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Abstract

In this report we investigate the benefits of using a coprocessor cou-

pled with content addrassible memory (CAM) for off-loading of a

computation-intensive kernels of antivirus software.

Overview of antivirus technologies is presented, followed by per-

formance analysis of real antivirus software to justify the applica-

tion of coprocessor. High level architecture of the coprocessor and

its interaction with main CPU is described. CAM usage is described

and performance analysis is presented. A broader perspective of a

using CAM-based coprocessor application for string pattern match-

ing, various string operations, e.g. string comparisons, and regular

expression matching is discussed.



Introduction

Modern applications are increasingly demanding high performance

hardware. New processor architectures are constantly being devel-

oped, exhibiting previously unthinkable performance. However the

performance comes at the price of dramatic increase of design com-

plexity, leading to the growth of the time-to-market, increasing the

power dissipation, and loosing the robustness.

The major design consideration of a general purpose CPUs is that

they should satisfy the performance requirements of all possible ap-

plications to be executed on them. Sometimes it is beneficial to add

specialized instruction set, e.g. MMX, for particular class of applica-

tions. However such additions complicate the design significantly,

due to necessity to be integrated with the existing architecture.

In contrast to the general purpose processors, special purpose
processors, such as DSPs, have much better chance to achieve bet-

ter performance in their particular class of applications, being bet-

ter suited for the appropriate application characteristics. The archi-

tecture design takes into account many application specific proper-

ties. In addition, many frequently used programming patterns are

implemented in hardware, drastically improving the overall perfor-

mance.

Home PCs are equipped with general purpose processors as they

are used for the variety of different classes of applications - graph-

ics, word processing, internet browsing, numeric computations, mul-

timedia, streaming and etc. It is not feasible to optimize the proces-

sor architecture for all them. One possibility would be to implement

the most frequently used programming patterns in hardware and

extend the instruction set of the CPU. However this would signifi-

cantly complicate the architecture of the CPU, potentially decreas-

ing the performance. Another possibility would be to create special

purpose coprocessors, which would offload some computations off

the main processor.
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The idea of using a special purpose coprocessor for the offloading

of complex operations from the main CPU is not new. Modern per-

sonal computers are designed to utilize special purpose hardware

for servicing peripheral devices, such as hard disk I/O (SCSI/IDE

controller), multimedia (sound card), graphical (video controller) and

network devices (network card). DMA architecture allows for effi-

cient data transfer between the main memory and the device, with-

out involving CPU, effectively turning the computer with single CPU

into multi-processor.
While the use of special purpose CPUs for low level hardware

operations is a common practice, coprocessors designed for specific

application domains, such as streaming, security and etc, are still

not found in modern PCs. It is too expensive to design, for instance,

text editing coprocessor, since only word processing applications

would benefit from it. In the same time such addition would in-

creasing the overall price even for those who do not use their PCs

for word processing. For the hi-end computers, though, the con-

cept of application-specific coprocessors deserved more popularity

[8, 10, 2].

In our report we are investigating the benefits of using a copro-

cessor for somewhat unusual purpose - for the hardware acceler-

ation of the antivirus software. The motivation is clear: antivirus

software runs on literally every computer in the world to protect

it from being affected by malicious self-replicating programs, com-

monly referred as "viruses". Virus detection is a complex process

with high computation requirements; the more efficient it should

be, the more CPU resources it requires. Sometimes it is required

to perform the scanning of all the files on the computer to ensure

that none of them are “infected” by virus. However another contra-

dicting requirement is that antivirus should not interfere with the

normal execution of the running programs. Such software usually

runs as a daemon background process, monitoring all the running

programs and scanning the memory. Such requirement is usually
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not met, since choosing between transparency and efficiency, the

latter is always chosen in the case of antivirus - it is better to work

slowly than to loose everything because of virus.

Contemporary antivirus software usually traces all accesses to

file system and the most recent even to network, effectively placing

the viral analysis in the critical path of any I/O operation.

