
Omnix: an accelerator-centric
OS architecture for

omni-programmable systems

Rethinking the role of CPUs in modern computers

Mark Silberstein

Technion

October 2019
EPFL

October 2019 Mark Silberstein, Technion 7

Computer hardware: circa ~2019

Network I/O
accelerator

Storage I/O accelerator

GPU parallel
accelerator

October 2019 Mark Silberstein, Technion 8

Central Processing Units (CPUs)
are no longer Central

Network I/O
accelerator

Storage I/O accelerator

GPU parallel
accelerator

Programmability

October 2019 Mark Silberstein, Technion 9

Omni-programmable system
X- Processing Units: XPUs

Network I/O
accelerator

Storage I/O accelerator

GPU parallel
accelerator

Near-Data
Processing

Near-Data
Processing

Accelerated
Processing

Programmability

October 2019 Mark Silberstein, Technion 12

But XPUs also create new walls!

Programmability

wall

October 2019 Mark Silberstein, Technion 13

Number of
XPUs

Programming
complexity

CPU CPU+
GPU

CPU+
GPU+
Smart NIC

Hard to maintain
whole-application efficiency

multi-core
CPU

Numer of skillful
developers

October 2019 Mark Silberstein, Technion 14

Number of
XPUs

Programming
complexity

CPU CPU+
GPU

CPU+
GPU+
Smart NIC

Hard to maintain
whole-application efficiency

multi-core
CPU

Numer of skillful
developers

Underutilized hardware
Poor application performance

Low efficiency
High costs

October 2019 Mark Silberstein, Technion 15

Agenda

● The root cause of the programmability wall
● OmniX: accelerator-centric OS design

– Principles

– Examples

– CPU-less system design

– OS integration with inline processing

October 2019 Mark Silberstein, Technion 16

Example: image server

1. put: parse → contrast-enhance → store
2. get: parse → resize → store → marshal

put
get

Similar architecture
used in Filckr

October 2019 Mark Silberstein, Technion 17

Example: image server

1. put: parse → contrast-enhance → store
2. get: parse → resize → store → marshal

NIC

SSD

GPU

CPU

October 2019 Mark Silberstein, Technion 18

Accelerating with XPUs

1. put: parse → contrast-enhance → store
2. get: parse → resize → store → marshal

NIC

SSD

GPU

CPU

October 2019 Mark Silberstein, Technion 19

Accelerating with NXUs

1. put: parse → contrast-enhance → store
2. get: parse → resize → store → marshal

NIC SSD GPU CPU

October 2019 Mark Silberstein, Technion 20

Closer look at get

parse req

resize img
store img

marshal resp

SSD
NIC

 parse → resize → store → marshal

October 2019 Mark Silberstein, Technion 21

send(resp)

marshal resp

OS services run on CPUs

SSDNIC

get: parse → resize → store → marshal

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)

October 2019 Mark Silberstein, Technion 22

send(resp)

marshal resp

Result: offloading overheads dominate

SSDNIC

get: parse → resize → store → marshal

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)

October 2019 Mark Silberstein, Technion 23

send(resp)

marshal resp

Result: offloading overheads dominate

SSDNIC

get: parse → resize → store → marshal

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)

No sockets, isolation,
transport layer …

No files,
protection...

October 2019 Mark Silberstein, Technion 24

THETHE problem:
OS architecture is CPU - centric

GPU
Storage

XPU

CPU

Network
XPU

October 2019 Mark Silberstein, Technion 25

THETHE problem is general:
OS architecture is CPU - centric

GPU Storage
XPU

CPU

Network
XPU

Inference
XPU

….
XPU

Training
XPU

October 2019 Mark Silberstein, Technion 26

 OmniX: accelerator-centric OS
architecture

CPU

O
S

S

e
rvices

Operating system

OS Services

O
S

S

e
rv

ic
es

GPU Storage
XPU

Network
XPU

October 2019 Mark Silberstein, Technion 27

marshal resp

nic_send(resp)

Execution in OmniX

NIC

get: parse → resize → store → marshal

sdd_read(img)parse req

resize img

sdd_write (img)

nic_recv(req)

