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Central Processing Units (CPUs) 
are no longer Central

Network I/O 
accelerator

Storage I/O accelerator

GPU parallel
accelerator

Programmability



November 2019 Mark Silberstein,  Technion 3

Omni-programmable system
X- Processing Units: XPUs
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But XPUs also create new walls!

Programmability 

wall
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THETHE problem is general:
OS architecture is CPU - centric 
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 OmniX: accelerator-centric OS 
architecture
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Accelerator-centric 
OS architecture
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Types of OS abstractions for 
accelerators

Accelerator-centric: no CPU in data/control path 

Accelerator-friendly: accelerator-aware host OS 

Data-centric: inline near-data processing



November 2019 Mark Silberstein,  Technion 9

Types of OS abstractions for 
accelerators

Accelerator-centric: no CPU in data/control path 

Accelerator-friendly: accelerator-aware host OS 

Data-centric: inline near-data processing

ASPLOS13,TOCS14,OSDI14,TOCS15,ISCA16,SYSTOR16,ROSS16,ATC17,HotOS17,ATC19,PACT19

SFMA17, SFMA18, FCCM19, USENIX ATC19
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Storage

Network

GPU I/O services V1.0
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 GPUfs: File system library for GPUs

open(“shared_file”)
m
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ap

()

open(“shared_file”)
w

rit
e(

)
Host File System

GPUfs

System-wide
shared namespace

CPUs GPU1 GPU2 GPU3

ASPLOS13: S., Keidar, Ford, Witchel
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GPUnet: Network library for GPUs

socket(AF_INET,SOCK_STREAM);
connect(“node0:2340”);

socket(AF_INET,SOCK_STREAM);
connect(“node0:2340”)

GPUnet

GPU  nativenative client

socket(AF_INET,SOCK_STREAM);
listen(:2340)

GPU nativenative server

node0.technion.ac.il

GPUnet

CPU client

Network

OSDI14
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Accelerator in full control over its I/O

● I/O without «leaving» the GPU kernel
● Data-driven access to huge DBs
● Full-blown multi-tier GPU network servers
● Multi-GPU Map/Reduce (no user CPU code)

● POSIX-like APIs with slightly modified 
semantics

● Transparency for the rest of the system
● Reduced code complexity
● Unleashed GPU performance potential



November 2019 Mark Silberstein,  Technion 14

Example: face verification server

=?

memcached
(unmodified)

GPU server
(GPUnet)

CPU client
(unmodified)
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Face verification: 
Different implementations

1 GPU
(no GPUnet)
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1.9x throughput
1/3x latency
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½ code size
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Face verification: 
Different implementations
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GPU is ineffective
with traditional design
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Main design principles
● Micro-kernel design

– RPC to File/Network services on the CPU

– User-land abstraction implementation (libOSes)
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Optimized I/O: no CPU in data path

● SSD/NIC may perform DMA directly into/from 
GPU memory without the CPU (P2P DMA)

● Why?
– Lower latency 

– Less buffering/complexity for thpt

– No CPU involvement
GPU

NIC Memory

PCIe bus
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Optimized I/O: no CPU in data path

● SSD/NIC may perform DMA directly into/from 
GPU memory without the CPU (P2P DMA)

Challenge: the OS is on the CPU!
I/O device sharing, multiplexing, translation, 

transport layer

Examples: 
● Data from FS could be in the CPU page cache
● GPU and CPU both need to access the network
● TCP on GPU?
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Storage: OS integration of P2P  
between SSD and GPUs

● Regular OS file APIs may use GPU memory buffers
– mapping GPU memory into CPU address space

● Maintains POSIX FS consistency 
● Transparently fetches the page cache or P2P DMA
● Integrates with OS prefetcher
● Compatible with OS block layer  (i.e., software RAID)
● Results: 

– 5.2GB/s from SSDs to GPU

– 2-3x in applications

USENIX ATC17, similar NVIDIA product in 2019
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Networking: offloading transport 
layer to the NIC (via RDMA)

CPU GPU

NIC

Message
buffers

Message
buffers

Reliable 
RDMA

Streaming
logic
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Transparent locality optimization

Host File System

GPUfs

CPUs GPU1 GPU2 GPU3

Distributed page cache
Weak (AFS-like)  FS semantics
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Summary so far...

