
Omnix: an accelerator-centric
OS architecture for

omni-programmable systems

Rethinking the role of CPUs in modern computers

Mark Silberstein

Technion

May 2021
ICL

May 2021

https://acsl.group

https://acsl.group/

May 2021

Beyond CMOS: total disruption!

From «IEEE rebooting computing»

OS

May 2021

Stagnation of the current processing
technology

Performance

Today Time

May 2021

Next generation is coming soon...

Performance

Today

Birth of new
technology

New technology
matured

Time

May 2021

What to do until the next revolution?

Performance

Today

Birth of new
technology

New technology
matured

?????????

Time

May 2021

What to do until the next revolution?

Performance

Today

Birth of new
technology

New technology
matured

Hardware specialization and

near-data accelerators

Time

May 2021

Computer hardware: circa ~2021

Network I/O
accelerator

Storage I/O accelerator

GPU parallel
accelerator

May 2021

Central Processing Units (CPUs)
are no longer Central

Network I/O
accelerator

Storage I/O accelerator

GPU parallel
accelerator

Programmability

May 2021

Omni-programmable system
X- Processing Units: xPUs

Network I/O
accelerator

Storage I/O accelerator

GPU parallel
accelerator

Near-Data
Processing

Near-Data
Processing

Accelerated
Processing

Programmability

May 2021

But XPUs create...

Programmability

wall

May 2021

Number of
XPUs

Programming
complexity

CPU CPU+
GPU

CPU+
GPU+
Smart NIC

Hard to maintain
whole-application efficiency

multi-core
CPU

Number of skillful
developers

May 2021

Number of
XPUs

Programming
complexity

CPU CPU+
GPU

CPU+
GPU+
Smart NIC

Hard to maintain
whole-application efficiency

multi-core
CPU

Number of skillful
developers

Underutilized hardware
Poor application performance

Low efficiency
High costs

May 2021

Agenda

● The root cause of the programmability wall

● OmniX: accelerator-centric OS design

– Principles

– Examples

● Future-proof: OmniX and disaggregated
systems

May 2021

Example: image server

1. put: parse → contrast-enhance → store
2. get: parse → resize → store → marshal

put
get

Similar architecture
used in Flickr

May 2021

Example: image server

1. put: parse → contrast-enhance → store
2. get: parse → resize → store → marshal

NIC

SSD

GPU

CPU

May 2021

Accelerating with XPUs

1. put: parse → contrast-enhance → store
2. get: parse → resize → store → marshal

NIC

SSD

GPU

CPU

May 2021

Accelerating with XPUs

1. put: parse → contrast-enhance → store
2. get: parse → resize → store → marshal

NIC SSD GPU CPU

May 2021

Closer look at get

parse req

resize img
store img

marshal resp

SSD
NIC

 parse → resize → store → marshal

May 2021

send(resp)

marshal resp

OS services run on CPUs

SSDNIC

get: parse → resize → store → marshal

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)

May 2021

send(resp)

marshal resp

Result: offloading overheads dominate

SSDNIC

get: parse → resize → store → marshal

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)

May 2021

send(resp)

marshal resp

Result: offloading overheads dominate

SSDNIC

get: parse → resize → store → marshal

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)

No sockets, isolation,
transport layer …

No files,
protection...

May 2021

THETHE problem:
OS architecture is CPU - centric

GPU
Storage

XPU

CPU

Network
XPU

May 2021

THETHE problem is general:
OS architecture is CPU - centric

GPU Storage
XPU

CPU

Network
XPU

Inference
XPU

….
XPU

Training
XPU

May 2021

 OmniX: accelerator-centric OS
architecture

CPU

O
S

S

e
rvices

Operating system

OS Services

O
S

S

e
rv

ic
es

GPU Storage
XPU

Network
XPU

May 2021

marshal resp

nic_send(resp)

Execution in OmniX

NIC

get: parse → resize → store → marshal

sdd_read(img)parse req

resize img

sdd_write (img)

nic_recv(req)

SSD

May 2021

Accelerator-centric
OS architecture

May 2021

Types of OS abstractions
for accelerators

Accelerator-centric: on-accelerator services
● Networking: GPUnet, GPUrdma, Centaur, LYNX

● Files: GPUfs, ActivePointers

Accelerator-friendly: accelerator-aware host OS
changes

● SPIN, GAIA – host-accelerator file sharing

Data-centric: CPU-less inline near-data processing
● NICA – Server acceleration on FPGA-based SmartNICs