It is necessary to analyze the existing techniques of virus detec-

tion in order to coin the compute-intensive operations to be further

mapped for execution on a coprocessor [12]. Since much of the in-
formation about the existing commercial antivirus products is kept

in secret, our analysis is based upon several open-source antivirus

projects and publicly available research materials.

We conclude that sequence matching is the most common way of

detecting malicious programs, and it is used in all antivirus prod-

ucts without exception. Our conclusion is confirmed by profiling

the available antivirus software. The technique is very simple. In

essence, a virus program is characterized by a unique sequence of

characters, extracted from its binary representation. The file con-

taining such sequence is considered as "infected". Thus an antivirus

program scans all the suspicious files, attempting to match any of

the signatures from the signature database.

Content Addressable Memory (CAM) suits perfectly for imple-

menting fast searches required by antivirus software. It allows for

the fastest search of the whole memory content at price of single

memory access. CAMs are widely used for the longest prefix match-

ing in network routers and switches[17, 18]. However we did not

find any references of using CAMs in general purpose PCs.

While our research originated in antivirus software, signature

matching is used in many other different classes of applications.

For example, it is extensively used in computational biology (BLAST)

for genome research. Hardware implementation of the algorithm

would boost the performance of such applications in orders of mag-

nitude.
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The paper is structured as follows. In the next section we de-

scribe the target application domain, introducing the terminology

and the algorithms. Then the profiling of the real antivirus product

is shown. This allows us to estimate the maximum possible speed-

up which would be achieved by mapping the compute-intensive op-

erations to be executed by coprocessor. We then analyze the ma-

jor performance factors in the software based antivirus, suggesting

various optimization alternatives to be implemented in hardware.

We analyze the possible solutions using trie and CAM as a building
block. We then describe the high level architecture for the copro-

cessor as derived from the application domain requirements, and

its interaction with the main CPU. We conclude with the discussion

on other possible applications of such coprocessor.

Application domain overview

Computer viruses

Computer Virus - the words alone provoke images of vanishing data,

crashing PC’s and financial ruin. While maybe not as dramatic as

this, viruses are a daily nuisance for both home and corporate com-

puter users. With each new virus, a dozen antivirus vendors swing

into action to find a cure. If the protection is installed in time, the

virus spread can be stopped before the one caused any damage.

The term "computer virus" is defined as "a sequence of instruc-
tions that copies itself into other programs in such a way that exe-

cuting the program also executes that sequence of instructions"[14].

However, the name is mistakenly applied to various types of mali-

cious programs, usually classified as viruses, worms and Trojan

horse. In fact, that classification is based on the way the malicious

code spreads. Worms spread via networks, using bugs in existing

software. "Trojan horses" show themselves as some useful program.

Once invoked, along with the stated function, they perform another,
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unstated, and usually undesirable one, infecting the executing com-

puter and using it to spread further. Modern viruses often employ

several aforementioned techniques all together, circumventing so-

phisticated antivirus defense. In the following we will refer to all

these malicious executables as computer viruses[9].

A computer virus infects other entities during its infection phase,

and then performs some additional (possibly null) actions during

its execution phase[7]. The infection phase starts with the virus

executable attempting to reach another computer. Before the Inter-
net age removable media was used for this purpose. Viruses used

to replace the original boot sector of the floppy disk with the in-

fected code. After using the infected floppy in the other PC, the user

could mistakenly forget to remove it before the computer. During

the boot process with the floppy inside, BIOS code by default would

attempted to bootstrap from the infected floppy first. Then instead

of the original bootstrap code, the virus code was activated, allow-

ing for the virus replication to the new boot sector of the hard drive

on the target host. Alternatively, viruses could infect executables

on the floppy, so that further invocation of these executables in the

other computer caused the virus to be invoked first, effectively repli-

cating its code into the new computer. Replication usually involved

copying of the viral code into the computer memory. Once there,

the virus went to background, gradually infecting all the executa-

bles installed on the hard disk. In addition, it ensured its presence

in the main memory for further infection of other floppy disks.

