
ActivePointers Shahar,Bergman, Silberstein - EE, Technion

ActivePointers:
The case for software address

translation on GPUs

Sagi Shahar
Shai Bergman

Mark Silberstein

Technion – Israel Institute of Technology

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

History of the world
in 7 slides

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

CPU

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

CPU

Application

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

CPU

Application

OS

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

CPU

Application

OS

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

CPU

Application

OS

GPU

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

CPU

Application

OS

GPU

????

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Application

CPU

OS

GPU

????

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Application

CPU

OS

GPU

????

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Application

This is our world

CPU

OS

GPU

????

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Application

GPU

OS servicesOS services
(GPUfs,GPUnet,GPUrdma)(GPUfs,GPUnet,GPUrdma)

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Agenda

● Motivation
● Background – GPU file system support

● ActivePointers: software translation layer for mmap

● Evaluation
● Conclusions

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Motivation:
Processing large datasets on GPUs

Image collage: for every block
find “the best match” image in a DB

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Image collage: data driven access

Common pattern for
DBs, text and image search

For each input image block

– Compute indexes into DB file

– Read candidates from DB file

– Brute-force search to choose the best

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

GPU

GPU

Traditional programming model
GPU as a co-processor

For each input image block

– Compute indexes into DB file

– Read candidates from DB file

– Brute-force search to choose the best

CPU

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

File-system access from GPU
 Peer-processor model

For each input image block

– Compute indexes into DB file

– Read candidates from DB file

– Brute-force search to choose the best GPU

Easier programming
Higher performance

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

For each input image block

– Compute indexes into DB file

– Read candidates from DB file

– Brute-force search to choose the best GPU

Easier programming
Higher performance

GPUfs
[ASPLOS13]

File-system access from GPU
 Peer-processor model

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

GPU program

GPUfs:
FS API + Distributed Buffer Cache

File I/O library

CPU GPU

Silberstein et al., ASPLOS 2013, TOCS 2014, CACM 2014

Memory Memory

Distributed Buffer Cache

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Wanted: mmap()

● Typical usage: mmap the whole file into
application address space

● File access through a regular pointer

Benefits

Simplicity
On-demand data transfer
Performance

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

● Typical usage: mmap the whole file into
application address space

● File access through a regular pointer

Benefits

Simplicity
On-demand data transfer
Performance

Challenge: lack of GPU
hardware support for VM

management

Wanted: mmap()

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Reminder: mmap on CPU

● allocate virtual memory region
● no physical memory allocated first

● on first access - page fault
● allocate page in a buffer cache
● read from file
● map the page into process's virtual address space

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Reminder: mmap on CPU

● allocate virtual memory region
● no physical memory allocated first

● on first access - page fault
● allocate page in a buffer cache
● read from file
● map the page into process's virtual address space

Can we implement mmap on GPU?

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

 mmap on GPU?

● allocate virtual memory region
● no physical memory allocated first

● on first access - page fault
● allocate page in a buffer cache
● read from file
● map the page into virtual memory

GPUfs

Recent
GPUs

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

 mmap on GPU?

● allocate virtual memory region
● no physical memory allocated first

● on first access - page fault
● allocate page in a buffer cache
● read from file
● map the page into virtual memory

GPUfs

Recent
GPUs

No GPU user
control

No GPU user
 control

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Today:
CPU-centric VM management

GPU
driver

CPU-managed Page Cache

Page fault
handler

Disk1

2

4

3

HW VM Page Table

5
GPU

CPU OS

● Pros:
– compatible with the

CPU OS

– no extra GPU code

Co-processor

I/O management and control
on the CPU

● Cons:
– CPU in every page fault
– CPU-GPU coordination for

page cache management
– No GPU page fault

hanlders

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

This work: GPU-centric VM
management for I/O operations

● Layered on top of
regular VM

● Pros:
– no CPU involvement on

page faults

– GPU handles page
faults

– High throughput and
low page fault handling
latency

Backing
store

3

2

I/O Page Table
I/O Page Cache

Page fault
handler

I/O address translation

1

4

HW VM
Page Table

GPU

Peer-processor

Data, control path
and OS I/O abstractions

on the GPU

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Software Address Translation Layer

● Pros:
– No costly hardware

TLB updates

– Extensible

– User-level access

– Complementary to

Hardware VM

Backing
store

3

2

I/O Page Table
I/O Page Cache

Page fault
handler

1

4

HW VM
Page Table

GPU

Fully compatible with commodity GPUs

I/O address translation
In software

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Agenda

● Software address translation
● Evaluation
● Conclusions

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Desired behavior

● GPU code

void* ptr=gmmap(fd,offset,size)

for(int i=0;i<size;i++,ptr++)

{

 ptr[threadIdx.x]=25;

}
One page fault on first access

ptr must resolve to buffer cache page

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Desired behavior

● GPU code

void* ptr=gmmap(fd,offset,size)

for(int i=0;i<size;i++,ptr++)

{

 ptr[threadIdx.x]=25;

}
Requires page table lookup

on every access!

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Software TLB - inefficient

● One TLB per core (Threadblock) in shared
memory

Extra memory accesses for each read
Contention on TLB updates

How to handle TLB invalidations?