May 2021

Types of OS abstractions
for accelerators

Accelerator-centric: on-accelerator services
● Networking: GPUnet, GPUrdma, Centaur, LYNX

● Files: GPUfs, ActivePointers

Accelerator-friendly: accelerator-aware host OS
changes

● SPIN, GAIA – host-accelerator file sharing

Data-centric: CPU-less inline near-data processing
● NICA – Server acceleration on FPGA-based SmartNICs

ASPLOS13,TOCS14,OSDI14,TOCS15,ISCA16,SYSTOR16, ROSS16,
ATC17,HotOS17,ATC19, ATC19-2, TOCS19, PACT19, ASPLOS20

May 2021

Storage

Network

On-GPU I/O services

CPU

O
S

S

e
rvices

Operating system

OS Services

O
S

S

er
vi

ce
s

GPU

May 2021

 GPUfs: File system library for GPUs

open(“shared_file”)
m

m
ap

()

open(“shared_file”)
w

rit
e(

)
Host File System

GPUfs

System-wide
shared namespace

CPUs GPU1 GPU2 GPU3

ASPLOS13: S., Keidar, Ford, Witchel

May 2021

GPUnet: Network library for GPUs

socket(AF_INET,SOCK_STREAM);
connect(“node0:2340”);

socket(AF_INET,SOCK_STREAM);
connect(“node0:2340”)

GPUnet

GPU nativenative client

socket(AF_INET,SOCK_STREAM);
listen(:2340)

GPU nativenative server

node0.technion.ac.il

GPUnet

CPU client

Network

OSDI14, S, Kim, Witchel

May 2021

Accelerator in full control over its I/O

● I/O without «leaving» the GPU kernel
● Data-driven access to huge DBs
● Full-blown multi-tier GPU network servers
● Multi-GPU Map/Reduce (no user CPU code)

● POSIX-like APIs with slightly modified
semantics

● Transparency for the rest of the system

● Reduced code complexity

● Unleashed GPU performance potential

May 2021

Example: face verification server

=?

memcached
(unmodified)

GPU server
(GPUnet)

CPU client
(unmodified)

May 2021

Face verification:
Different implementations

1 GPU
(no GPUnet)

1 GPU
GPUnet

CPU
6 cores

500

1000

1500

2000

2500

La
te

nc
y

 (
μ

se
c)

34 5423

Throughput (KReq/sec)

1.9x throughput
1/3x latency
(500usec)

½ code size

May 2021

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

May 2021

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

● Single name space with the CPU OS

– Same socket space, same file name space

May 2021

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

● Single name space with the CPU OS

– Same socket space, same file name space

● Extensive SW layer on the GPU

– Handles massive API parallelism

– Implements consistency model (FS)

– Implements flow control (sockets)

May 2021

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

● Single name space with the CPU OS

– Same socket space, same file name space

● Extensive SW layer on the GPU

– Handles massive API parallelism

– Implements consistency model (FS)

– Implements flow control (sockets)

● Seamless data path optimization

– Eliminates CPU from data path

– Exploits data locality

May 2021

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

● Single name space with the CPU OS

– Same socket space, same file name space

● Extensive SW layer on the GPU

– Handles massive API parallelism

– Implements consistency model (FS)

– Implements flow control (sockets)

● Seamless data path optimization

– Eliminates CPU from data path

– Exploits data locality

May 2021

Optimized I/O: no CPU in data path

● SSD/NIC may perform DMA directly into/from
GPU memory without the CPU (P2P DMA)

● Why?

– Lower latency

– Less buffering/complexity for thpt

– No CPU involvement
GPU

NIC Memory

PCIe bus

May 2021

Optimized I/O: no CPU in data path

● SSD/NIC may perform DMA directly into/from
GPU memory without the CPU (P2P DMA)

Challenge: the OS is on the CPU!
I/O device sharing, multiplexing,

transport layer

Examples:
● GPU and CPU both need to access the network
● TCP on GPU?

May 2021

GPUnet: offloading transport layer to
the NIC (via RDMA)

CPU GPU

NIC

Message
buffers

Message
buffers

Reliable
RDMA

Streaming
logic

May 2021

Summary so far...

● Accelerator-centric OS services

– Simplify code development

– Enable transparent performance optimization

● But what if we cannot add code to an
accelerator?

– Accelerators are inefficient when running OS logic

– Some systems use close-source accelerated libs

May 2021

Summary so far...

● Accelerator-centric OS services

– Simplify code development

– Enable transparent performance optimization

● But what if we cannot add code to an
accelerator?

