 
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search

Choose
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KNN

Brute 
force

search

Brute 
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search
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Client
request

G
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Client
response

GPU-side inter-GPU
pipes

GPU-side request
scheduler
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CPU-less Multi-GPU network server

Standard
CPU-driven

design

CPU-less
design

CPU-less design: better scaling
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CPU-less systems
● GPUrdma [ROSS'16]

– RDMA VERBs from GPUs

– Achieves 2-3 usec latency and high throughput

● Centaur [PACT'19]

– Multi-GPU UNIX sockets and data flow runtime

– Multi-GPU scaling with zero CPU utilization

● NICA [ATC'19]

– Inline server acceleration on FPGA-based SmartNICs

● LYNX [ASPLOS'20]

– Accelerator-centric server architecture on SmartNICs
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Thin on-accelerator abstractions for serving network requests

Transport processing offloaded to the SmartNIC

I/O API
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1 SmartNIC can support up to 100 accelerators
performing neural net inference

Productized in Toga Networks [Huawei] as we speak



May  2021

Summary so far..

● Accelerator-centric OS architecture is feasible 
today

● Advantageous for high performance, resource 
efficiency, code simplicity

● On-accelerator libraryOS approach with the 
CPU used for privileged operations

● But will it apply to future disaggregated 
systems?
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Data Center Trends

● Hardware: Resource disaggregation

● High benefits in TCO and utilization

CPU

CPU CPU

CPU GPU

GPU GPU

GPU Accel

Accel Accel

Accel SSD

SSD SSD

SSD Mem

Mem Mem

Mem

NIC NIC NIC NIC NIC

...

Network
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Data Center Trends

● Hardware: Resource disaggregation

● High benefits in TCO and utilization

CPU

CPU CPU

CPU GPU

GPU GPU

GPU Accel

Accel Accel

Accel SSD

SSD SSD

SSD Mem

Mem Mem

Mem

NIC NIC NIC NIC NIC

...

Network

But what about performance?
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Not with the 
traditional server-centric design 

CPU

GPU

SSD
CPU
OS

GPU

SSD

Typical Server
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Not with the 
traditional server-centric design 

CPU

GPU

SSD
CPU
OS

GPU

SSD

CPU
OS

GPUSSD

Network

Typical Server

CPU Rack

Storage Rack GPU Rack

Fundamentally inefficient!Fundamentally inefficient!
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What's wrong with the server-centric 
design ?

● A centralized OS is a 
control/data 
bottleneck

● I/O devices and 
accelerators are 
slaves

● Application control 
and data planes are 
centralized
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What's wrong with the server-centric 
design ?

● A centralized OS is a 
control/data 
bottleneck

● I/O devices and 
accelerators are 
slaves

● Application control 
and data planes are 
centralized Needed Needed 

disaggregation-native OS!disaggregation-native OS!
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FractOS: decentralized 
disaggregation-native OS

CPU
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Joint work with L Vilanova (Imperial), H. Haertig and his team (TU Dresden & Bakhausen)
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FractOS vs. OmniX

● Avoid CPU in data/control path

● Devices as first-class citizens

● Direct interaction among devices

● Transparent data-path optimizations

● Decentralized capability management

● Decentralized task graph execution

● Unified software/hardware interfaces

OmniX



May  2021

Summary

Same principles are useful for SGX [Eurosys17,USENIX ATC19]

and disaggregated data centers [FractOS]

● Future omni-programmable systems face 
programmability wall

● Accelerator-centric OS architecture simplifies  
programming and improves performance

● It exposes OS abstractions on accelerators

● Tightly integrates new abstractions with the host OS

Code available @ https://github.com/acsl-technion
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mark@ee.technion.ac.il
https://marksilberstein.com

Thank you!

mailto:mark@ee.technion.ac.il
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