Internet has made the task of virus spread much easier. Modern

worms and Trojans use the security vulnerabilities of the operating

systems to propagate into the target system. Bugs in the network

layers of the applications are used by virus writers to inject the virus

code and start its execution, gaining remote control over the victim.

Less sophisticated techniques are used by trojans, being spread as

an e-mail attachments. A naive user, tempted by the curiosity to

invoke a new application from an old friend, opens the Pandora
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Figure 1: Virus infection of the executable

box, assisting in further spread of the virus and often rendering the

computer unusable.

Executable infection techniques

The common practice of infection is to infect regular executables on

the computer to trigger the execution phase of the viral code. In

this case, executable file is edited during the infection phase, its

code is changed to execute the virus code upon invocation, instead

of the original code. This kind of infection was applied mostly in

DOS, with executables in .COM format. Such files were relatively

easy to infect, since the executable entry point was always at the

beginning of the file. Viruses used to attach their code to the end

of the file, changing the first instruction of the infected executable

to jump to the virus start, jumping back after the virus execution.

If well written, the virus could avoid detection by the user and go

about its infecting ways.
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Infection of the executables in .EXE format for MS Windows or

.ELF format for Linux is much more complicated. It can be done

by prepending, or appending code to a file, by splitting up the virus

and hiding it in holes within the unused segments of the executable.

Not only executable are targeted by the modern viruses. So

called macro viruses, implemented as a script programs and em-

bedded in the data files, utilize the security vulnerabilities of the

hosting applications, when the infected data files are being opened.

Virus detection techniques

There are numerous antivirus software packages, which claim to
provide almost complete protection against computer virus. Unfor-

tunately, none of them is perfect. It is theoretically proved [1, 14],

that there is no algorithm that can perfectly detect all possible

viruses. However, several techniques were developed, [6] and their

combination is implemented in most antivirus software products to

provide the best protection possible.

1. Infection Prevention - halt the virus replication and prevent the

initial infection from occurring. The antivirus software moni-

tors the critical system components and resources, such as

boot sector of the hard disk, critical OS files, network access

and etc. Unauthorized access to these components causes the

system to be halted, preventing the malicious code from propa-

gation. While being efficient in many cases, this method allows

to withstand the viruses with the known propagation charac-

teristics.

2. Infection Detection - detect infection soon after it has occurred

and mark specific components of system segments that have

become infected. Such systems assume that executable files

are never changed (read only) after being installed. Infection

by a virus would necessarily result in the file content to be
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changed, as virus requires a host executable to place its code

and further be invoked. To verify the integrity of the files, such

antivirus applications generate digital digests of these files and

store them in the database, preferably backed up on the read-

only media, and usually cryptologically secured. When during

the periodic scans of the file system the difference is detected

between the content of the current file and its original one, it

signifies the presence of a virus. It should be emphasized, that

such systems usually do not identify the exact virus strain,
and can not recover the infected files, unless the original unin-

fected copy was backed up in advance. Another problem with

such techniques is numerous false positive alerts, as some-

times the assumption of the unchanging executable is not true.

Examples of applications of the infection detection techniques

can be found in [5]

3. Infection Identification - identify specific viral strains on sys-

tems that are already infected and remove the virus. This kind

of protection is the most popular one and is exploited in all

the antivirus tools without exception. It is described in more

details below.

