Omnix: an accelerator-centric
OS architecture for
omni-programmable systems

Rethinking the role of CPUs in modern computers

Mark Silberstein

Aol

Accelerated Computing
Systems Lab

Technion

May 2021 |
ICL ASSL

Accelerated Computing

Abool

Accelerated Computing

Systems Lab
Research

Home About Us ~

@
Welcome to the Accelerated Computing
Systems Lab (ACSL)!

We work on a broad range of computer
systems projects spanning hardware
architecture, compilers, operating systems,
security and privacy, high-speed networking.

All our software is open-source and free ().

Feel passionate about building secure and fast
computer systems of the future?! Check out
how to apply!

May 2021

https://acsl.group

Publications

RESEARCH

- Mot
® 05 SIS %,
6P = : o [Senge
R, - :
- ey =

Team ~

. THE ANDREW & ERMA VITEREI

FACULTY OF
IMENENEE E ECTRICAL
B EEE ENGINEERING

~
TECHNION
u Israel Institute

of Technology

Teaching Undergraduate Projects ~ News & Events

all research areas

application

g WE L COME
enclave enclave

ﬂ. LLL

i ok o \.\-J\.-“\.n,,.,-\..

Miscellaneous

uuuuu
.....................

thmpmn

operating system

e [aec|

Accelerator-Centric
Operating System
Accelerator-centric
Operating System
Architecture, OmniX,
enables direct
interaction between
accelerators and 1/0
devices, for example,
files and network
sockets for GPU kernels

Harware Side
Channels

0S Services for
Trusted Execution
Environments

Our work facilitates the
development of
complex applications in
Secure Enclaves by
providing secure virtual
Memaory services.

GPU computing,
Networking, Machine
Learning, Distributed

Systems

Playground for exploring
interesting topics in a
search for new ideas

Side channels have
become one of the
major threats for
systems security. We
work on protecting
systems from CPU
hardware side channels
and speculative
execution attacks.

ACSL

Accelerated Computing
Systems Lab

https://acsl.group/

Beyond CMOS: total disruption!

Differing Levels of Disruption in Computing Stack

Algorithm i li i
Language
OS
Architecture Neuromorphic

ISA Quantum
Microarchitecture I
Approximate
I Stochastic
FU
Adiabatic,
- Reversible,
|DQIC Unreliable Sw
- Cryogenic
device New switch,3D
o i
Level1 2 3 4 5]
LEGEND: No Disruption —g Total Disruption

From «IEEE rebooting computingy i~

Accelerated Computing
Systems Lab

May 2021

Stagnation of the current processing

technology
Performance
A
Today ;me

May 2021 /A\CSL1

Accelerated Computing

Next generation is coming soon...

Performance
A
1
[]
’
' ------
e -
2
’
RO
Birth of new /x
technology __."-~
[——} =" .
Today New technology Time
matured

May 2021

ASSL

Accelerated Computing
Systemns Lab

What to do until the next revolution?

Performance
A

P7°97°7?77?7

2

¢

g

Birth of new Pl
technology __.-"

Today New technology Time
matured

May 2021 ACSL‘

Accelerated Computing

What to do until the next revolution?

Performance

May 2021

A

a‘ \' .* s
a(dN (/66 'ﬁ"
“ Ga s 1
Q . '
' 4 - - !
L 4 - ’ !
. y
‘
Birth of new x"'
technology __--"
%—-—.- - -
Today New technology Time

matured

ASSL

Accelerated Computing
Systemns Lab

Computer hardware: circa ~2021

GPU parallel
accelerator

Network I/O
accelerator

Storage 1/O accelerator ,
May 2021 /A\CSL

Accelerated Computing
Systems Lab

Central Processing Units (CPUs)
are no longer Central

GPU parallel

accelerator
Network 1/0 S \‘\)
accelerator

Storage 1/O accelerator ,
May 2021 /A\CSL

Accelerated Computing
Systems Lab

Omni-programmable system
X- Processing Units: zPUs

GPU parallel

accelerator
N etWO rk I/ O : I. ":':°:°:-:-1-:-:-I-E-:-:-:-:-:-:-:-:-:--:-:-:- \&ﬂ
accelerator

Accelerated
Processing

Near-Data
Processing

% Near-Data
Processing

Storage 1/O accelerator ,
May 2021 /A\CSL

Accelerated Computing
Systems Lab

May 2021

But XPUs create...

