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Computer hardware: circa ~2019

Network I/O 
accelerator

Storage I/O accelerator

GPU parallel
accelerator



October 2019 Mark Silberstein,  Technion 8

Central Processing Units (CPUs) 
are no longer Central

Network I/O 
accelerator

Storage I/O accelerator

GPU parallel
accelerator

Programmability
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Omni-programmable system
X- Processing Units: XPUs

Network I/O 
accelerator

Storage I/O accelerator

GPU parallel
accelerator

Near-Data 
Processing

Near-Data 
Processing

Accelerated
Processing

Programmability
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But XPUs also create new walls!

Programmability 

wall
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Number of 
XPUs

Programming
complexity

CPU CPU+
GPU

CPU+
GPU+
Smart NIC

Hard to maintain
whole-application efficiency

multi-core
CPU

Numer of skillful
developers
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Number of 
XPUs

Programming
complexity

CPU CPU+
GPU

CPU+
GPU+
Smart NIC

Hard to maintain
whole-application efficiency

multi-core
CPU

Numer of skillful
developers

Underutilized hardware
Poor application performance

Low efficiency
High costs
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Agenda

● The root cause of the programmability wall
● OmniX: accelerator-centric OS design 

– Principles

– Examples

– CPU-less system design

– OS integration with inline processing
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Example: image server

1. put: parse → contrast-enhance →  store 
2. get: parse → resize → store → marshal

put
get

Similar architecture 
used in Filckr
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Example: image server

1. put: parse → contrast-enhance →  store 
2. get: parse → resize → store → marshal

NIC

SSD

GPU

CPU
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Accelerating with XPUs

1. put: parse → contrast-enhance →  store 
2. get: parse → resize → store → marshal

NIC

SSD

GPU

CPU
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Accelerating with NXUs

1. put: parse → contrast-enhance →  store 
2. get: parse → resize → store → marshal

NIC SSD GPU CPU
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Closer look at get

parse req

resize img
store img

marshal resp

SSD
NIC

 parse → resize → store → marshal
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send(resp)

marshal resp

OS services run on CPUs

SSDNIC

get: parse → resize → store → marshal

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)
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send(resp)

marshal resp

Result: offloading overheads dominate

SSDNIC

get: parse → resize → store → marshal

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)
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send(resp)

marshal resp

Result: offloading overheads dominate

SSDNIC

get: parse → resize → store → marshal

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)

No sockets, isolation, 
transport layer … 

No files, 
protection...
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THETHE problem:
OS architecture is CPU - centric 

GPU
Storage

XPU

CPU

Network
XPU
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THETHE problem is general:
OS architecture is CPU - centric 

GPU Storage
XPU

CPU

Network
XPU

Inference
XPU

….
XPU

Training
XPU
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 OmniX: accelerator-centric OS 
architecture
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marshal resp

nic_send(resp)

Execution in OmniX

NIC

get: parse → resize → store → marshal

sdd_read(img)parse req

resize img

sdd_write (img)

nic_recv(req)

SSD
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Accelerator-centric 
OS architecture
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Types of OS abstractions for 
accelerators

Accelerator-centric: no CPU in data/control path 

Accelerator-friendly: accelerator-aware host OS 

Data-centric: inline near-data processing
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Types of OS abstractions for 
accelerators

Accelerator-centric: no CPU in data/control path 

Accelerator-friendly: accelerator-aware host OS 

Data-centric: inline near-data processing

ASPLOS13,TOCS14,OSDI14,TOCS15,ISCA16,SYSTOR16,ROSS16,ATC17,HotOS17,ATC19,PACT19
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Storage

Network

GPU I/O services

CPU

O
S

 
S

e
rvices 

Operating system

OS Services

O
S

 
S

er
vi

ce
s 

GPU



October 2019 Mark Silberstein,  Technion 32

 GPUfs: File system library for GPUs

open(“shared_file”)
m

m
ap

()

open(“shared_file”)
w

rit
e(

)
Host File System

GPUfs

System-wide
shared namespace

CPUs GPU1 GPU2 GPU3

ASPLOS13: S., Keidar, Ford, Witchel
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GPUnet: Network library for GPUs

socket(AF_INET,SOCK_STREAM);
connect(“node0:2340”);

socket(AF_INET,SOCK_STREAM);
connect(“node0:2340”)

GPUnet

GPU  nativenative client

socket(AF_INET,SOCK_STREAM);
listen(:2340)

GPU nativenative server

node0.technion.ac.il

GPUnet

CPU client

Network

OSDI14
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Accelerator in full control over its I/O