The combination of these three essential techniques usually pro-

vides a defense against most malicious executables. However it is

worth noticing that the first two of them do not allow to cure the

infected system, and thus gained less popularity than the infec-

tion identification. Lately infection prevention is being promoted,

such as monitoring of system files and dlls in Windows, various

firewall products and etc. However contemporary operating systems

come pre-configured with extremely insecure configuration, render-
ing the computer vulnerability to the virus attacks. Users usually

recall that something should be done only when their computer is

infected, and that is the point when the infection identification tech-

niques are used.
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Infection identification is based on the concept of the virus fin-
gerprint [3], which allows to uniquely identify each virus. The fin-

gerprint of a virus executable is typically a short series of machine

code bytes ( usually not larger than a few hundreds of bytes) - aka
signatures, that the virus code contains. Specifically, a signature-

based detector requires the virus’ code length and the location of

its ’contagious’ segment, which is essential to its replication and

transfer among storage media, computer memory and networks.

These signatures are extracted by the antivirus researchers from
the original virus code and then are packed into the database of

the known viruses. For instance, Norton Antivirus 2003 contains

more than 65000 such signatures of the known viruses [13], and

the database is being extended on the daily basis. The detection

process is performed by scanning the suspicious files, mostly exe-

cutables, attempting to textually match the known virus signatures

in the binary file. If the process results in successful match, it can

be claimed with almost full confidence that the virus is present,

though false positives occur. The next steps are to attempt to re-

move the viral code from the file, and if impossible, to restrict the

further access to it. However if no viral signature was found, it only

ensures that the known viruses are not present, but it might well

be that the new one is.

In order to circumvent the signature matching process, virus

writers employ various sophistication of the viral code [7]. They

wrote viruses which pad their code with random code, used several

ways to code the same functionality ( for instance, xor AX,AX or mov

AX,#0), and etc. There are also virus authoring toolkits, allowing for

easy virus creation from the common code base. Such viruses still

can be detected using signature matching with wildecards[6].

The most difficult to detect kind of viruses are polymorphic and

metamorphic ones, which are able to obscure their entry points,

have obfuscated code structures (that can shrink or expand them-

selves through their metamorphic engines). This is where heuristic

9



scanners are used. They also utilize the signature matching algo-

rithms, but the signatures are the behavioral ones - clearing reg-

ister, opening file, self modifying code and etc. Antivirus attempts

to mimic the potential behavior of the executable and suspicious

sequence of such behavioral signatures may raise the probability of

virus.

Polymorphic viruses are often encrypted. While it is impossible

to match the viral code itself, the first versions of such viruses were

detected through matching their decryption engine, which had to
be valid executable. To circumvent the decryption engine detection,

virus writers obfuscated its code, making it untraceable for any sig-

nature matcher. The most sophisticated viruses are the metamor-

phic viruses, which encrypt not only their body, but the encryptor

itself. For instance, W32.Simili virus uses a polymorphic decryp-

tor, which changes size and location in its infections. It creates a

metamorphic virus body, disassembling the virus to an intermedi-

ate form, compresses it by removing redundant and unused code,

then mutating it by reordering functions and breaking up code. It

then expands the intermediate form by adding random redundant

code and unused instructions. It finally reassembles the intermedi-

ate code to a native code which is used to infect other hosts. To add

insult to injury, the payload, a message box, is only displayed on

certain days, depending on the virus variant. For such complicated

cases, antivirus applications creates a simplified virtual machine

and runs the code inside the controlled environment for the virus to

decrypt itself. Once decrypted, a signature matcher is executed on

the plain-text virus.

Antivirus software

Antivirus applications usually run in the background and intercept

all the system calls, which attempt to open file. In particular, ex-

ecuting a file requires to open and read it; loading shared library
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cannot skip the stage of reading it from the disk either. Modern an-

tiviruses add network and mail support, filtering the incoming and

outgoing network traffic as well.

This is the moment when antivirus software applies all its weapons

and scans the data being read to detect the presence of virus. Such

on-the-fly scan should be very efficient and fast, since long delays

in starting a program would interfere with the user’s normal activ-

ity. This restriction sometimes prevents the antivirus to come to the

final conclusion about the executable within such short time, and it
continues monitoring its actions even when the application has al-

ready been started. In such case its overhead should be minimized

as well, restricting its functionality.