SSD

October 2019 Mark Silberstein, Technion 28

Accelerator-centric
OS architecture

October 2019 Mark Silberstein, Technion 29

Types of OS abstractions for
accelerators

Accelerator-centric: no CPU in data/control path

Accelerator-friendly: accelerator-aware host OS

Data-centric: inline near-data processing

October 2019 Mark Silberstein, Technion 30

Types of OS abstractions for
accelerators

Accelerator-centric: no CPU in data/control path

Accelerator-friendly: accelerator-aware host OS

Data-centric: inline near-data processing

ASPLOS13,TOCS14,OSDI14,TOCS15,ISCA16,SYSTOR16,ROSS16,ATC17,HotOS17,ATC19,PACT19

October 2019 Mark Silberstein, Technion 31

Storage

Network

GPU I/O services

CPU

O
S

S

e
rvices

Operating system

OS Services

O
S

S

er
vi

ce
s

GPU

October 2019 Mark Silberstein, Technion 32

 GPUfs: File system library for GPUs

open(“shared_file”)
m

m
ap

()

open(“shared_file”)
w

rit
e(

)
Host File System

GPUfs

System-wide
shared namespace

CPUs GPU1 GPU2 GPU3

ASPLOS13: S., Keidar, Ford, Witchel

October 2019 Mark Silberstein, Technion 33

GPUnet: Network library for GPUs

socket(AF_INET,SOCK_STREAM);
connect(“node0:2340”);

socket(AF_INET,SOCK_STREAM);
connect(“node0:2340”)

GPUnet

GPU nativenative client

socket(AF_INET,SOCK_STREAM);
listen(:2340)

GPU nativenative server

node0.technion.ac.il

GPUnet

CPU client

Network

OSDI14

October 2019 Mark Silberstein, Technion 34

Accelerator in full control over its I/O

● I/O without «leaving» the GPU kernel
● Data-driven access to huge DBs
● Full-blown multi-tier GPU network servers
● Multi-GPU Map/Reduce (no user CPU code)

● POSIX-like APIs with slightly modified
semantics

● Transparency for the rest of the system
● Reduced code complexity
● Unleashed GPU performance potential

October 2019 Mark Silberstein, Technion 35

Example: face verification server

=?

memcached
(unmodified)

GPU server
(GPUnet)

CPU client
(unmodified)

October 2019 Mark Silberstein, Technion 36

Face verification:
Different implementations

1 GPU
(no GPUnet)

1 GPU
GPUnet

CPU
6 cores

500

1000

1500

2000

2500

La
te

nc
y

 (
μ

se
c)

34 5423

Throughput (KReq/sec)

1.9x throughput
1/3x latency
(500usec)

½ code size

October 2019 Mark Silberstein, Technion 37

Face verification:
Different implementations

1 GPU
(no GPUnet)

1 GPU
GPUnet

CPU
6 cores

500

1000

1500

2000

2500

La
te

nc
y

 (
μ

se
c)

34 5423

Throughput (KReq/sec)

GPU is ineffective
with traditional design

October 2019 Mark Silberstein, Technion 38

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

October 2019 Mark Silberstein, Technion 39

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

● Single name space with the CPU OS
– Same socket space, same file name space

October 2019 Mark Silberstein, Technion 40

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

● Single name space with the CPU OS
– Same socket space, same file name space

● Extensive SW layer on the GPU
– Handles massive API parallelism

– Implements consistency model (FS)

– Implements flow control (sockets)

October 2019 Mark Silberstein, Technion 41

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

● Single name space with the CPU OS
– Same socket space, same file name space

● Extensive SW layer on the GPU
– Handles massive API parallelism

– Implements consistency model (FS)

– Implements flow control (sockets)

● Seamless data path optimization
– Eliminates CPU from data path

– Exploits data locality

October 2019 Mark Silberstein, Technion 42

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

● Single name space with the CPU OS
– Same socket space, same file name space

● Extensive SW layer on the GPU
– Handles massive API parallelism

– Implements consistency model (FS)

– Implements flow control (sockets)

● Seamless data path optimization
– Eliminates CPU from data path

– Explits data locality

October 2019 Mark Silberstein, Technion 43

Optimized I/O: no CPU in data path

● SSD/NIC may perform DMA directly into/from
GPU memory without the CPU (P2P DMA)

● Why?
– Lower latency

– Less buffering/complexity for thpt

– No CPU involvement
GPU

NIC Memory

PCIe bus

October 2019 Mark Silberstein, Technion 44

Optimized I/O: no CPU in data path

● SSD/NIC may perform DMA directly into/from
GPU memory without the CPU (P2P DMA)

Challenge: the OS is on the CPU!
I/O device sharing, multiplexing, translation,

transport layer

Examples:
● Data from FS could be in the CPU page cache
● GPU and CPU both need to access the network
● TCP on GPU?