● I/O without «leaving» the GPU kernel
● Data-driven access to huge DBs
● Full-blown multi-tier GPU network servers
● Multi-GPU Map/Reduce (no user CPU code)

● POSIX-like APIs with slightly modified 
semantics

● Transparency for the rest of the system
● Reduced code complexity
● Unleashed GPU performance potential
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Example: face verification server

=?

memcached
(unmodified)

GPU server
(GPUnet)

CPU client
(unmodified)
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Face verification: 
Different implementations

1 GPU
(no GPUnet)

1 GPU
GPUnet

CPU
6 cores

500

1000

1500

2000

2500

La
te

nc
y 

 (
μ

se
c)

34 5423

Throughput (KReq/sec)

1.9x throughput
1/3x latency
(500usec)

½ code size
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Face verification: 
Different implementations

1 GPU
(no GPUnet)

1 GPU
GPUnet

CPU
6 cores

500

1000

1500

2000

2500

La
te

nc
y 

 (
μ

se
c)

34 5423

Throughput (KReq/sec)

GPU is ineffective
with traditional design
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Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)
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● Single name space with the CPU OS
– Same socket space, same file name space
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Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

● Single name space with the CPU OS
– Same socket space, same file name space

● Extensive SW layer on the GPU 
– Handles massive API parallelism

– Implements consistency model (FS)

– Implements flow control (sockets)
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Optimized I/O: no CPU in data path

● SSD/NIC may perform DMA directly into/from 
GPU memory without the CPU (P2P DMA)

● Why?
– Lower latency 

– Less buffering/complexity for thpt

– No CPU involvement
GPU

NIC Memory

PCIe bus
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Optimized I/O: no CPU in data path

● SSD/NIC may perform DMA directly into/from 
GPU memory without the CPU (P2P DMA)

Challenge: the OS is on the CPU!
I/O device sharing, multiplexing, translation, 

transport layer

Examples: 
● Data from FS could be in the CPU page cache
● GPU and CPU both need to access the network
● TCP on GPU?
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Storage: OS integration of P2P  
between SSD and GPUs

● Regular OS file APIs may use GPU memory buffers
– mapping GPU memory into CPU address space

● Maintains POSIX FS consistency 
● Transparently fetches the page cache or P2P DMA
● Integrates with OS prefetcher
● Compatible with OS block layer  (i.e., software RAID)
● Results: 

– 5.2GB/s from SSDs to GPU

– 2-3x in applications

USENIX ATC17, partially adopted by NVIDIA
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Networking: offloading transport 
layer to the NIC (via RDMA)

CPU GPU

NIC

Message
buffers

Message
buffers

Reliable 
RDMA

Streaming
logic
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Transparent locality optimization

Host File System

GPUfs

CPUs GPU1 GPU2 GPU3

Distributed page cache
Weak (AFS-like)  FS semantics
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Summary so far...

● Basic GPU-centric I/O services 
– Simplify code development

– Enable transparent performance optimization

● Can we implement more advanced OS 
services?
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Hmm… what about memory 
mapped files?

● Useful abstraction
● We already have a page cache on the GPU
● We even have hardware page faults on the 

GPU, lets use them!
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Background: 
CPU handling of GPU page faults

 

GPU 
driver

CPU-managed Page Cache

Page fault
handler

1

2

3

HW VM Page Table

4
GPU

CPU OS
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GAIA: extending CPU page cache 
into GPU memory

● Enables  mmap for GPU 

● May cache/prefetch file data in GPU memory 
● Insights: 

– Slim GPU driver API for enabling host page cache integration

– Page cache consistency model

– OS page cache and Linux kernel modifications for 
consistency support

[USENIX ATC19]
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Question: can we use strong 
consistency in the page cache?

● Current practice in NVIDIA Unified Virtual 
Memory

● Single owner semantics: the page migrates to 
the requesting processor
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Question: can we use strong 
consistency in the page cache?