While the scan-on-execute technique is very popular in PC an-

tivirus software, it is now a common practice to install antivirus

scanners for analysis of all incoming and outgoing corporate inter-

net traffic. With todays high speed networks, the huge amount of

data should be processed with the real time restrictions. Of course,

optimizing the speed of such antivirus gateways is one of the pri-

mary goals of the antivirus vendors, as the gateway performance

directly influences the effective bandwidth of the outgoing and the

incoming network traffic in the organization.

Signature matching - the bottleneck

From the review of the antivirus technologies it becomes clear how

complicated and CPU intensive their implementation should be.

Obviously, the common denominator among all of them is a sig-

nature matching. All the virus identification algorithms employ this

technique at one stage or another during the execution [9].
However the question is whether the signature matching is the

true bottleneck of an antivirus program execution, and if yes, to

what extent. Does it really take most of the execution time? Though

the everyday experience with the antivirus software proves it as
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CPU-greedy, slowing down the overall performance and rendering

the computer absolutely unresponsive when performing the scan,

it should be clearly shown that the signature matching is the major

factor for the antivirus CPU load. There are other potential time-

consuming tasks, with the I/O being one of the most significant.

Every piece of data is read from disk or from network, and it is

not clear whether the improvement of the CPU intensive part of the

antivirus process would improve the overall performance.

In order to estimate the portion of the signature matching in
the overall antivirus execution, software profiling is required. How-

ever the fine-grained profiling of the leading antivirus products is

impossible, since the vendors do not publish the sources of their

products.

There are several open-source antivirus products, such as Clam

Antivirus - ClamAV [15] and OpenAntiVirus [16], which make possi-

ble to analyze and change the source code.

It is important to understand the algorithms and the perfor-

mance bottlenecks of the existing antivirus software in order to be

able to optimize them for implementation in hardware. The follow-

ing subsections present the algorithm used for the pattern matching

and analyze the performance of ClamAV antivirus.

ClamAV algorithm description

ClamAV employs very efficient Aho-Corasick pattern matching al-

gorithm, based on finite state pattern matching automation repre-

sented by trie[19].

Trie is an ordered tree data structure, that is used to store an

associative array where the keys are strings comprised of symbols

from the given alphabet |
�

|. Any descendants of one node have

common prefix of a string associated with that node. Leaves repre-

sent the end of string and may contain the information associated

with that string. Search operation is performed by traversing the
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Figure 2: Trie with the six words “to, tea, ten, inn,in,i”.

tree, following the pointers in the tree nodes. If there is no path for

the given input string, that string is not present in the data struc-

ture. In the example on Figure 2 there are six strings in the trie -

“to, i, in, ten, tea, inn”.

A naive implementation of trie requires allocation in every node

of a pointer array, containing all possible symbols from |
�

|. Such

implementation would allow to perform the search without com-

parison operations at all, as every next node to visit would be found

using the next input symbol as index in the node array. However

such implementation has extremely high memory complexity, ex-

ponential in the lenght of strings in trie. Thus for binary database

with the alphabet of size 256, the one used by antivirus software, it

would require 256k, where k is the average number of symbols in

signature. Typical size of signatures is from 40 to 100 symbols [15],

and it is obvious that such implementation is not feasible.

Another solution would be to create variable length array and

search it for the next symbol during the traversal. This however

would greatly decrease the performance, requiring at best O(log(n))
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comparisons at each level of the trie.

The approach taken by the ClamAV writers makes use of the

fact that the number of signatures with the same prefix decreases

exponentially with the increase of a prefix length. Thus they use

very shallow trie with only 2 levels. These levels are implemented

using the first approach. All the tails of the signatures with the

common 2-symbols long prefixes are stored in the leaves of the trie

and are searched sequentially.

