
GPU native I/0 2.0

Leveraging new hardware for
efficient GPU I/O abstractions

Mark Silberstein

Technion

November 2019
NVIDIA

November 2019 Mark Silberstein, Technion 2

Central Processing Units (CPUs)
are no longer Central

Network I/O
accelerator

Storage I/O accelerator

GPU parallel
accelerator

Programmability

November 2019 Mark Silberstein, Technion 3

Omni-programmable system
X- Processing Units: XPUs

Network I/O
accelerator

Storage I/O accelerator

GPU parallel
accelerator

Near-Data
Processing

Near-Data
Processing

Accelerated
Processing

Programmability

November 2019 Mark Silberstein, Technion 4

But XPUs also create new walls!

Programmability

wall

November 2019 Mark Silberstein, Technion 5

THETHE problem is general:
OS architecture is CPU - centric

GPU Storage
XPU

CPU

Network
XPU

Inference
XPU

….
XPU

Training
XPU

November 2019 Mark Silberstein, Technion 6

 OmniX: accelerator-centric OS
architecture

CPU

O
S

S

e
rvices

Operating system

OS Services

O
S

S

e
rv

ic
es

GPU Storage
XPU

Network
XPU

HotOS17

November 2019 Mark Silberstein, Technion 7

Accelerator-centric
OS architecture

November 2019 Mark Silberstein, Technion 8

Types of OS abstractions for
accelerators

Accelerator-centric: no CPU in data/control path

Accelerator-friendly: accelerator-aware host OS

Data-centric: inline near-data processing

November 2019 Mark Silberstein, Technion 9

Types of OS abstractions for
accelerators

Accelerator-centric: no CPU in data/control path

Accelerator-friendly: accelerator-aware host OS

Data-centric: inline near-data processing

ASPLOS13,TOCS14,OSDI14,TOCS15,ISCA16,SYSTOR16,ROSS16,ATC17,HotOS17,ATC19,PACT19

SFMA17, SFMA18, FCCM19, USENIX ATC19

November 2019 Mark Silberstein, Technion 10

Storage

Network

GPU I/O services V1.0

CPU

O
S

S

e
rvices

Operating system

OS Services

O
S

S

er
vi

ce
s

GPU

November 2019 Mark Silberstein, Technion 11

 GPUfs: File system library for GPUs

open(“shared_file”)
m

m
ap

()

open(“shared_file”)
w

rit
e(

)
Host File System

GPUfs

System-wide
shared namespace

CPUs GPU1 GPU2 GPU3

ASPLOS13: S., Keidar, Ford, Witchel

November 2019 Mark Silberstein, Technion 12

GPUnet: Network library for GPUs

socket(AF_INET,SOCK_STREAM);
connect(“node0:2340”);

socket(AF_INET,SOCK_STREAM);
connect(“node0:2340”)

GPUnet

GPU nativenative client

socket(AF_INET,SOCK_STREAM);
listen(:2340)

GPU nativenative server

node0.technion.ac.il

GPUnet

CPU client

Network

OSDI14

November 2019 Mark Silberstein, Technion 13

Accelerator in full control over its I/O

● I/O without «leaving» the GPU kernel
● Data-driven access to huge DBs
● Full-blown multi-tier GPU network servers
● Multi-GPU Map/Reduce (no user CPU code)

● POSIX-like APIs with slightly modified
semantics

● Transparency for the rest of the system
● Reduced code complexity
● Unleashed GPU performance potential

November 2019 Mark Silberstein, Technion 14

Example: face verification server

=?

memcached
(unmodified)

GPU server
(GPUnet)

CPU client
(unmodified)

November 2019 Mark Silberstein, Technion 15

Face verification:
Different implementations

1 GPU
(no GPUnet)

1 GPU
GPUnet

CPU
6 cores

500

1000

1500

2000

2500

La
te

nc
y

 (
μ

se
c)

34 5423

Throughput (KReq/sec)

1.9x throughput
1/3x latency
(500usec)

½ code size

November 2019 Mark Silberstein, Technion 16

Face verification:
Different implementations

1 GPU
(no GPUnet)

1 GPU
GPUnet

CPU
6 cores

500

1000

1500

2000

2500

La
te

nc
y

 (
μ

se
c)

34 5423

Throughput (KReq/sec)