But GPU page is 64KB!
False sharing inevitable
(also in real applications)

● Current practice in NVIDIA Unified Virtual 
Memory

● Single owner semantics: the page migrates to 
the requesting processor
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Extreme false sharing is 
devastating 28x slowdown!
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It even affects CPU processes

No false sharing 
among GPUs

With false sharing

CPU-only run of an HPC workload
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Lazy Release Consistency to rescue

● Acquire-release to ensure update
● Version vectors for contention detection
● 3-way merge for conflict resolution
● Transparent for legacy CPU processes

int fd=open(«shared_file»);
void* ptr=mmap(…,ON_GPU,fd);
macquire(ptr);
gpu_kernel<<<>>>(ptr);
mrelease(ptr);

GPU management code on the CPU

40% app improvement
over strong consistency
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GPU HW page faults are good, 
but…

● CPU is involved in every GPU page fault

● CPU is the bottleneck with many page faults

● Requires CPU-GPU coordination for page cache 

management
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GPU HW page faults are good, 
but…

● CPU is involved in every GPU page fault

● CPU is the bottleneck with many page faults

● Requires CPU-GPU coordination for page cache 

management

Can we get rid of the CPU
in the page fault handling path?
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GPU-centric Virtual Memory management

● GPU manages its own 
page tables

 

Backing
store

3

2

GPU Page Table
GPU Page Cache

Page fault
handler

GPU 
address translation

1

4

HW VM 
Page Table

GPU

Peer-processor

Data and control path 
and OS I/O abstractions

by the GPU

ISCA16, Operating Systems Review 2018
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GPU-centric Virtual Memory management

● GPU manages its own 
page tables

Implementation:
● Software address 

translation
● Overheads hidden 

thanks to HW 
multithreading

 

Backing
store

3

2

GPU Page Table
GPU Page Cache

Page fault
handler

GPU 
address translation

1

4

HW VM 
Page Table

GPU

Peer-processor

Data and control path 
and OS I/O abstractions

by the GPU

ISCA16, Operating Systems Review 2018
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GPU-centric Virtual Memory management

● Application: Image collage
● GPU mmaps a 40GB DB file, data-driven accesses



October 2019 Mark Silberstein,  Technion 62

GPU-centric Virtual Memory management

● Application: Image collage
● GPU mmaps a 40GB DB file, data-driven accesses

0

1

2

3

4

GPU-centric
CPU (12 cores + AVX)
Traditional
GPU PFsS

lo
w

d
o

w
n

2x faster than GPU HW page faults
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GPU-centric Virtual Memory management

● Application: Image collage
● GPU mmaps a 40GB DB file, data-driven accesses

0

1

2

3

4

GPU-centric
CPU (12 cores + AVX)
Traditional
GPU PFsS

lo
w

d
o

w
n

Traditional GPU implementation is 
slower than the CPU-only one
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Summary so far

● GPU-centric I/O services 
– Simplify code development

– Enable transparent performance optimization

– Leverage new hardware features

● Eliminate CPU from data path
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Summary so far

● GPU-centric I/O services 
– Simplify code development

– Enable transparent performance optimization

– Leverage new hardware features

● Eliminate CPU from data path

Can we get rid of the CPU in 
control path too?
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Operating system

CPU

CPU-less design: 
no CPU in control and data path

OS Services

O
S

 
S

er
vi

ce
s 

GPU Storage
NXU

Network
XPU

O
S

 
S

e
rvices 

Lower latency (no CPU roundtrip)
Better scalability (no CPU load)
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GPUrdma: direct GPU access to RDMA

CPU 
not 

involved

ROSS16, partially adopted by NVIDIA
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GPU-to-GPU roundtrip latency via Infiniband

GPUnet (CPU-mediated RDMA):      50 usec

GPUrdma (NIC controlled by GPU):  5 usec 

CPU-less design: lower latency

GPUrdma: direct GPU access to RDMA
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The case for CPU-less multi-GPU
server design

Image Similarity Search

S3

S2

S1

Brute 
force

search

Choose
best

Cluster
KNN

Brute 
force

search

Brute 
force

search

Client
request

Client
response
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Traditional design: 
CPU controls GPU invocation and 

data movements

S3

S2

S1

Brute 
force

search

Choose
best

Cluster
KNN

Brute 
force

search

Brute 
force

search

Client
request

Client
response

Offload to 
multiple GPUs
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Traditional design: 
CPU controls GPU invocation and 

data movements
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Lets add more CPU cores
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12 CPU cores needed!
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12 CPUs are not enough to scale!
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12 CPUs are not enough to scale!