– Accelerators are inefficient when running OS logic

– Some systems use close-source accelerated libs

Make host OS accelerator-aware

May 2021

Storage: OS integration of P2P DMA
between SSD and GPUs

● Accelerator-aware modification to host FS API

● Allows using GPU memory buffers in read/write

– Transparently selects page cache or P2P DMA

– Maintains POSIX FS consistency

– Integrates with OS prefetcher

– Compatible with OS block layer (i.e., software RAID)

● Results:

– 5.2GB/s from SSDs to GPU

– 2-3x speedup in applications

SPIN: USENIX ATC17, partially adopted by NVIDIA

May 2021

Storage: Extending CPU page
cache into GPU memory

● Accelerator-aware modification to host page cache to use GPU
page faults

● Enables mmap for GPU

● Enables CPU-GPU file sharing

● May cache/prefetch file data in GPU memory

● Insights:

– Slim GPU driver API for enabling host page cache integration

– Page cache release consistency model for high performance

– OS page cache and Linux kernel modifications for consistency support

GAIA: USENIX ATC19

March 2021

Question: can we use strong
consistency in the page cache?

But GPU page is 64KB!
False sharing inevitable
(also in real applications)

● Current practice in NVIDIA Unified Virtual
Memory

● Single owner semantics: the page migrates to
the requesting processor

March 2021

Extreme false sharing is
devastating 28x slowdown!

May 2021

Lazy Release Consistency to rescue

● Transparent for legacy CPU processes

● Transparent for legacy GPU kernels

int fd=open(«shared_file»);
void* ptr=mmap(…,ON_GPU,fd);
macquire(ptr);
gpu_kernel<<<>>>(ptr);
mrelease(ptr);

GPU management code on the CPU

40% app improvement
over strong consistency

May 2021

Summary so far...

● Accelerator-centric OS services

– Simplify code development for accelerators

– Enable transparent performance optimization

● Accelerator-aware host OS services

– Optimize I/O for unmodified accelerators

– Coordinate sharing with the host OS

● But can we remove host CPUs altogether?

May 2021

Operating system

CPU

CPU-less design:
no CPU in control and data path

OS Services

O
S

S

er
vi

ce
s

GPU Storage
NXU

Network
XPU

O
S

S

e
rvices

Lower latency (no CPU roundtrip)
Better scalability (no CPU load)

Lower costs (wimpy CPUs)

May 2021

CPU's role

May 2021

CPU-less systems
● GPUrdma [ROSS'16]

– RDMA VERBs from GPUs

– Achieves 2-3 usec latency and high throughput

● Centaur [PACT'19]

– Multi-GPU UNIX sockets and data flow runtime

– Multi-GPU scaling with zero CPU utilization

● NICA [ATC'19]

– Inline server acceleration on FPGA-based SmartNICs

● LYNX [ASPLOS'20]

– Accelerator-centric server architecture on SmartNICs

March 2021

The case for CPU-less multi-GPU
server design

Image Similarity Search

S3

S2

S1

Brute
force

search

Choose
best

Cluster
KNN

Brute
force

search

Brute
force

search

Client
request

Client
response

March 2021

Traditional design:
CPU controls GPU invocation and

data movements

S3

S2

S1

Brute
force

search

Choose
best

Cluster
KNN

Brute
force

search

Brute
force

search

Client
request

Client
response

Offload to
multiple GPUs

March 2021

Traditional design:
CPU controls GPU invocation and

data movements

March 2021

Lets add more CPU cores

March 2021

12 CPU cores needed!

March 2021

12 CPUs are not enough to scale!

March 2021

12 CPUs are not enough to scale!

The problem is inherent in the CPU-driven design
[PACT19]

March 2021

The case for CPU-less multi-GPU
server design

PACT 19

S3

S2

S1

Brute
force

search

Choose
best

Cluster
KNN

Brute
force

search

Brute
force

search

G
P

U
ne

t

Client
request

G
P

U
ne

t

Client
response

GPU-side inter-GPU
pipes

GPU-side request
scheduler

March 2021

CPU-less Multi-GPU network server

Standard
CPU-driven

design

CPU-less
design

CPU-less design: better scaling

May 2021

CPU-less systems
● GPUrdma [ROSS'16]

– RDMA VERBs from GPUs

– Achieves 2-3 usec latency and high throughput

● Centaur [PACT'19]

– Multi-GPU UNIX sockets and data flow runtime

– Multi-GPU scaling with zero CPU utilization

● NICA [ATC'19]

– Inline server acceleration on FPGA-based SmartNICs

● LYNX [ASPLOS'20]

– Accelerator-centric server architecture on SmartNICs

May 2021

May 2021

Thin on-accelerator abstractions for serving network requests

Transport processing offloaded to the SmartNIC

I/O API

May 2021

May 2021

1 SmartNIC can support up to 100 accelerators
performing neural net inference

Productized in Toga Networks [Huawei] as we speak

May 2021

Summary so far..

