
December 2019 Mark Silberstein, Technion 1

Fuzzing Away Speculative Execution Attacks

Mark Silberstein

Joint work with
Oleksii Olekseenko and Christof Fezer

To appear in USENIX Security 2020

December 2019 Mark Silberstein, Technion 2

Big Picture in One Slide

How to validate that a program is not vulnerable?
Research question:

Modern runtime verification tools are helpless
Challenge:

Speculative attacks cannot be mitigated in hardware
Problem:

Simulate mis-speculation in software at runtime
New concept:

Faster mitigation, new vulnerabilities found
Practical implications:

December 2019 Mark Silberstein, Technion 3

Today

● Background
● Problem: overheads of Spectre V1 defenses
● Speculation exposure
● SpecFuzz
● Ample opportunities for future research

December 2019 Mark Silberstein, Technion 4

Spectre V1 requires
software mitigation

Speculation occurs
here due to branch misprediction!

Access to process address space
is architecturally legal

but
violates program semantics

December 2019 Mark Silberstein, Technion 5

Simple solution:
stop speculation in all
conditional branches

Problems?

December 2019 Mark Silberstein, Technion 6

A (possibly) better idea: destroy
values in the speculative path

(since LLVM 8.0)
Data dependency

on condition
evaluation

December 2019 Mark Silberstein, Technion 7

A (possibly) better idea: destroy
values in the speculative path

(since LLVM 8.0)

only in the
speculative path

mask=0

only in the
speculative path
AND-ed with 0

December 2019 Mark Silberstein, Technion 8

Performance loss due to mitigation

60% on average!

December 2019 Mark Silberstein, Technion 9

Why do we instrument all branches?

● Static analysis is inefficient:
– MS Visual Studio missed 12 out of 13 tests

engineered to evade detection

● A single vulnerability leaves the whole memory
exposed

Can we elide instrumentation without compromising security?

How can we know that the branch is secure?

December 2019 Mark Silberstein, Technion 10

Fuzzing: background

● Finds security and correctness bugs

● Fuzzing drivers invoke with many (random) inputs

● Coverage: explore (as many as possible) branches

● Combined with buffer overflow checkers to catch

bugs

December 2019 Mark Silberstein, Technion 11

Why can't we use fuzzing to catch
Spectre vulnerabilities?

● Mis-speculation results are architecturally
invisible by design!

● The architectural state remains unchanged
● Invalid accesses are “silenced”

December 2019 Mark Silberstein, Technion 12

Why can't we use fuzzing to catch
Spectre vulnerabilities?

● Mis-speculation results are architecturally
invisible by design!

● The architectural state remains unchanged
● Invalid accesses are “silenced”

How can we make Spectre vulnerabilities
visible for fuzzers?

December 2019 Mark Silberstein, Technion 13

Idea: Speculation Exposure (SE)

● Simulate mis-speculation and run it as part of
the execution

Branch condition

Actually Taken

true

December 2019 Mark Silberstein, Technion 14

Idea: Speculation Exposure (SE)

● Simulate mis-speculation and run it as part of
the execution

Branch condition

Actually Taken
Speculatively Taken

Detect buffer overflows

true false

Checkpoint

Discard state and Restore

1 23

December 2019 Mark Silberstein, Technion 15

Idea: Speculation Exposure (SE)

● Simulate mis-speculation and run it as part of
the execution

Actually Taken
Speculatively Taken

Detect buffer overflows

true false

Checkpoint

Discard state and Restore

1 23

Branch condition

December 2019 Mark Silberstein, Technion 16

SE: how it works

● Instrument each branch with:

– Check-point

– Forced (simulation) execution of a mispredicted path

– Detection/logging of vulnerabilities

– Termination of the simulation (worst case – ROB size)

– Restart of the normal path

December 2019 Mark Silberstein, Technion 17

How do we know a branch is secure?

● We do not know for sure... But with high
probability

● Apply fuzzing with SE
● Classify buffer overflows occurring in SE

– Benign (input-independent)

– Potential vulnerabilities (input-dependent)

December 2019 Mark Silberstein, Technion 18

How do we know a branch is secure?

● We do not know for sure... But with high
probability

● Apply fuzzing with SE
● Classify buffer overflows occurring in SE

– Benign (input-independent)

– Potential vulnerabilities (input-dependent)

We remove serialization instructions in
branches with benign overflow

December 2019 Mark Silberstein, Technion 19

Putting it all together

December 2019 Mark Silberstein, Technion 20

Nested speculation

December 2019 Mark Silberstein, Technion 21

Nested speculation:
exhaustive is too slow

● It is necessary!

● Exponential number of branches to be simulated
● Fuzzing becomes too slow – coverage is affected

December 2019 Mark Silberstein, Technion 22

Prioritized nested fuzzing

● Deeper nesting levels are tested with
exponentially smaller number of fuzzing inputs

● For a given branch
– Nested level 1: each input

– Nested level 2: every 2nd input

– Nested level 3: every 4th input

– Nested level log(n)+1: every nth input

December 2019 Mark Silberstein, Technion 23

External calls/callbacks

● Non-instrumented code cannot be checked
● If a function is instrumented – the simulation

continues
● Otherwise – considered a serialization point
● Instrumented callbacks from non-instrumented

functions are not supported

December 2019 Mark Silberstein, Technion 24

Results

● Total potential vulnerabilities

December 2019 Mark Silberstein, Technion 25

Results

● Total potential vulnerabilities

Definitely
vulnerable!

over 55% elided

December 2019 Mark Silberstein, Technion 26

Performance improvements

December 2019 Mark Silberstein, Technion 27

Future work

● Other type of Spectre attacks?
– Removing V2 mitigations will improve OS performance!

● How to get rid of the source code requirement?
– Important for third-party libraries

● Can we prove that the branch is benign?
● Can we provide a good metric of coverage?
● What is the right way to specify speculation simulation?
● ...