October 2019 Mark Silberstein, Technion 45

Storage: OS integration of P2P
between SSD and GPUs

● Regular OS file APIs may use GPU memory buffers
– mapping GPU memory into CPU address space

● Maintains POSIX FS consistency
● Transparently fetches the page cache or P2P DMA
● Integrates with OS prefetcher
● Compatible with OS block layer (i.e., software RAID)
● Results:

– 5.2GB/s from SSDs to GPU

– 2-3x in applications

USENIX ATC17, partially adopted by NVIDIA

October 2019 Mark Silberstein, Technion 46

Networking: offloading transport
layer to the NIC (via RDMA)

CPU GPU

NIC

Message
buffers

Message
buffers

Reliable
RDMA

Streaming
logic

October 2019 Mark Silberstein, Technion 47

Transparent locality optimization

Host File System

GPUfs

CPUs GPU1 GPU2 GPU3

Distributed page cache
Weak (AFS-like) FS semantics

October 2019 Mark Silberstein, Technion 48

Summary so far...

● Basic GPU-centric I/O services
– Simplify code development

– Enable transparent performance optimization

● Can we implement more advanced OS
services?

October 2019 Mark Silberstein, Technion 49

Hmm… what about memory
mapped files?

● Useful abstraction
● We already have a page cache on the GPU
● We even have hardware page faults on the

GPU, lets use them!

October 2019 Mark Silberstein, Technion 50

Background:
CPU handling of GPU page faults

GPU
driver

CPU-managed Page Cache

Page fault
handler

1

2

3

HW VM Page Table

4
GPU

CPU OS

October 2019 Mark Silberstein, Technion 51

GAIA: extending CPU page cache
into GPU memory

● Enables mmap for GPU

● May cache/prefetch file data in GPU memory
● Insights:

– Slim GPU driver API for enabling host page cache integration

– Page cache consistency model

– OS page cache and Linux kernel modifications for
consistency support

[USENIX ATC19]

October 2019 Mark Silberstein, Technion 52

Question: can we use strong
consistency in the page cache?

● Current practice in NVIDIA Unified Virtual
Memory

● Single owner semantics: the page migrates to
the requesting processor

October 2019 Mark Silberstein, Technion 53

Question: can we use strong
consistency in the page cache?

But GPU page is 64KB!
False sharing inevitable
(also in real applications)

● Current practice in NVIDIA Unified Virtual
Memory

● Single owner semantics: the page migrates to
the requesting processor

October 2019 Mark Silberstein, Technion 54

Extreme false sharing is
devastating 28x slowdown!

October 2019 Mark Silberstein, Technion 55

It even affects CPU processes

No false sharing
among GPUs

With false sharing

CPU-only run of an HPC workload

October 2019 Mark Silberstein, Technion 56

Lazy Release Consistency to rescue

● Acquire-release to ensure update
● Version vectors for contention detection
● 3-way merge for conflict resolution
● Transparent for legacy CPU processes

int fd=open(«shared_file»);
void* ptr=mmap(…,ON_GPU,fd);
macquire(ptr);
gpu_kernel<<<>>>(ptr);
mrelease(ptr);

GPU management code on the CPU

40% app improvement
over strong consistency

October 2019 Mark Silberstein, Technion 57

GPU HW page faults are good,
but…

● CPU is involved in every GPU page fault

● CPU is the bottleneck with many page faults

● Requires CPU-GPU coordination for page cache

management

October 2019 Mark Silberstein, Technion 58

GPU HW page faults are good,
but…

● CPU is involved in every GPU page fault

● CPU is the bottleneck with many page faults

● Requires CPU-GPU coordination for page cache

management

Can we get rid of the CPU
in the page fault handling path?