N ""Aofa\Yal kola alank=21all

L 11 _HNJ\HIT CATTIN T TOCANIT
L e A I S =)

L L, — A e
- . — -r

-i
P
o
k
]

N
|

h |

Yy,

= = N -
[Iimr'JII_JlgL‘j i
== ST
["I_:j:ll_Ll]

r'“
7 ||
il

|

ACSL

Accelerated Computing
Systems Lab

Hard to maintain
whole-application efficiency

Programming Number of skillful
complexity developers
4 A
. Number of
XPUs
CPU multi-core CPU+ CPU+
CPU GPU GPU+
Smart NIC

May 2021 ACSL‘

Accelerated Computing

Hard to maintain
whole-application efficiency

Programming Number of skillful
complexity developers

T T~ / }

Underutilized hardware
Poor application performance
Low efficiency

High costs
‘ ‘ ‘ | . Number of
| | | | XPUs
CPU multi-core CPU+ CPU+
CPU GPU GPU+

Smart NIC -
May 2021 ACSL

Accelerated Computing

Agenda

« The root cause of the programmability wall

« OmniX: accelerator-centric OS design
— Principles
- Examples

« Future-proof: OmniX and disaggregated
systems

May 2021 ACSL‘

Accelerated Computing

Example: image server

1. put: parse — contrast-enhance — store
2. get: parse — resize — store — marshal

May 2021

Similar architecture
used in Flickr

NG T
F) #-08 /?
ﬁannrﬁ
AR BAOR
ENY LY.

ASSL

AIdEpg

Example: image server

1. put: parse — contrast-enhance — store
2. get: parse — resize — store — marshal

May 2021 ACSL‘

Accelerated Computing
Systems Lab

Accelerating with XPUs

1. put: parse — contrast-enhance — store
2. get: parse — resize — store — marshal

May 2021 /A\CSL1

Accelerated Computing
Systems Lab

Accelerating with XPUs

1. put: parse — contrast-enhance — store
2. get: parse — resize — store — marshal

May 2021 /A\CSL 1

Accelerated Computing
Systems Lab

May 2021

Closer look at get

parse — resize — store — marshal

resize 1mg
store img

ACSL

Accelerated Computing
Systems Lab

OS services run on CPUs

get: parse — resize — store — marshal

resize 1mg

May 2021 /A\CSI_ ﬂ

Accelerated Computing
Systems Lab

Result: offloading overheads dominate

get: parse — resize — store — marshal

recv (req)

read(file, 1img)

ite(file, img)

end (resp)

May 2021 /A\CSLq

Accelerated Computing
Systems Lab

Result: offloading overheads dominate

get: parse — resize — store — marshal

recv (req)

read(file, 1img)

ite(file, img)

end (resp)

No sockets, isolation, | No files,
- transport layer ... | | protection...

\‘ 3 /"' \\\,

THE problem:
OS architecture is CPU - centric

Storage
XPU

May 2021 Accelerated Computing
Systems Lab

THE problem is general:
OS architecture is CPU - centric

May 2021

OmniX: accelerator-centric OS
architecture

Network
| E,? oS S:rvices 0 o
el o O orage
“ 5" V "o
‘o $
L Operating system

May 2021 /A\CSL‘

Accelerated Computing

Execution in OmniX

get: parse — resize — store — marshal

e e e
;L

May 2021 /A\CSI_ ﬂ

Accelerated Computing
Systems Lab

Accelerator-centric
OS architecture

May 2021 /A\CSL1

Accelerated Computing

Types of OS abstractions
for accelerators

Accelerator-centric: on-accelerator services

Accelerator-friendly: accelerator-aware host OS
changes

Data-centric: CPU-less inline near-data processing

May 2021 ACSL‘

Accelerated Eqrnput iiii

Types of OS abstractions
for accelerators

Accelerator-centric: on-accelerator services

« Networking: GPUnet, GPUrdma, Centaur, LYNX
« Files: GPUfs, ActivePointers

Accelerator-friendly: accelerator-aware host OS
changes

« SPIN, GAIA — host-accelerator file sharing

Data-centric: CPU-less inline near-data processing
« NICA — Server acceleration on FPGA-based SmartNICs

