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Big Picture in One Slide

How to validate that a program is not vulnerable?
Research question:

Modern runtime verification tools are helpless
Challenge:

Speculative attacks cannot be mitigated in hardware 
Problem:

Simulate mis-speculation in software at runtime
New concept:

Faster mitigation, new vulnerabilities found
Practical implications:
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Today

● Background
● Problem: overheads of Spectre V1 defenses 
● Speculation exposure
● SpecFuzz 
● Ample opportunities for future research
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Spectre V1 requires 
software mitigation

Speculation occurs 
here due to branch misprediction!

Access to process address space
is architecturally legal

but 
violates program semantics 
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Simple solution: 
stop speculation in all 
conditional branches

Problems?
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A (possibly) better idea: destroy 
values in the speculative path

(since LLVM 8.0)
Data dependency 

on condition
evaluation
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A (possibly) better idea: destroy 
values in the speculative path

(since LLVM 8.0)

only in the 
speculative path

mask=0

only in the 
speculative path 
AND-ed with 0
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Performance loss due to mitigation

60% on average!
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Why do we instrument all branches?

● Static analysis is inefficient:
– MS Visual Studio missed 12 out of 13 tests 

engineered to evade detection

● A single vulnerability leaves the whole memory 
exposed

Can we elide instrumentation without compromising security?

How can we know that the branch is secure?
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Fuzzing: background

● Finds security and correctness bugs

● Fuzzing drivers invoke with many (random) inputs

● Coverage: explore (as many as possible) branches

● Combined with buffer overflow checkers to catch 

bugs
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Why can't we use fuzzing to catch 
Spectre vulnerabilities?

● Mis-speculation results are architecturally 
invisible by design!

● The architectural state remains unchanged
● Invalid accesses are “silenced”
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Why can't we use fuzzing to catch 
Spectre vulnerabilities?

● Mis-speculation results are architecturally 
invisible by design!

● The architectural state remains unchanged
● Invalid accesses are “silenced”

How can we make Spectre vulnerabilities
visible for fuzzers?
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Idea: Speculation Exposure (SE)

● Simulate mis-speculation and run it as part of 
the execution

Branch condition

Actually Taken

true
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Idea: Speculation Exposure (SE)

● Simulate mis-speculation and run it as part of 
the execution

Branch condition

Actually Taken
Speculatively Taken

Detect buffer overflows

true false

Checkpoint

Discard state and Restore

1 23
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Idea: Speculation Exposure (SE)

● Simulate mis-speculation and run it as part of 
the execution

Actually Taken
Speculatively Taken

Detect buffer overflows

true false

Checkpoint

Discard state and Restore

1 23

Branch condition



December 2019 Mark Silberstein, Technion 16

SE: how it works

● Instrument each branch with:

– Check-point

– Forced (simulation) execution of a mispredicted path

– Detection/logging of vulnerabilities

– Termination of the simulation (worst case – ROB size)

– Restart of the normal path 
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How do we know a branch is secure?

● We do not know for sure... But with high 
probability

● Apply fuzzing with SE
● Classify buffer overflows occurring in SE

– Benign (input-independent)

– Potential vulnerabilities (input-dependent)
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How do we know a branch is secure?

● We do not know for sure... But with high 
probability

● Apply fuzzing with SE
● Classify buffer overflows occurring in SE

– Benign (input-independent)

– Potential vulnerabilities (input-dependent)

We remove serialization instructions in 
branches with benign overflow
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Putting it all together
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Nested speculation
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Nested speculation: 
exhaustive is too slow

● It is necessary!

● Exponential number of branches to be simulated
● Fuzzing becomes too slow – coverage is affected
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Prioritized nested fuzzing

● Deeper nesting levels are tested with 
exponentially smaller number of fuzzing inputs 

● For a given branch
– Nested level 1: each input

– Nested level 2: every 2nd input

– Nested level 3: every 4th input 

– Nested level log(n)+1: every nth input
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External calls/callbacks

● Non-instrumented code cannot be checked
● If a function is instrumented – the simulation 

continues
● Otherwise – considered a serialization point
● Instrumented callbacks from non-instrumented 

functions are not supported
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Results

● Total potential vulnerabilities
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Results

● Total potential vulnerabilities

Definitely
vulnerable!

over 55% elided
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Performance improvements
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Future work

● Other type of Spectre attacks?
– Removing V2 mitigations will improve OS performance!

● How to get rid of the source code requirement?
– Important for third-party libraries

● Can we prove  that the branch is benign?
● Can we provide a good metric of coverage?
● What is the right way to specify speculation simulation?
● ...