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

ActivePointers
Main design principles

● Minimize page table lookups
– translation is cached in hardware registers

● Pages locked in the buffer cache as long as they
are in use

– keep reference count for each page

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

ActivePtr structure

Valid Buffer Cache Ptr File offset

0 NONE NONE

64 bits

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Example

Valid Buffer Cache Ptr File offset

ptr 0 NONE NONE
{

ActivePtr ptr;

ptr = gmmap(fd,4096,size);

float x = *ptr;

ptr++;

float y = *ptr;

ptr+=4096;

}

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Example

Valid Buffer Cache Ptr File offset

ptr 0 NONE 4096
{

ActivePtr ptr;

ptr = gmmap(fd,4096,size);

float x = *ptr;

ptr++;

float y = *ptr;

ptr+=4096;

}

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Example

Valid Buffer Cache Ptr File offset

ptr 0 NONE 4096

Pagefault

{

ActivePtr ptr;

ptr = gmmap(fd,4096,size);

float x = *ptr;

ptr++;

float y = *ptr;

ptr+=4096;

}

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Example

Valid Buffer Cache Ptr File offset

ptr 0 NONE 4096

Page Table Entry

RefCount File

0 40960xFFFC0000

Pagefault

Page
fault

handler

{

ActivePtr ptr;

ptr = gmmap(fd,4096,size);

float x = *ptr;

ptr++;

float y = *ptr;

ptr+=4096;

}

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Example

Valid Buffer Cache Ptr File offset

ptr 1 0xFFFC0000 4096

Page Table Entry

RefCount File

1 40960xFFFC0000

Pagefault

Page
fault

handler

Lock page

{

ActivePtr ptr;

ptr = gmmap(fd,4096,size);

float x = *ptr;

ptr++;

float y = *ptr;

ptr+=4096;

}

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Example

Valid Buffer Cache Ptr File offset

ptr 1 0xFFFC0004 4100

Page Table Entry

RefCount File

1 40960xFFFC0000

{

ActivePtr ptr;

ptr = gmmap(fd,4096,size);

float x = *ptr;

ptr++;

float y = *ptr;

ptr+=4096;

}

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Example

Valid Buffer Cache Ptr File offset

ptr 1 0xFFFC0004 4100

Page Table Entry

RefCount File

1 40960xFFFC0000

Fault-free
Lookup-free

access

{

ActivePtr ptr;

ptr = gmmap(fd,4096,size);

float x = *ptr;

ptr++;

float y = *ptr;

ptr+=4096;

}

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Example

Valid Buffer Cache Ptr File offset

ptr 0 NONE 8196

Page Table Entry

RefCount File

0 40960xFFFC0000

Crossing
page boundary

{

ActivePtr ptr;

ptr = gmmap(fd,4096,size);

float x = *ptr;

ptr++;

float y = *ptr;

ptr+=4096;

}

Unlock page

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Example

Valid Buffer Cache Ptr File offset

ptr 0 NONE 4100

Page Table Entry

RefCount File

0 40960xFFFC0000

Unlock page

{

ActivePtr ptr;

ptr = gmmap(fd,4096,size);

float x = *ptr;

ptr++;

float y = *ptr;

// ptr+=4096;

}
ptr becomes
inaccessible

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

ActivePointers: state machine

uninitialized

Assignment
Out-of-page arithmetics

Page fault

Assignment

unlinked linked

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Challenge:
Thread level address translation

● Reminder: warps = 32 threads in lockstep
● Warp threads may access different pointers

– Faults for different pages

– No faults

Divergence! Deadlocks!

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Idea:
Translation aggregation mechanism

● Quickly identify fault-free accesses (fast path)
● Handle faults in order
● Aggregate faults to the same page
● Access the page cache using a non-divergent

control flow

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Not covered in this talk...

● Translation aggregation algorithm
● Integration with GPUfs [SYSTOR16]

– Highly concurrent page cache

– Handling 4K pages

● Analysis of software TLB
● Optimizations

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Evaluation

● Commodity NVIDIA K80 GPU
● CUDA
● GPUfs

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Latency overheads

● A single GPU thread performing memory copy
using ActivePointers

Implementation Read Read+Inc

Raw access 225 257

ActivePointers 271
(+20%)

423
(+65%)

 GPU cycles

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Throughput overheads

● Same experiment with full GPU occupancy

4-byte 8-byte

99.65 GB/s
(65.4%)

148.7 GB/s
(97.6%)

Transfer bandwidth

Free-computation
bubble

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Latency hiding – the key to
performance

● Different compute/memory ratio

Latency
sensitive

Latency
hidden!

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Image collage

● End-to-end evaluation on K80 GPU

Pointer access to 40GB DB file in GPU memory
● No measurable overhead
● 2.6x over 12 CPU cores with 256-bit AVX
● 3.5x over CPU + GPU

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Take aways

● TLB-less address translation:
– Beyond GPUs? (near-memory computing, FPGAs?)

– Lightweight hardware support

● GPU-centric VM management
● GPU-as-peer-processor programming model

Source code at
https://github.com/gpufs

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Accelerated Computing
Systems Lab

mark@ee.technion.ac.il

Looking for postdocs

Thank you!

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Backup

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Latency hiding – the key to
performance

● Workloads with different compute/IO ratio (float)

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Lowlights

● Compiler heuristics?

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Discussion

● Register pressure
● compiler support
● Instructions for boundary checks
● I/O preemption

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Major compiler: register pressure

● Active pointer take 2 register (just like standard
64bit pointers)

● Additional meta-data is rarely accessed and
can be stored in local memory

● Additional registers are required for page-faults
and offset calculations

● Result in reduced optimization opportunities for
the rest of the code

ActivePointers Shahar,Bergman, Silberstein - EE, Technion

Possible ways to cope with it

● Hardware acceleration can replace additional
registers in offset calculation

● Most registers are only used in page-fault
handling

● These registers are rarely accessed and can be
moved to local memory

● The compiler heuristics need to be aware of
Active pointers