● GPU-centric I/O services V1.0
– Simplify code development

– Enable transparent performance optimization

CPU is used as the driver for all operations

Can we do better?
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Operating system

CPU

CPU-less design: (GPU I/O V1.5) 
no CPU in control and data path
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Lower latency (no CPU roundtrip)
Better scalability (no CPU load)
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GPUrdma: direct GPU access to RDMA

CPU 
not 

involved

ROSS16
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GPU-to-GPU roundtrip latency via Infiniband

GPUnet (CPU-mediated RDMA):      50 usec

GPUrdma (NIC controlled by GPU):  5 usec 

CPU-less design: lower latency

GPUrdma: direct GPU access to RDMA
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The case for CPU-less multi-GPU
server design

Image Similarity Search
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Traditional design: 
CPU controls GPU invocation and 

data movements
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Offload to 
multiple GPUs
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Traditional design: 
CPU controls GPU invocation and 

data movements
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Lets add more CPU cores
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12 CPU cores needed!
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12 CPUs are not enough to scale!
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12 CPUs are not enough to scale!

The problem is inherent in the CPU-driven design
[PACT19]
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The case for CPU-less multi-GPU 
server design 

PACT 19
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CPU-less Multi-GPU network server

Standard
CPU-driven

design

CPU-less
design

CPU-less design: better scaling
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CPU's role
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GPU-centric Virtual Memory management

● GPU manages its 
own page tables

● GPU mmap
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GPU-centric Virtual Memory management

● GPU manages its own 
page tables

● GPU mmap

Implementation:
● Software address 

translation
● Overheads hidden thanks 

to HW multithreading
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GPU-centric Virtual Memory management

● Application: Image collage
● GPU mmaps a 40GB DB file, data-driven accesses
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GPU-centric Virtual Memory management

● Application: Image collage
● GPU mmaps a 40GB DB file, data-driven accesses
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Traditional GPU implementation is 
slower than the CPU-only one
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Summary so far

● GPU-centric I/O services 
– Simplify code development

– Enable transparent performance optimization

– Leverage new hardware features

● Eliminate CPU from data path
● Eliminate CPU from control path
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Summary so far

● GPU-centric I/O services 
– Simplify code development

– Enable transparent performance optimization

– Leverage new hardware features

● Eliminate CPU from data path
● Eliminate CPU from control path

Not everything is great… 
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Issues…
● GPUs are bad at system software 

– Function calls are extremely slow

– Large code base causes slowdowns

– No preemption, even not software-only

● GPU access to PCIe is slow
– even writes block multiple threads for a few usec

● No architecture support for persistent kernels
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Issues…
● GPUs are bad at system software 

– Function calls are extremely slow

– Large code base causes slowdowns

– No preemption, even not software-only

● GPU access to PCIe is slow
– even writes block multiple threads for a few usec

● No architecture support for persistent kernels

Can we reap the benefits of CPU-less 
design while bypassing these issues?
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GPU I/O V2.0

● Convenient access with minimal I/O stack on GPU
● Leverage new hardware features
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GAIA: extending CPU page cache 
into GPU memory

● Enables  mmap for GPU by using GPU HW PF

● May cache/prefetch file data in GPU memory 
● Insights: 

– Slim GPU driver API for enabling host page cache integration

– Page cache consistency model

– OS page cache and Linux kernel modifications for 
consistency support

[USENIX ATC19]
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Question: can we use strong 
consistency in the page cache?

● Current practice in NVIDIA Unified Virtual 
Memory

● Single owner semantics: the page migrates to 
the requesting processor
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Question: can we use strong 
consistency in the page cache?