October 2019 Mark Silberstein, Technion 59

GPU-centric Virtual Memory management

● GPU manages its own
page tables

Backing
store

3

2

GPU Page Table
GPU Page Cache

Page fault
handler

GPU
address translation

1

4

HW VM
Page Table

GPU

Peer-processor

Data and control path
and OS I/O abstractions

by the GPU

ISCA16, Operating Systems Review 2018

October 2019 Mark Silberstein, Technion 60

GPU-centric Virtual Memory management

● GPU manages its own
page tables

Implementation:
● Software address

translation
● Overheads hidden

thanks to HW
multithreading

Backing
store

3

2

GPU Page Table
GPU Page Cache

Page fault
handler

GPU
address translation

1

4

HW VM
Page Table

GPU

Peer-processor

Data and control path
and OS I/O abstractions

by the GPU

ISCA16, Operating Systems Review 2018

October 2019 Mark Silberstein, Technion 61

GPU-centric Virtual Memory management

● Application: Image collage
● GPU mmaps a 40GB DB file, data-driven accesses

October 2019 Mark Silberstein, Technion 62

GPU-centric Virtual Memory management

● Application: Image collage
● GPU mmaps a 40GB DB file, data-driven accesses

0

1

2

3

4

GPU-centric
CPU (12 cores + AVX)
Traditional
GPU PFsS

lo
w

d
o

w
n

2x faster than GPU HW page faults

October 2019 Mark Silberstein, Technion 63

GPU-centric Virtual Memory management

● Application: Image collage
● GPU mmaps a 40GB DB file, data-driven accesses

0

1

2

3

4

GPU-centric
CPU (12 cores + AVX)
Traditional
GPU PFsS

lo
w

d
o

w
n

Traditional GPU implementation is
slower than the CPU-only one

October 2019 Mark Silberstein, Technion 64

Summary so far

● GPU-centric I/O services
– Simplify code development

– Enable transparent performance optimization

– Leverage new hardware features

● Eliminate CPU from data path

October 2019 Mark Silberstein, Technion 65

Summary so far

● GPU-centric I/O services
– Simplify code development

– Enable transparent performance optimization

– Leverage new hardware features

● Eliminate CPU from data path

Can we get rid of the CPU in
control path too?

October 2019 Mark Silberstein, Technion 66

Operating system

CPU

CPU-less design:
no CPU in control and data path

OS Services

O
S

S

er
vi

ce
s

GPU Storage
NXU

Network
XPU

O
S

S

e
rvices

Lower latency (no CPU roundtrip)
Better scalability (no CPU load)

October 2019 Mark Silberstein, Technion 67

GPUrdma: direct GPU access to RDMA

CPU
not

involved

ROSS16, partially adopted by NVIDIA

October 2019 Mark Silberstein, Technion 68

GPU-to-GPU roundtrip latency via Infiniband

GPUnet (CPU-mediated RDMA): 50 usec

GPUrdma (NIC controlled by GPU): 5 usec

CPU-less design: lower latency

GPUrdma: direct GPU access to RDMA

October 2019 Mark Silberstein, Technion 69

The case for CPU-less multi-GPU
server design

Image Similarity Search

S3

S2

S1

Brute
force

search

Choose
best

Cluster
KNN

Brute
force

search

Brute
force

search

Client
request

Client
response

October 2019 Mark Silberstein, Technion 70

Traditional design:
CPU controls GPU invocation and

data movements

S3

S2

S1

Brute
force

search

Choose
best

Cluster
KNN

Brute
force

search

Brute
force

search

Client
request

Client
response

Offload to
multiple GPUs

October 2019 Mark Silberstein, Technion 71

Traditional design:
CPU controls GPU invocation and

data movements

October 2019 Mark Silberstein, Technion 72

Lets add more CPU cores

October 2019 Mark Silberstein, Technion 73

12 CPU cores needed!

October 2019 Mark Silberstein, Technion 74

12 CPUs are not enough to scale!

October 2019 Mark Silberstein, Technion 75

12 CPUs are not enough to scale!

The problem is inherent in the CPU-driven design
[PACT19]

October 2019 Mark Silberstein, Technion 76

NVIDIA's DGX-2 GPU servers are
CPU beasts!

October 2019 Mark Silberstein, Technion 77

The case for CPU-less multi-GPU
server design

PACT 19

S3

S2

S1

Brute
force

search

Choose
best

Cluster
KNN

Brute
force

search

Brute
force

search

G
P

U
ne

t

Client
request

G
P

U
ne

t

Client
response

GPU-side inter-GPU
pipes

GPU-side request
scheduler

October 2019 Mark Silberstein, Technion 78

CPU-less Multi-GPU network server

Standard
CPU-driven

design

CPU-less
design

CPU-less design: better scaling

October 2019 Mark Silberstein, Technion 79

CPU's role

October 2019 Mark Silberstein, Technion 80

Summary so far

● GPU-centric I/O services
– Simplify code development

– Enable transparent performance optimization

– Can leverage new hardware features

● Eliminate CPU from data path
● Eliminate CPU from control path

– it does not make sense in all cases though

October 2019 Mark Silberstein, Technion 81

But.. there are still issues

● GPUs are bad at system software
– Function calls are extremely slow

– Large code base causes slowdowns

– No preemption, even not software-only

● GPU access to PCIe is slow
– even writes block multiple threads for a few usec

October 2019 Mark Silberstein, Technion 82

But.. there are still issues

● GPUs are bad at system software
– Function calls are extremely slow

– Large code base causes slowdowns

– No preemption, even not software-only

● GPU access to PCIe is slow
– even writes block multiple threads for a few usec

We have a very cool solution, but..
[anonymized]

October 2019 Mark Silberstein, Technion 83

Types of OS abstractions for
accelerators

Accelerator-centric: no CPU in data/control path

Accelerator-friendly: accelerator-aware host OS

Data-centric: inline near-data processing
SFMA17, SFMA18, FCCM19, USENIX ATC19

October 2019 Mark Silberstein, Technion 84

Smart Network Adapters

Inline processing at wire speed!