ASPLOS13,TOCS14,0SDI14,TOCS15,ISCA16,SYSTOR16, ROSS16,
ATC17,HotOS17,ATC19, ATC19-2, TOCS19, PACT19, ASPLOS20

May 2021 /A\CSL1

Lpg
‘,'L

On-GPU 1/O services

May 2021 Accelerated Computing
Systems Lab

GPUfs: File system library for GPUs

ASPLOS13: S., Keidar, Ford, Witchel

System-wide
shared namespace

GPU3

Host File System

May 2021

-
AL
Accelerated Computing
Systems Lab

GPUnet: Network library for GPUs

OSDI14, S, Kim, Witchel

node0.technion.ac.il

GPU native server

socket (AF INET, SOCK_STREAM) ;

listen(:2340)

GPUnet

Network

CPU client

socket (AF_INET, SOCK_ STREAM) ;
connect (“node0:2340")

May 2021

GPU native client

socket (AF_INET, SOCK_ STREAM);
connect (“node0:2340");

GPUnet

Accelerated Computing
Systems Lab

Accelerator in full control over its |/O

« |/O without «leaving» the GPU kernel

- Data-driven access to huge DBs
 Full-blown multi-tier GPU network servers
o Multi-GPU Map/Reduce (no user CPU code)

« POSIX-like APIs with slightly modified
semantics

« Transparency for the rest of the system
« Reduced code complexity

« Unleashed GPU performance potential

May 2021 /A\CSL1

Accelerated Eqrnput iiii

Example: face verification server

CPU client GPU server memcac_:hed
(unmodified) (GPUnet) (unmodified)

>

B

a2AAALA
angann

5

May 2021 Acculglatcd Computing
ab

Face verification:
Different implementations

1.9x throughput
A 1 GPU 1/3x latency
§ (no GPUnet) CPU (SOOUSGC
22000 6cores /2 code size
S 1500
()
T 1000 - 1GPU
GPUnet
500
Throughput (KReg/sec)

May 2021

Accelerated Computing

Main design principles

« Micro-kernel design

- RPC to File/Network services on the CPU
- User-land abstraction implementation (libOSes)

May 2021

Main design principles

« Micro-kernel design

« Single name space with the CPU OS

- Same socket space, same file name space

May 2021 ACSL‘

Accelerated Computing

Main design principles

« Micro-kernel design

» Single name space with the CPU OS

« Extensive SW layer on the GPU

- Handles massive API parallelism
— Implements consistency model (FS)
— Implements flow control (sockets)

May 2021 ACSL‘

Accelerated Computing

Main design principles

« Micro-kernel design

» Single name space with the CPU OS

« Extensive SW layer on the GPU

« Seamless data path optimization

- Eliminates CPU from data path

- Exploits data locality ,
May 2021 ACSL

Accelerated Eqrnput iiii

Main design principles

« Micro-kernel design

» Single name space with the CPU OS

« Extensive SW layer on the GPU

« Seamless data path optimization
- Eliminates CPU from data path

- Exploits data locality

May 2021 ACSL‘

Accelerated Computing

Optimized I/0O: no CPU in data path

« SSD/NIC may perform DMA directly into/from
GPU memory without the CPU (P2P DMA)

o Why?
- Lower latency

— Less buffering/complexity for thpt
- No CPU involvement

NIC

PCle bus

May 2021 /A\CSL1

Accelerated Computing

Optimized I/O: no CPU in data path

« SSD/NIC may perform DMA directly into/from
GPU memory without the CPU (P2P DMA)

Challenge: the OS is on the CPU!

/O device sharing, multiplexing,
transport layer

Examples:
« GPU and CPU both need to access the network
« TCP on GPU?

May 2021 /A\CS[

Accelerated Computing

GPUnet: offloading transport layer to
the NIC (via RDMA)

CPU

\

r

N

NIC :
May 2021 A{%r%g%lt?g

Summary so far...