But GPU page is 64KB!
False sharing inevitable
(also in real applications)

● Current practice in NVIDIA Unified Virtual 
Memory

● Single owner semantics: the page migrates to 
the requesting processor
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Extreme false sharing is 
devastating 28x slowdown!
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It even affects CPU processes

No false sharing 
among GPUs

With false sharing

CPU-only run of an HPC workload
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Lazy Release Consistency to rescue

● Acquire-release to ensure update
● Version vectors for contention detection
● 3-way merge for conflict resolution
● Transparent for legacy CPU processes

int fd=open(«shared_file»);
void* ptr=mmap(…,ON_GPU,fd);
macquire(ptr);
gpu_kernel<<<>>>(ptr);
mrelease(ptr);

GPU management code on the CPU

40% app improvement
over strong consistency
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Road navigation service
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Performance improvement due to 
fine-grain consistency 
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Comparison with software-only PF
● Application: Image collage
● GPU mmaps a 40GB DB file, data-driven accesses
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GPU-accelerated server V0.0
Request processing offload

CPU Accelerator

NIC

Network Server

Network I/O

Request
processing

Network Server

Network I/O
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GPU-accelerated server V1.0
GPU-centric, GPU-driven
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Network I/O

Request
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GPU accelerated server V2.0
GPU-centric, SmartNIC-driven

CPU Accelerator

NIC

Network Server

Network I/O

Request
processing

CPU Accelerator

NIC

Network Server

Network I/O

Request
processing

Network Server

Network I/O

CPU Accelerator

SmartNIC

Network Server

Network I/O

Request
processing

Queue Shim

Remote N/W

No GPU I/O stack, only simple shim



12.11.1962

SmartNIC-driven accelerator-centric server
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SmartNIC-driven accelerator-centric server
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SmartNIC-driven accelerator-centric server
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SmartNIC-driven accelerator-centric server

RDMA
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SmartNIC-driven accelerator-centric server
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SmartNICs
Mellanox Bluefiled Mellanox Innova

● V1: ARMv8 A72 (8x800MHz)
● BlueOS (Linux)
● OFED (RDMA)
● VMA (User-level N/W stack)

● Xilinx FPGA XCKU060
● Bump-in-the-wire
● Software support: NICA (USENIX 

ATC19)
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LeNet CNN inference Server

“5” “4” “8”

● LeNet developed using TensorFlow and optimized using 
the TVM compiler.

● Runs as a persistent kernel  (kernel invocations via 
nested parallelism)

● Clients send requests from MNIST dataset.
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LeNet CNN inference Server

“5” “4” “8”

● LeNet developed using TensorFlow and optimized using 
the TVM compiler.

● Runs as a persistent kernel  (kernel invocations via 
nested parallelism)

● Clients send requests from MNIST dataset.

Latency=300us (25% lower than CPU-centric)
Thpt = 100% of theoretical max (GPU bottleneck)
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Scale out to remote GPUs

Use of RDMA for queue management enables
seamless scale out
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Theoretical scalability for LeNet

UDP Xeon
1 Core

UDP BF

TCP Xeon
1 Core

TCP BF
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What do GPUs need to enable
GPU I/O V2.0?

● Proper PCIe consistency mechanisms

● Well-defined GPU memory management interface

● Hardware support for persistent/lightweight kernels

– More efficient GPU-driven kernel invocation

– Network-triggered kernel invocation (similar to 
cudaAsync)
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Summary

● GPU-side I/O is effective and convenient

● Purely GPU-driven (GPU I/O V1.0) involves «fat» 
software stack on the GPU – costly

● GPU I/O V2.0 leverages new hardware to eliminate 
the software bloat

Same principles are useful for SGX [Eurosys17,USENIX ATC19]

and disaggregated data centers [SFMA19, ongoing]

Code available @ https://github.com/acsl-technion
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