GPU is ineffective
with traditional design

November 2019 Mark Silberstein, Technion 17

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

November 2019 Mark Silberstein, Technion 18

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

● Single name space with the CPU OS
– Same socket space, same file name space

November 2019 Mark Silberstein, Technion 19

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

● Single name space with the CPU OS
– Same socket space, same file name space

● Extensive SW layer on the GPU
– Handles massive API parallelism

– Implements consistency model (FS)

– Implements flow control (sockets)

November 2019 Mark Silberstein, Technion 20

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

● Single name space with the CPU OS
– Same socket space, same file name space

● Extensive SW layer on the GPU
– Handles massive API parallelism

– Implements consistency model (FS)

– Implements flow control (sockets)

● Seamless data path optimization
– Eliminates CPU from data path

– Exploits data locality

November 2019 Mark Silberstein, Technion 21

Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)

● Single name space with the CPU OS
– Same socket space, same file name space

● Extensive SW layer on the GPU
– Handles massive API parallelism

– Implements consistency model (FS)

– Implements flow control (sockets)

● Seamless data path optimization
– Eliminates CPU from data path

– Exploits data locality

November 2019 Mark Silberstein, Technion 22

Optimized I/O: no CPU in data path

● SSD/NIC may perform DMA directly into/from
GPU memory without the CPU (P2P DMA)

● Why?
– Lower latency

– Less buffering/complexity for thpt

– No CPU involvement
GPU

NIC Memory

PCIe bus

November 2019 Mark Silberstein, Technion 23

Optimized I/O: no CPU in data path

● SSD/NIC may perform DMA directly into/from
GPU memory without the CPU (P2P DMA)

Challenge: the OS is on the CPU!
I/O device sharing, multiplexing, translation,

transport layer

Examples:
● Data from FS could be in the CPU page cache
● GPU and CPU both need to access the network
● TCP on GPU?

November 2019 Mark Silberstein, Technion 24

Storage: OS integration of P2P
between SSD and GPUs

● Regular OS file APIs may use GPU memory buffers
– mapping GPU memory into CPU address space

● Maintains POSIX FS consistency
● Transparently fetches the page cache or P2P DMA
● Integrates with OS prefetcher
● Compatible with OS block layer (i.e., software RAID)
● Results:

– 5.2GB/s from SSDs to GPU

– 2-3x in applications

USENIX ATC17, similar NVIDIA product in 2019

November 2019 Mark Silberstein, Technion 25

Networking: offloading transport
layer to the NIC (via RDMA)

CPU GPU

NIC

Message
buffers

Message
buffers

Reliable
RDMA

Streaming
logic

November 2019 Mark Silberstein, Technion 26

Transparent locality optimization

Host File System

GPUfs

CPUs GPU1 GPU2 GPU3

Distributed page cache
Weak (AFS-like) FS semantics

November 2019 Mark Silberstein, Technion 27

Summary so far...

● GPU-centric I/O services V1.0
– Simplify code development

– Enable transparent performance optimization

CPU is used as the driver for all operations

Can we do better?

November 2019 Mark Silberstein, Technion 28

Operating system

CPU

CPU-less design: (GPU I/O V1.5)
no CPU in control and data path

OS Services

O
S

S

er
vi

ce
s

GPU Storage
NXU

Network
XPU

O
S

S

e
rvices

Lower latency (no CPU roundtrip)
Better scalability (no CPU load)

November 2019 Mark Silberstein, Technion 29

GPUrdma: direct GPU access to RDMA

CPU
not

involved

ROSS16

November 2019 Mark Silberstein, Technion 30

GPU-to-GPU roundtrip latency via Infiniband

GPUnet (CPU-mediated RDMA): 50 usec

GPUrdma (NIC controlled by GPU): 5 usec

CPU-less design: lower latency

GPUrdma: direct GPU access to RDMA

November 2019 Mark Silberstein, Technion 31

The case for CPU-less multi-GPU
server design

Image Similarity Search

S3

S2

S1

Brute
force

search

Choose
best

Cluster
KNN

Brute
force

search

Brute
force

search

Client
request

Client
response

November 2019 Mark Silberstein, Technion 32

Traditional design:
CPU controls GPU invocation and

data movements

S3

S2

S1

Brute
force

search

Choose
best

Cluster
KNN

Brute
force

search

Brute
force

search

Client
request

Client
response

Offload to
multiple GPUs

November 2019 Mark Silberstein, Technion 33

Traditional design:
CPU controls GPU invocation and

data movements

November 2019 Mark Silberstein, Technion 34

Lets add more CPU cores

November 2019 Mark Silberstein, Technion 35

12 CPU cores needed!

November 2019 Mark Silberstein, Technion 36

12 CPUs are not enough to scale!

November 2019 Mark Silberstein, Technion 37

12 CPUs are not enough to scale!

The problem is inherent in the CPU-driven design
[PACT19]