» Accelerator-centric OS services
- Simplify code development
- Enable transparent performance optimization

 But what if we cannot add code to an
accelerator?

— Accelerators are inefficient when running OS logic
- Some systems use close-source accelerated libs

May 2021 ACSL‘

Accelerated Computing

Summary so far...

o Accelerator-centric OS services

- Simplify code development
- Enable transparent performance optimization

 But what if we cannot add code to an
accelerator?

— Accelerators are inefficient when running OS logic
- Some systems use close-source accelerated libs

Make host OS accelerator-aware
May 2021 /A\CSL1

Accelerated Eqrnput iiii

Storage: OS integration of P2P DMA
between SSD and GPUs

SPIN: USENIX ATC17, partially adopted by NVIDIA

« Accelerator-aware modification to host FS AP
« Allows using GPU memory buffers in read/write

— Transparently selects page cache or P2P DMA

- Maintains POSIX FS consistency

— Integrates with OS prefetcher

— Compatible with OS block layer (i.e., software RAID)

 Results:

- 5.2GB/s from SSDs to GPU
— 2-3x speedup in applications

May 2021 /A\CSL‘

Storage: Extending CPU page
cache into GPU memory

GAIA: USENIX ATC19
Accelerator-aware modification to host page cache to use GPU
page faults
Enables mmap for GPU

Enables CPU-GPU file sharing
May cache/prefetch file data in GPU memory
Insights:

— Slim GPU driver API for enabling host page cache integration
- Page cache release consistency model for high performance
- OS page cache and Linux kernel modifications for consistency support

May 2021 /A\CSL1

Accelerated Computing

Question: can we use strong
consistency in the page cache?

o Current practice in NVIDIA Unified Virtual

Memory

« Single owner semantics: the page migrates to
the requesting processor

L TN

=

March 2021

But GPU page is 64KB!
False sharing inevitable
(also in real applications)

32KB

32KB GPU €39

Accelerated Computing

Extreme false sharing is
devastating

28x slowdown!

Slowdown

10

0 20 40 60 80 100 120 140 160
of page migrations

32KB 32KB

March 2021

Lazy Release Consistency to rescue

GPU management code on the CPU

int fd=open («shared_file») ;
void* ptr=mmap (..,ON_GPU, £4) ;

macquilire (ptr) ;
gpu_kernel<<<>>> (ptr) ;
mrelease (ptr) ;

« Transparent for legacy CPU processes
« Transparent for legacy GPU kernels

40% app improvement
over strong consistency

May 2021

Summary so far...

o Accelerator-centric OS services

- Simplify code development for accelerators

- Enable transparent performance optimization
« Accelerator-aware host OS services

— Optimize I/O for unmodified accelerators

— Coordinate sharing with the host OS

« But can we remove host CPUs altogether?

May 2021 ACSL‘

Accelerated Eqrnput iiii

CPU-less design:
no CPU in control and data path

Lower latency (no CPU roundtrip)
Better scalability (no CPU load)
Lower costs (wimpy CPUs)

May 2021 Accelerated Computing
Systems Lab

CPU's role

Will you
(PUEASE ¢

Do the setup
Then leave

May 2021 Accelerated Computing
Systems Lab

CPU-less systems

e GPUrdma Rross1s

- RDMA VERBSs from GPUs
— Achieves 2-3 usec latency and high throughput

o Ce ntau I [PACT'19]

— Multi-GPU UNIX sockets and data flow runtime
— Multi-GPU scaling with zero CPU utilization

o NICA [ATC'19]
— Inline server acceleration on FPGA-based SmartNICs

o LYNX [ASPLOS'20]

— Accelerator-centric server architecture on SmartNICs

May 2021

The case for CPU-less multi-GPU
server design

Client .

request

March 2021

Image Similarity Search

' Cluster
KNN

<

Brute
force
search

st

Brute
force
search

|

s2.

Brute
force
search

=

Choose
best

Client

- -

response

ASSL

Accelerated Computing

Traditional design:

CPU controls GPU invocation and
data movements

Client .

request

March 2021

‘ Cluster
- KNN

<

:

Brute
force
search

|

S1

Brute
force
search

?

Brute
force
search

S3

.