● Accelerator-centric OS architecture is feasible
today

● Advantageous for high performance, resource
efficiency, code simplicity

● On-accelerator libraryOS approach with the
CPU used for privileged operations

● But will it apply to future disaggregated
systems?

May 2021

Data Center Trends

● Hardware: Resource disaggregation

● High benefits in TCO and utilization

CPU

CPU CPU

CPU GPU

GPU GPU

GPU Accel

Accel Accel

Accel SSD

SSD SSD

SSD Mem

Mem Mem

Mem

NIC NIC NIC NIC NIC

...

Network

May 2021

Data Center Trends

● Hardware: Resource disaggregation

● High benefits in TCO and utilization

CPU

CPU CPU

CPU GPU

GPU GPU

GPU Accel

Accel Accel

Accel SSD

SSD SSD

SSD Mem

Mem Mem

Mem

NIC NIC NIC NIC NIC

...

Network

But what about performance?

May 2021

Not with the
traditional server-centric design

CPU

GPU

SSD
CPU
OS

GPU

SSD

Typical Server

May 2021

Not with the
traditional server-centric design

CPU

GPU

SSD
CPU
OS

GPU

SSD

CPU
OS

GPUSSD

Network

Typical Server

CPU Rack

Storage Rack GPU Rack

Fundamentally inefficient!Fundamentally inefficient!

May 2021

What's wrong with the server-centric
design ?

● A centralized OS is a
control/data
bottleneck

● I/O devices and
accelerators are
slaves

● Application control
and data planes are
centralized

May 2021

What's wrong with the server-centric
design ?

● A centralized OS is a
control/data
bottleneck

● I/O devices and
accelerators are
slaves

● Application control
and data planes are
centralized Needed Needed

disaggregation-native OS!disaggregation-native OS!

May 2021

FractOS: decentralized
disaggregation-native OS

CPU
App

GPUSSD Network

CPU Rack

Storage Rack GPU Rack

S
m

artN
IC

F
ractO

S
uK

erne l
S

m
ar

tN
IC

F
ra

ct
O

S
uK

er
ne

l

SmartNIC

FractOS
uKernel

Joint work with L Vilanova (Imperial), H. Haertig and his team (TU Dresden & Bakhausen)

May 2021

FractOS: decentralized
disaggregation-native OS

CPU
App

GPUSSD Network

CPU Rack

Storage Rack GPU Rack

S
m

artN
IC

F
ractO

S
uK

erne l
S

m
ar

tN
IC

F
ra

ct
O

S
uK

er
ne

l

SmartNIC

FractOS
uKernel

Joint work with L Vilanova (Imperial), H. Haertig and his team (TU Dresden & Bakhausen)

May 2021

FractOS: decentralized
disaggregation-native OS

CPU
App

GPUSSD Network

CPU Rack

Storage Rack GPU Rack

S
m

artN
IC

F
ractO

S
uK

erne l
S

m
ar

tN
IC

F
ra

ct
O

S
uK

er
ne

l

SmartNIC

FractOS
uKernel

Joint work with L Vilanova (Imperial), H. Haertig and his team (TU Dresden & Bakhausen)

May 2021

FractOS vs. OmniX

● Avoid CPU in data/control path

● Devices as first-class citizens

● Direct interaction among devices

● Transparent data-path optimizations

● Decentralized capability management

● Decentralized task graph execution

● Unified software/hardware interfaces

OmniX

May 2021

Summary

Same principles are useful for SGX [Eurosys17,USENIX ATC19]

and disaggregated data centers [FractOS]

● Future omni-programmable systems face
programmability wall

● Accelerator-centric OS architecture simplifies
programming and improves performance

● It exposes OS abstractions on accelerators

● Tightly integrates new abstractions with the host OS

Code available @ https://github.com/acsl-technion

May 2021

mark@ee.technion.ac.il
https://marksilberstein.com

Thank you!

mailto:mark@ee.technion.ac.il
https://marksilberstein.com/