November 2019 Mark Silberstein, Technion 38

The case for CPU-less multi-GPU
server design

PACT 19

S3

S2

S1

Brute
force

search

Choose
best

Cluster
KNN

Brute
force

search

Brute
force

search

G
P

U
ne

t

Client
request

G
P

U
ne

t

Client
response

GPU-side inter-GPU
pipes

GPU-side request
scheduler

November 2019 Mark Silberstein, Technion 39

CPU-less Multi-GPU network server

Standard
CPU-driven

design

CPU-less
design

CPU-less design: better scaling

November 2019 Mark Silberstein, Technion 40

CPU's role

November 2019 Mark Silberstein, Technion 41

GPU-centric Virtual Memory management

● GPU manages its
own page tables

● GPU mmap

Backing
store

3

2

GPU Page Table
GPU Page Cache

Page fault
handler

GPU
address translation

1

4

HW VM
Page Table

GPU

ISCA16

November 2019 Mark Silberstein, Technion 42

GPU-centric Virtual Memory management

● GPU manages its own
page tables

● GPU mmap

Implementation:
● Software address

translation
● Overheads hidden thanks

to HW multithreading

Backing
store

3

2

GPU Page Table
GPU Page Cache

Page fault
handler

GPU
address translation

1

4

HW VM
Page Table

GPU

ISCA16

November 2019 Mark Silberstein, Technion 43

GPU-centric Virtual Memory management

● Application: Image collage
● GPU mmaps a 40GB DB file, data-driven accesses

November 2019 Mark Silberstein, Technion 44

GPU-centric Virtual Memory management

● Application: Image collage
● GPU mmaps a 40GB DB file, data-driven accesses

0

1

2

3

4

GPU-centric
CPU (12 cores + AVX)
Traditional

S
lo

w
d

o
w

n

Traditional GPU implementation is
slower than the CPU-only one

November 2019 Mark Silberstein, Technion 45

Summary so far

● GPU-centric I/O services
– Simplify code development

– Enable transparent performance optimization

– Leverage new hardware features

● Eliminate CPU from data path
● Eliminate CPU from control path

November 2019 Mark Silberstein, Technion 46

Summary so far

● GPU-centric I/O services
– Simplify code development

– Enable transparent performance optimization

– Leverage new hardware features

● Eliminate CPU from data path
● Eliminate CPU from control path

Not everything is great…

November 2019 Mark Silberstein, Technion 47

Issues…
● GPUs are bad at system software

– Function calls are extremely slow

– Large code base causes slowdowns

– No preemption, even not software-only

● GPU access to PCIe is slow
– even writes block multiple threads for a few usec

● No architecture support for persistent kernels

November 2019 Mark Silberstein, Technion 48

Issues…
● GPUs are bad at system software

– Function calls are extremely slow

– Large code base causes slowdowns

– No preemption, even not software-only

● GPU access to PCIe is slow
– even writes block multiple threads for a few usec

● No architecture support for persistent kernels

Can we reap the benefits of CPU-less
design while bypassing these issues?

November 2019 Mark Silberstein, Technion 49

GPU I/O V2.0

● Convenient access with minimal I/O stack on GPU
● Leverage new hardware features

November 2019 Mark Silberstein, Technion 50

GAIA: extending CPU page cache
into GPU memory

● Enables mmap for GPU by using GPU HW PF

● May cache/prefetch file data in GPU memory
● Insights:

– Slim GPU driver API for enabling host page cache integration

– Page cache consistency model

– OS page cache and Linux kernel modifications for
consistency support

[USENIX ATC19]

November 2019 Mark Silberstein, Technion 51

Question: can we use strong
consistency in the page cache?

● Current practice in NVIDIA Unified Virtual
Memory

● Single owner semantics: the page migrates to
the requesting processor

November 2019 Mark Silberstein, Technion 52

Question: can we use strong
consistency in the page cache?

But GPU page is 64KB!
False sharing inevitable
(also in real applications)

● Current practice in NVIDIA Unified Virtual
Memory

● Single owner semantics: the page migrates to
the requesting processor

November 2019 Mark Silberstein, Technion 53

Extreme false sharing is
devastating 28x slowdown!