The problem is inherent in the CPU-driven design
[PACT19]
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NVIDIA's DGX-2 GPU servers are 
CPU beasts!
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The case for CPU-less multi-GPU 
server design 

PACT 19

S3

S2

S1

Brute 
force

search

Choose
best

Cluster
KNN

Brute 
force

search

Brute 
force

search

G
P

U
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Client
request

G
P

U
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Client
response

GPU-side inter-GPU
pipes

GPU-side request
scheduler
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CPU-less Multi-GPU network server

Standard
CPU-driven

design

CPU-less
design

CPU-less design: better scaling
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CPU's role
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Summary so far

● GPU-centric I/O services 
– Simplify code development

– Enable transparent performance optimization

– Can leverage new hardware features

● Eliminate CPU from data path
● Eliminate CPU from control path

– it does not make sense in all cases though
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But.. there are still issues

● GPUs are bad at system software 
– Function calls are extremely slow

– Large code base causes slowdowns

– No preemption, even not software-only

● GPU access to PCIe is slow
– even writes block multiple threads for a few usec
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But.. there are still issues

● GPUs are bad at system software 
– Function calls are extremely slow

– Large code base causes slowdowns

– No preemption, even not software-only

● GPU access to PCIe is slow
– even writes block multiple threads for a few usec

We have a very cool solution, but..
[anonymized]
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Types of OS abstractions for 
accelerators

Accelerator-centric: no CPU in data/control path 

Accelerator-friendly: accelerator-aware host OS 

Data-centric: inline near-data processing
SFMA17, SFMA18, FCCM19, USENIX ATC19
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Smart Network Adapters

Inline processing at wire speed!
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Main applications today

● Network infrastructure offloads

– virtual networking, encryption, compression, SDN, NFV

● Stand-alone application accelerators 

– DNNWeaver, Bing, BrainWave

 

Our goal: 
Server logic acceleration for cloud tenants
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Example: Edge IoT server

Clients Parse Authenticate
Aggregate Alarm

● Aggregate data from sensors, warn on anomaly
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Example: IoT server 
inline application offload

Clients

CPUExecuted on SmartNIC

Drop invalid requests

Parse Authenticate
Aggregate Alarm
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Example: IoT server 
inline application offload

Clients

CPUExecuted on SmartNIC

Drop invalid requests

Parse Authenticate
Aggregate Alarm

 Application logic at
(up to) line-rate
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Example: IoT server 
inline application offload

Clients

CPUExecuted on SmartNIC

Drop invalid requests

Parse Authenticate
Aggregate Alarm

May entirely eliminate
the host involvement
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Goal: application offload
● Low, predictable latency
● High power efficiency
● Free CPU (and its caches) for other tasks
● Multi-tenancy support

These goals are essential for
data center applications
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Systems we discussed so far...

Look-aside 
accelerators

Stand-alone
accelerators
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Inline acceleration is different!

Transparent inline acceleration

Accelerator
+
NIC
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Challenges

● Processing needs to be managed by the host
● No OS abstractions
● No protection, isolation, virtualization
● No integration with other accelerators



October 2019 Mark Silberstein,  Technion 94

NICA: Application offload to 
SmartNICs in data centers

● Insight: 

– Applications are complex, offload only 
performance-critical logic

● Our abstraction enables partial offloading 

● Programming model tightly integrates with 
sockets API

● In-NIC runtime

● Virtualization support for performance isolation

USENIX ATC19
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Virtualized KVS cache in the NIC

Linear scaling 

● Only 130 lines of 
code changed in 
memcached 

● 2.1usec hit latency 
(20x faster than 
CPU)

● 5x speedup at 90% 
hit rate
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Summary

● Future omni-programmable systems face 
programmability wall

● Accelerator-centric OS architecture simplifies  
programming and improves performance

● It exposes OS abstractions on accelerators

● Tightly integrates new abstractions with the host OS
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Summary

Same principles are useful for SGX [Eurosys17,USENIX ATC19]

and disaggregated data centers [SFMA19, ongoing]

● Future omni-programmable systems face 
programmability wall

● Accelerator-centric OS architecture simplifies  
programming and improves performance

● It exposes OS abstractions on accelerators

● Tightly integrates new abstractions with the host OS

Code available @ https://github.com/acsl-technion
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Haggai Eran, Amir Watad, Shai Bergman, Tanya Brokhman, Lior Zeno, 
Maroun Tork, Meni Orenbach, Lev Rosenblit, Alon Rashelbach, Pavel 
Lifshits, Gabi Malka, Lina Maudlej

OmniX is an ongoing work in 



October 2019 Mark Silberstein,  Technion 99

Haggai Eran, Amir Watad, Shai Bergman, Tanya Brokhman, Lior Zeno, 
Maroun Tork, Meni Orenbach, Lev Rosenblit, Alon Rashelbach, Pavel 
Lifshits, Gabi Malka, Lina Maudlej

OmniX is an ongoing work in 

You?
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But only if you are ready to climb higher!

mark@ee.technion.ac.il
https://sites.google.com/site/silbersteinmark

Thank you!


