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Big Picture in One Slide

Problem:

Speculative attacks cannot be mitigated in hardware

_ Research question:
How to validate that a program is not vulnerable?

_ Challenge:
Modern runtime verification tools are helpless
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Today

e Background
* Problem: overheads of Spectre V1 defenses
* Speculation exposure

e Speckuzz
 Ample opportunities for future research
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Spectre V1 requires
software mitigation

1= 1nput|0]:

\" Speculation occurs
ifi<42)( ~here due to branch misprediction!

-4 =y ,l [ wd i

4 address =1 * &:

4 secret = saddress;
Access to process address space

Is architecturally legal
but

12 baz = 100): . .
violates program semantics

s baz += xsecret;} —

(a) Vulnerable code
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Simple solution:
stop speculation in all
conditional branches

1 1= 1mput[0]; 1 = 1nput|[0]:

o if(1<42) | if(i<42){

. * LFENCE:

i

s address=1=# §: address =1 * §: PrOblemS?
9 secret = saddress: secret = saddress:

11k

11

12 bhaz = 100; baz = 100;

15 baz += *secret; } baz += *secret: }

(a) Vulnerable code  (b) LFENCE-based
serialization
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A (possibly) better idea: destroy
values In the speculative path
(since LLVM 8.0)

/ Data dependency

' 1= 1nput|0f (i =1input[0]; ~ on condition
2 all_ones = OxFFFF.... evaluation
= mask = all_ones:

if (i< 42) | ifi<42){

5 < CMOVGE 0, mask;

4]

4 address =1 % &; address =1 % &

g secret = =address: secret = xaddress;

1) secret &= mask;

11

12 baz = 100; baz = 100);

13 baz += ssecret; } ) baz += *secret; }

(a) Vulnerable code (d) Speculative
load hardening
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A (possibly) better idea: destroy
values In the speculative path
(since LLVM 8.0)

. 1= input[0]: 1= input[0];

2 all_ones = OxFFFFE..;
i mask = all_ones;
v if (1< 42) | if(i<42){
g ~ CMOVGE 0, mask; \ - _
6 I\ only in the
! speculative path
s address =1 * & address =1 # 8; mask=0
s secret = +address: secret = #address: h
1o ~ secret &= mask: \
11
12 baz = 100: baz = 100 | ]
i3 baz += *xsecret; baz += *secret; } » B
- only in the
(a) Vulnerable code (d) Speculative speculative path

load hardening ~ AND-edwith0 |
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Performance loss due to mitigation
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Why do we instrument all branches?

o Static analysis Is inefficient:

- MS Visual Studio missed 12 out of 13 tests
engineered to evade detection

* A single vulnerability leaves the whole memory
exposed

Can we elide instrumentation without compromising security?

How can we know that the branch is secure?
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Fuzzing: background

* FIinds security and correctness bugs
* Fuzzing drivers invoke with many (random) inputs
 Coverage: explore (as many as possible) branches

e Combined with buffer overflow checkers to catch

bugs
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Why can't we use fuzzing to catch
Spectre vulnerabllities?

* Mis-speculation results are architecturally
invisible by design!

* The architectural state remains unchanged
* Invalid accesses are “silenced”
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Why can't we use fuzzing to catch
Spectre vulnerabilities?

* Mis-speculation results are architecturally
Invisible by design!

* The architectural state remains unchanged
* |nvalid accesses are “silenced”

How can we make Spectre vulnerabilities
visible for fuzzers?
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ldea: Speculation Exposure (SE)

 Simulate mis-speculation and run it as part of
the execution

true
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ldea: Speculation Exposure (SE)

 Simulate mis-speculation and run it as part of
the execution

y 3

Actually Taken
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ldea: Speculation Exposure (SE)

 Simulate mis-speculation and run it as part of
the execution

Checkpoint

Speculatively Taken
Detect buffer overflows

Discard state and Restore
|
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SE: how It works

* Instrument each branch with:
— Check-point
- Forced (simulation) execution of a mispredicted path
— Detection/logging of vulnerabilities
- Termination of the simulation (worst case — ROB size)

- Restart of the normal path
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How do we know a branch Is secure?

* We do not know for sure... But with high
probability

* Apply fuzzing with SE

» Classify buffer overflows occurring in SE
- Benign (input-independent)
- Potential vulnerabilities (input-dependent)
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How do we know a branch Is secure?

* We do not know for sure... But with high

probability

* Apply fuzzing with SE

» Classify buffer overflows occurring in SE

- Benign (input-independent)

- Potential vulnerabilities (input-dependent)

We remove serialization instructions in
branches with benign overflow
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Putting 1t all together
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Nested speculation
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Nested speculation:
exhaustive Is too slow

* It IS necessary!

Order JSMN Brotli HTTP LbHTP YAML S§SL
I 4 64 2 I8S 46 1124
2 () Y () o) 47 289
3 () 3 0 45 20 131

4 () | () 12 I 52

5 () () () 6 ()

6 () () () 4 ()

Total 4 T 2 315 118 1596
[terations | 1987 5197 2496 1086 847 249

* Exponential number of branches to be simulated
* Fuzzing becomes too slow — coverage Is affected

December 2019 Mark Silberstein, Technion



Prioritized nested fuzzing

» Deeper nesting levels are tested with
exponentially smaller number of fuzzing inputs
* For a given branch
- Nested level 1: each input
- Nested level 2: every 2n input
- Nested level 3: every 4t input

- Nested level log(n)+1: every nth input
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External calls/callbacks

e Non-instrumented code cannot be checked

e |f a function is instrumented — the simulation
continues

* Otherwise — considered a serialization point

e |Instrumented callbacks from non-instrumented
functions are not supported
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Results

» Total potential vulnerabilities

December 2019

Duration | JSMN Brothh HTTP LhbHTP YAML SSL
1 hr. 4 71 2 314 122 1823
2 hr. 4 76 2 319 126 1881
4 hr. 4 I 2 323 129 1916
8 hr. 4 79 2 323 132 1967
16 hr. 4 79 2 334 138 1997
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Results

 Total potential vulnerabilities

Duration | JSMN Broth HTTP LbHTP YAML SSL
| hr. 4 71 2 34 122 1823
2 hr. 4 76 2 319 126 1881
4 hr. 4 77 2 323 129 1916
8 hr. 4 79 2 323 132 1967
16 hr. 4 79 2 334 138 1997

Type JSMN Brothh HTTP IibHTP YAML SSL

unknown| 0 3 0 26 16 360
uncont. 4 31 2 157 44 1151
cont. 2 45 2 151 78 486
checked 2 12 2 88 70 324
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Performance improvements
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Future work

Other type of Spectre attacks?
- Removing V2 mitigations will improve OS performance!

 How to get rid of the source code requirement?
- Important for third-party libraries

« Can we prove that the branch is benign?
e Can we provide a good metric of coverage?

What is the right way to specify speculation simulation?
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