>

Offload to

multiple GPUs

.”Choosé*_
- best

~ Client

response

Accelerated Computing

Traditional design:
CPU controls GPU invocation and
data movements

300
=250
5
EZDU
315(]

@mn -

8 50 —=a o n—

0 0.5 1 1.5 2 2.5 3
Throughput (K reg/sec)

March 2021 ACSL‘

Accelerated Computing

6 GPUs

Lets add more CPU cores

0 2 4 6 8 10 12
Throughput (K req/sec)

-2 cores =k 4 cores =+=5 cores = 8 cores

March 2021 ACSL 1

Accelerated Computing
Systems Lab

12 CPU cores needed!

60
< 50
7
E»:m
3.3[]
EJ 20
310

0 10 20 30 40 50 60
Throughput (K reg/sec)

-141:an5 =0 cores =% 8 cores

March 2021 ACSL 1

Accelerated Computing
Systems Lab

12 CPUs are not enough to scale!

More GPUs

Wasted
GPU
Potential
(~2.5X)

March 2021 ACSL 1

Accelerated Computing

12 CPUs are not enough to scale!

More GPUs

Wasted
GPU
Potential
(~2.5X)

Throughput
(K reg/sec)
5 & ®& B8 8 B & 8

12 CPUs Stagnated at 9 GPUs

The problem is inherent in the CPU-driven design
[PACT19]

March 2021 ACS L 1

Accelerated Computing

The case for CPU-less multi-GPU
server design

PACT 19

Client
request

‘ Cluster
- KNN

-

GPU-side request
scheduler

<

|

Brute
force
search

Brute
force
search

~ Choose
- best

Brute
force
search

3

¢

response

GPU-side inter-GPU
pipes

March 2021

ASSL

Accelerated Computing
Systems Lab

CPU-less Multi-GPU network server

CPU-less
design
16 /
5 11
o
O
Q b
(V]
1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15/ 16
#GPUS Standard
CPU-driven
design

CPU-less design: better scaling

March 2021 M :
LLLLLLLLLLLLLLLLLLLLLL
ab

CPU-less systems

e GPUrdma Rross1s

- RDMA VERBSs from GPUs
— Achieves 2-3 usec latency and high throughput

o Ce ntau I [PACT'19]

— Multi-GPU UNIX sockets and data flow runtime
— Multi-GPU scaling with zero CPU utilization

o N I CA [ATC'19]

— Inline server acceleration on FPGA-based SmartNICs

o LYNX [ASPLOS'20]

— Accelerator-centric server architecture on SmartNICs

May 2021

Traditional host-centric

¢ ™ ' ™
CPU Accelerator
[Accelerator]
Managment

l:_H etwork Serve r:)

(_ orecmumg)
\ y, \ J

Observation

Most of the application-specific
logic is on accelerator!

NIC

May 2021 af%{%g%l@

Lynx - Vision

Goal
Demonstrate and build a general accelerated-centric server.

e ™,
Accelerator

Request
Processing

How? T

4 I

Use SmartNIC for network processing and accelerator management. SmartNIC
* Full CPU offload
* No application code on SmartNIC (Wetwork Server)
. vy

Thin on-accelerator abstractions for serving network requests

Transport processing offloaded to the SmartNIC

May 2021 /A\CSL1

Accelerated Computing
Systems Lab

Implementation

SmartNICs
* ARM-based (Bluefield)

* FPGA-based (Innova)

Accelerators

* NVIDIA GPU

* Intel Visual Computer Accelerator — VCA %

May 2021 Accelerated Computing
Systems Lab

Inference server: Scalability with disaggregated GPUs

Local Server
liocal server 1l remote server 1 @ remote server 2

0

]
o
S

[GPU | GPU | | GPU | | GPU]

w
o

Throughput [K reqg/sec
PJ
]

10
0
4 local 4 local 4 |ocal
4 remote 8 remote
Number of GPUs

Remote Server 1 Remote Server 2

1 SmartNIC can support up to 100 accelerators
performing neural net inference

Productized in Toga Networks [Huawei] as we speak

May 2021 Aégigl\ﬁg

Systems Lab

Summary so far..

o Accelerator-centric OS architecture is feasible
today

« Advantageous for high performance, resource
efficiency, code simplicity

« On-accelerator libraryOS approach with the
CPU used for privileged operations

« But will it apply to future disaggregated
systems?

