Fuzzing Away Speculative Execution Attacks

Mark Silberstein

Joint work with

Oleksii Olekseenko and Christof Fezer
To appear in USENIX Security 2020

December 2019 Mark Silberstein, Technion

Big Picture in One Slide

Problem:

Speculative attacks cannot be mitigated in hardware

_ Research question:
How to validate that a program is not vulnerable?

_ Challenge:
Modern runtime verification tools are helpless

December 2019 Mark Silberstein, Technion 2

Today

e Background
* Problem: overheads of Spectre V1 defenses
* Speculation exposure

e Speckuzz
 Ample opportunities for future research

December 2019 Mark Silberstein, Technion

Spectre V1 requires
software mitigation

1= 1nput|0]:

\" Speculation occurs
ifi<42)(~here due to branch misprediction!

-4 =y ,l [wd i

4 address =1 * &:

4 secret = saddress;
Access to process address space

Is architecturally legal
but

12 baz = 100): . .
violates program semantics

s baz += xsecret;} —

(a) Vulnerable code

December 2019 Mark Silberstein, Technion

Simple solution:
stop speculation in all
conditional branches

1 1= 1mput[0]; 1 = 1nput|[0]:

o if(1<42) | if(i<42){

. * LFENCE:

i

s address=1=# §: address =1 * §: PrOblemS?
9 secret = saddress: secret = saddress:

11k

11

12 bhaz = 100; baz = 100;

15 baz += *secret; } baz += *secret: }

(a) Vulnerable code (b) LFENCE-based
serialization

December 2019 Mark Silberstein, Technion

A (possibly) better idea: destroy
values In the speculative path
(since LLVM 8.0)

/ Data dependency

' 1= 1nput|0f (i =1input[0]; ~ on condition
2 all_ones = OxFFFF.... evaluation
= mask = all_ones:

if (i< 42) | ifi<42){

5 < CMOVGE 0, mask;

4]

4 address =1 % &; address =1 % &

g secret = =address: secret = xaddress;

1) secret &= mask;

11

12 baz = 100; baz = 100);

13 baz += ssecret; }) baz += *secret; }

(a) Vulnerable code (d) Speculative
load hardening

December 2019 Mark Silberstein, Technion

A (possibly) better idea: destroy
values In the speculative path
(since LLVM 8.0)

. 1= input[0]: 1= input[0];

2 all_ones = OxFFFFE..;
i mask = all_ones;
v if (1< 42) | if(i<42){
g ~ CMOVGE 0, mask; \ - _
6 I\ only in the
! speculative path
s address =1 * & address =1 # 8; mask=0
s secret = +address: secret = #address: h
1o ~ secret &= mask: \
11
12 baz = 100: baz = 100 |]
i3 baz += *xsecret; baz += *secret; } » B
- only in the
(a) Vulnerable code (d) Speculative speculative path

load hardening ~ AND-edwith0 |

December 2019 Mark Silberstein, Technion

Performance loss due to mitigation

Phoenix

4 5

L
in

452

pa La
in =
i

Mormallized runtime
(wer . mathe)
P
=

=i =
= A
i i

December 2019

T e | | — e |
B LFENCE-based defense O Dependency onarguments @ SLH
4.0

B.S

60% on average!

Mark Silberstein, Technion

Why do we instrument all branches?

o Static analysis Is inefficient:

- MS Visual Studio missed 12 out of 13 tests
engineered to evade detection

* A single vulnerability leaves the whole memory
exposed

Can we elide instrumentation without compromising security?

How can we know that the branch is secure?

December 2019 Mark Silberstein, Technion 9

Fuzzing: background

* FIinds security and correctness bugs
* Fuzzing drivers invoke with many (random) inputs
 Coverage: explore (as many as possible) branches

e Combined with buffer overflow checkers to catch

bugs

December 2019 Mark Silberstein, Technion 10

Why can't we use fuzzing to catch
Spectre vulnerabllities?

* Mis-speculation results are architecturally
invisible by design!

* The architectural state remains unchanged
* Invalid accesses are “silenced”

December 2019 Mark Silberstein, Technion

11

Why can't we use fuzzing to catch
Spectre vulnerabilities?

* Mis-speculation results are architecturally
Invisible by design!

* The architectural state remains unchanged
* |nvalid accesses are “silenced”

How can we make Spectre vulnerabilities
visible for fuzzers?