October 2019 Mark Silberstein, Technion 85

Main applications today

● Network infrastructure offloads

– virtual networking, encryption, compression, SDN, NFV

● Stand-alone application accelerators

– DNNWeaver, Bing, BrainWave

Our goal:
Server logic acceleration for cloud tenants

October 2019 Mark Silberstein, Technion 86

Example: Edge IoT server

Clients Parse Authenticate
Aggregate Alarm

● Aggregate data from sensors, warn on anomaly

October 2019 Mark Silberstein, Technion 87

Example: IoT server
inline application offload

Clients

CPUExecuted on SmartNIC

Drop invalid requests

Parse Authenticate
Aggregate Alarm

October 2019 Mark Silberstein, Technion 88

Example: IoT server
inline application offload

Clients

CPUExecuted on SmartNIC

Drop invalid requests

Parse Authenticate
Aggregate Alarm

 Application logic at
(up to) line-rate

October 2019 Mark Silberstein, Technion 89

Example: IoT server
inline application offload

Clients

CPUExecuted on SmartNIC

Drop invalid requests

Parse Authenticate
Aggregate Alarm

May entirely eliminate
the host involvement

October 2019 Mark Silberstein, Technion 90

Goal: application offload
● Low, predictable latency
● High power efficiency
● Free CPU (and its caches) for other tasks
● Multi-tenancy support

These goals are essential for
data center applications

October 2019 Mark Silberstein, Technion 91

Systems we discussed so far...

Look-aside
accelerators

Stand-alone
accelerators

October 2019 Mark Silberstein, Technion 92

Inline acceleration is different!

Transparent inline acceleration

Accelerator
+
NIC

October 2019 Mark Silberstein, Technion 93

Challenges

● Processing needs to be managed by the host
● No OS abstractions
● No protection, isolation, virtualization
● No integration with other accelerators

October 2019 Mark Silberstein, Technion 94

NICA: Application offload to
SmartNICs in data centers

● Insight:

– Applications are complex, offload only
performance-critical logic

● Our abstraction enables partial offloading

● Programming model tightly integrates with
sockets API

● In-NIC runtime

● Virtualization support for performance isolation

USENIX ATC19

October 2019 Mark Silberstein, Technion 95

Virtualized KVS cache in the NIC

Linear scaling

● Only 130 lines of
code changed in
memcached

● 2.1usec hit latency
(20x faster than
CPU)

● 5x speedup at 90%
hit rate

October 2019 Mark Silberstein, Technion 96

Summary

● Future omni-programmable systems face
programmability wall

● Accelerator-centric OS architecture simplifies
programming and improves performance

● It exposes OS abstractions on accelerators

● Tightly integrates new abstractions with the host OS

October 2019 Mark Silberstein, Technion 97

Summary

Same principles are useful for SGX [Eurosys17,USENIX ATC19]

and disaggregated data centers [SFMA19, ongoing]

● Future omni-programmable systems face
programmability wall

● Accelerator-centric OS architecture simplifies
programming and improves performance

● It exposes OS abstractions on accelerators

● Tightly integrates new abstractions with the host OS

Code available @ https://github.com/acsl-technion

October 2019 Mark Silberstein, Technion 98

Haggai Eran, Amir Watad, Shai Bergman, Tanya Brokhman, Lior Zeno,
Maroun Tork, Meni Orenbach, Lev Rosenblit, Alon Rashelbach, Pavel
Lifshits, Gabi Malka, Lina Maudlej

OmniX is an ongoing work in

October 2019 Mark Silberstein, Technion 99

Haggai Eran, Amir Watad, Shai Bergman, Tanya Brokhman, Lior Zeno,
Maroun Tork, Meni Orenbach, Lev Rosenblit, Alon Rashelbach, Pavel
Lifshits, Gabi Malka, Lina Maudlej

OmniX is an ongoing work in

You?

October 2019 Mark Silberstein, Technion 100

But only if you are ready to climb higher!

mark@ee.technion.ac.il
https://sites.google.com/site/silbersteinmark

Thank you!