May 2021 ACSL1

Accelerated Eqrnput iiii

« Hardware: Resource disaggregation

Data Center Trends

« High benefits in TCO and utilization

May 2021

CPU CPU GPU GPU ' Accel Accel SSD SSD Mem Mem
CPU CPU GPU GPU ' Accel Accel SSD SSD Mem Mem
NIC NIC NIC NIC NIC

« Hardware: Resource disaggregation

Data Center Trends

« High benefits iIn TCO and utilization

CPU

CPU

GPU

GPU

Accel

Accel

SSD

SSD

Mem

Mem

CPU

CPU

GPU

GPU

Accel

Accel

SSD

SSD

Mem

Mem

NIC

May 2021

NIC

NIC

NIC

NIC

But what about performance?

Not with the
traditional server-centric design

May 2021 /A\CSL1

Accelerated Eqrnput iiii

Not with the
traditional server-centric design

CPU Rack

Typical Server |
CPU —
‘ L> GPU >

Storage Rack GPU Rack

Fundamentally inefficient! Acs

May 2021

Accelerated Computing

What's wrong with the server-centric

design ?
« Acentralized OS is a | . .
control/data OS architecture is CPU - centric
bottleneck

« 1/O devices and ﬂ\ _

accelerators are
slaves

Inference

XPU

« Application control Training
and data planes are
centralized

XPU

May 2021 ACSL‘

Accelerated Computing

What's wrong with the server-centric

design ?
« Acentralized OS is a . . .
control/data OS architecture is CPU - centric
bottleneck Al

« 1/O devices and “\ _

accelerators are

S/a VeS Inference oen
. . XPU XPU
« Application control Training
and data planes are
centralized Needed

disaggregation-native OS! .

May 2021

FractOS: decentralized
disaggregation-native OS

Joint work with L Vilanova (Imperial), H. Haertig and his team (TU Dresden & Bakhausen)

CPU Rack

CPU
App

SmartNIC

FractOS
uKernel

T
@ GPU

Storage Rack

SmartNIC |

‘ OINMews

- GPU Rack

May 2021 A{?\CSL‘

selerated Computing
Systemns Lab

FractOS: decentralized
disaggregation-native OS

Joint work with L Vilanova (Imperial), H. Haertig and his team (TU Dresden & Bakhausen)

Storage Rack

‘ OINMews

May 2021

CPU Rack

CPU
App

SmartNIC

FractOS
uKernel

SmartNIC |

GPU

- GPU Rack

ASSL

selerated Computing
Systemns Lab

FractOS: decentralized
disaggregation-native OS

Joint work with L Vilanova (Imperial), H. Haertig and his team (TU Dresden & Bakhausen)

CPU Rack

CPU
App

SmartNIC

FractOS
uKernel

-) O
3 > GPU
QL =
=1 ©
< =
Storage RackiO al GPU Rack

May 2021 A{LA\CSL‘

selerated Computing
Systemns Lab

FractOS vs. OmniX

« Avoid CPU in data/control path
e Devices as first-class citizens

OmniX
« Direct interaction among devices o

« Transparent data-path optimizations

« Decentralized capability management

« Decentralized task graph execution
« Unified software/hardware interfaces

May 2021 ACSL‘

Accelerated Computing

Summary

Future omni-programmable systems face
programmability wall

Accelerator-centric OS architecture simplifies
programming and improves performance

It exposes OS abstractions on accelerators

Tightly integrates new abstractions with the host OS

Same principles are useful for SGX [Eurosys17,USENIX ATC19]
and disaggregated data centers [Fractos]

Code available @ https://github.com/acsl-technion

May 2021 Accelerated Computing
ab

Aool

Accelerated Computing
Systems Lab

R —— I = : N e i e gy ,am. -

SRR
(REEEN . i

Thank you!

i\[mark@ee.technion.ac.il
=== https://marksilberstein.com

May 2021 /A\CSL

AIdeg

mailto:mark@ee.technion.ac.il
https://marksilberstein.com/