December 2019 Mark Silberstein, Technion

12

ldea: Speculation Exposure (SE)

 Simulate mis-speculation and run it as part of
the execution

true

December 2019 Mark Silberstein, Technion

13

ldea: Speculation Exposure (SE)

 Simulate mis-speculation and run it as part of
the execution

y 3

Actually Taken

December 2019 Mark Silberstein, Technion

14

ldea: Speculation Exposure (SE)

 Simulate mis-speculation and run it as part of
the execution

Checkpoint

Speculatively Taken
Detect buffer overflows

Discard state and Restore
|

December 2019 Mark Silberstein, Technion

15

SE: how It works

* Instrument each branch with:
— Check-point
- Forced (simulation) execution of a mispredicted path
— Detection/logging of vulnerabilities
- Termination of the simulation (worst case — ROB size)

- Restart of the normal path

December 2019 Mark Silberstein, Technion 16

How do we know a branch Is secure?

* We do not know for sure... But with high
probability

* Apply fuzzing with SE

» Classify buffer overflows occurring in SE
- Benign (input-independent)
- Potential vulnerabilities (input-dependent)

December 2019 Mark Silberstein, Technion 17

How do we know a branch Is secure?

* We do not know for sure... But with high

probability

* Apply fuzzing with SE

» Classify buffer overflows occurring in SE

- Benign (input-independent)

- Potential vulnerabilities (input-dependent)

We remove serialization instructions in
branches with benign overflow

December 2019

Mark Silberstein, Technion

18

Putting 1t all together

Application || Compile with |Instrumented Trace B
SDur'r;r:’l SpecFuzz | Binary Fuzz Aggregate

Patched
. >
Binary

List of | Whitelist
= — o H
vulnerabilities Analyze arden

December 2019 Mark Silberstein, Technion 19

Nested speculation

a ey
qu i-"fci
D B B C

(b) A's Simulation

(a) Control
Flow Graph Tree

LN [N [(D 0 I 0 DN

December 2019 Mark Silberstein, Technion 20

Nested speculation:
exhaustive Is too slow

* It IS necessary!

Order JSMN Brotli HTTP LbHTP YAML S§SL
I 4 64 2 I8S 46 1124
2 () Y () o) 47 289
3 () 3 0 45 20 131

4 () | () 12 I 52

5 () () () 6 ()

6 () () () 4 ()

Total 4 T 2 315 118 1596
[terations | 1987 5197 2496 1086 847 249

* Exponential number of branches to be simulated
* Fuzzing becomes too slow — coverage Is affected

December 2019 Mark Silberstein, Technion

Prioritized nested fuzzing

» Deeper nesting levels are tested with
exponentially smaller number of fuzzing inputs
* For a given branch
- Nested level 1: each input
- Nested level 2: every 2n input
- Nested level 3: every 4t input

- Nested level log(n)+1: every nth input

December 2019 Mark Silberstein, Technion

External calls/callbacks

e Non-instrumented code cannot be checked

e |f a function is instrumented — the simulation
continues

* Otherwise — considered a serialization point

e |Instrumented callbacks from non-instrumented
functions are not supported

December 2019 Mark Silberstein, Technion

23

Results

» Total potential vulnerabilities

December 2019

Duration | JSMN Brothh HTTP LhbHTP YAML SSL
1 hr. 4 71 2 314 122 1823
2 hr. 4 76 2 319 126 1881
4 hr. 4 I 2 323 129 1916
8 hr. 4 79 2 323 132 1967
16 hr. 4 79 2 334 138 1997

Mark Silberstein, Technion

24

Results

 Total potential vulnerabilities

Duration | JSMN Broth HTTP LbHTP YAML SSL
| hr. 4 71 2 34 122 1823
2 hr. 4 76 2 319 126 1881
4 hr. 4 77 2 323 129 1916
8 hr. 4 79 2 323 132 1967
16 hr. 4 79 2 334 138 1997

Type JSMN Brothh HTTP IibHTP YAML SSL

unknown| 0 3 0 26 16 360
uncont. 4 31 2 157 44 1151
cont. 2 45 2 151 78 486
checked 2 12 2 88 70 324

December 2019 Mark Silberstein, Technion 25

Performance improvements

JSMN Brotli HTTP LibHTP YAML

SSL

SLH

SLH ch.
LFENCE
LFENCE ch.

93%
93%
85%
85%

43%
58%
29%
48%

60%
60%
66%
66%

43%
50%
42%
49%

29%
32%
349
349

20%
21%
19%
20%

goo{@ LFENCE O LFEMNCE+SF LFEMCE+S5F+ch. B SLH O SLH+SF SLH+5F+ch.

E 13 1.7
W
2 £ 400
'E =
E22% 7
S @
= A 7

1,00 i ¥ z N7

JSMN Broth
December 2019

L
—
=

DO

ORI

B
<
-

Mark Silberstein, Technion

g

g

AR,

-
ey
= fas

o
(1]
p-3

26

Future work

Other type of Spectre attacks?
- Removing V2 mitigations will improve OS performance!

 How to get rid of the source code requirement?
- Important for third-party libraries

« Can we prove that the branch is benign?
e Can we provide a good metric of coverage?

What is the right way to specify speculation simulation?

December 2019 Mark Silberstein, Technion 27