November 2019 Mark Silberstein, Technion 54

It even affects CPU processes

No false sharing
among GPUs

With false sharing

CPU-only run of an HPC workload

November 2019 Mark Silberstein, Technion 55

Lazy Release Consistency to rescue

● Acquire-release to ensure update
● Version vectors for contention detection
● 3-way merge for conflict resolution
● Transparent for legacy CPU processes

int fd=open(«shared_file»);
void* ptr=mmap(…,ON_GPU,fd);
macquire(ptr);
gpu_kernel<<<>>>(ptr);
mrelease(ptr);

GPU management code on the CPU

40% app improvement
over strong consistency

November 2019 Mark Silberstein, Technion 56

Road navigation service

November 2019 Mark Silberstein, Technion 57

Performance improvement due to
fine-grain consistency

November 2019 Mark Silberstein, Technion 58

Comparison with software-only PF
● Application: Image collage
● GPU mmaps a 40GB DB file, data-driven accesses

0

1

2

3

4

GPU-centric
CPU (12 cores + AVX)
Traditional
GPU PFsS

lo
w

d
o

w
n

Due to
multithreaded I/O

November 2019 Mark Silberstein, Technion 59

GPU-accelerated server V0.0
Request processing offload

CPU Accelerator

NIC

Network Server

Network I/O

Request
processing

Network Server

Network I/O

November 2019 Mark Silberstein, Technion 60

GPU-accelerated server V1.0
GPU-centric, GPU-driven

CPU Accelerator

NIC

Network Server

Network I/O

Request
processing

CPU Accelerator

NIC

Network Server

Network I/O

Request
processing

Network Server

Network I/O

November 2019 Mark Silberstein, Technion 61

GPU accelerated server V2.0
GPU-centric, SmartNIC-driven

CPU Accelerator

NIC

Network Server

Network I/O

Request
processing

CPU Accelerator

NIC

Network Server

Network I/O

Request
processing

Network Server

Network I/O

CPU Accelerator

SmartNIC

Network Server

Network I/O

Request
processing

Queue Shim

Remote N/W

No GPU I/O stack, only simple shim

12.11.1962

SmartNIC-driven accelerator-centric server

12.11.1963

SmartNIC-driven accelerator-centric server

12.11.1964

SmartNIC-driven accelerator-centric server

12.11.1965

SmartNIC-driven accelerator-centric server

RDMA

12.11.1966

SmartNIC-driven accelerator-centric server

November 2019 Mark Silberstein, Technion 67

SmartNICs
Mellanox Bluefiled Mellanox Innova

● V1: ARMv8 A72 (8x800MHz)
● BlueOS (Linux)
● OFED (RDMA)
● VMA (User-level N/W stack)

● Xilinx FPGA XCKU060
● Bump-in-the-wire
● Software support: NICA (USENIX

ATC19)

12.11.1968

LeNet CNN inference Server

“5” “4” “8”

● LeNet developed using TensorFlow and optimized using
the TVM compiler.

● Runs as a persistent kernel (kernel invocations via
nested parallelism)

● Clients send requests from MNIST dataset.

12.11.1969

LeNet CNN inference Server

“5” “4” “8”

● LeNet developed using TensorFlow and optimized using
the TVM compiler.

● Runs as a persistent kernel (kernel invocations via
nested parallelism)

● Clients send requests from MNIST dataset.

Latency=300us (25% lower than CPU-centric)
Thpt = 100% of theoretical max (GPU bottleneck)

November 2019 Mark Silberstein, Technion 70

Scale out to remote GPUs

Use of RDMA for queue management enables
seamless scale out

November 2019 Mark Silberstein, Technion 71

Theoretical scalability for LeNet

UDP Xeon
1 Core

UDP BF

TCP Xeon
1 Core

TCP BF

November 2019 Mark Silberstein, Technion 72

What do GPUs need to enable
GPU I/O V2.0?

● Proper PCIe consistency mechanisms

● Well-defined GPU memory management interface

● Hardware support for persistent/lightweight kernels

– More efficient GPU-driven kernel invocation

– Network-triggered kernel invocation (similar to
cudaAsync)

November 2019 Mark Silberstein, Technion 73

Summary

● GPU-side I/O is effective and convenient

● Purely GPU-driven (GPU I/O V1.0) involves «fat»
software stack on the GPU – costly

● GPU I/O V2.0 leverages new hardware to eliminate
the software bloat

Same principles are useful for SGX [Eurosys17,USENIX ATC19]

and disaggregated data centers [SFMA19, ongoing]

Code available @ https://github.com/acsl-technion

November 2019 Mark Silberstein, Technion 74