ClamAV performance

In order to understand the distribution of the CPU load during
the antivirus execution, function-level profiling was performed with

GNU/Linux gprof. The profiling results revealed that the applica-

tion indeed spends most of the CPU time (99%) in two signature

matching functions. The first one (cl_scanbuff - 38% of CPU time)

traverses the trie, while the second one ( cli_findpos - 61%) is in-

voked to match the signature tail, found by the first function, with

the input string in order to find whether there is a full match with

the known virus signature.

These measurements, however, do not show the I/O portion of

the execution. In order to estimate one, the signature matching

functions, mentioned in the previous paragraph, were replaced by

empty stubs, containing only return instruction.

Both versions were invoked on 250MB size dataset.

The system utilization during the invocations was measured by

the ’time’ command. All values are in seconds. The following results

were obtained:

Invocation with matching functions:

9.6user 0.63system 0:26.16elapsed

Invocation with matching functions disabled:

0.15user 0.31system 0:15.18elapsed
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The results show that the program spent ~40% solely on signa-

ture matching. The rest of the time, disk I/O was performed.

Although the results demonstrated that large part of the an-

tivirus run time is due to the disk I/O, the signature matching effi-

ciency influences significantly the overall performance. In addition,

the profiling clearly shown that signature matching is the major

factor of CPU utilization. And finally, I/O technologies are being

developed to deliver much higher I/O performance, e.g. Infiniband,

applying which would make the CPU a real bottleneck.
In order to prove that, additional test was invoked on the same

dataset, but this time the data resided on RAM disk and not on the

hard disk. The following results were obtained:

Invocation with matching functions:

9.6user 0.35system 0:10.02elapsed

Invocation with matching functions disabled:

0.15user 0.32system 0:0.49elapsed

The results show that with the high speed I/O, the factor be-

tween the “fast” version and the regular version is almost two or-
ders of magnitude.

Although these values pose the upper bound on the possible per-

formance improvements, this is the goal of the hardware-assisted

search.

Approaches to hardware-assisted string match-
ing

It is clear that in order to achieve the maximum performance boost

the string matching should be optimized for hardware implemen-

tation. There is a lot of research activity in that field due to its

applicability in network devices, such as routers and switches [20,

21, 22, 23]. However, there are several significant differences be-
tween the existing solutions and the one required for application in

15



antivirus software:

� Hardware acceleration algorithms are usually used for match-

ing IP addresses, no more than 32 bits in IP V4 or 64 bits in IP

V6. This restriction is utilized by the network packet matching

algorithms to achieve high performance by using large mem-
ory. In our case the length of the string to be matched can

be from 40 bytes to 100 bytes, which is one or two orders of

magnitude larger than the former. Matching only the first two

or three symbols is not enough to make the string matching

sufficiently efficient.

� Routing tables managed by the routers are frequently updated,

so that the network algorithms should balance between the

lookup and update time. In contrast to the former, antivirus

string matching is done mostly using read only signature database.

Thus, write performance optimizations are irrelevant.

We considered several alternatives for string matching algorithm to

be used:

1. Implementation of hash table

2. Implementation of the trie-based algorithm.

3. CAM-based approach

The first approach considers using some hash function to create a

hash table of all signatures and to determine the successful match

of the input strings based on the existence of the corresponding

entry in the signature hash table. However since hash function

is by definition is not injective, and since the active input domain
size is extremely large, finding the matching entry in the hash table

would not be sufficient to conclude that the input string is indeed

a virus signature. There will be required additional comparison op-

erations in order to ensure the correct match. Additional problem
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is that the computation of the hash function is required for every

input sequence, incurring significant overhead. In contrast to that,

trie-based algorithms can filter most of the input strings only by

comparison of two or three first symbols.

Hardware implementation of the trie-based algorithm

As we mentioned above, full trie has exponential memory require-

ments. The table below represents the memory requirements of the

trie size from 2 till 5 levels:
#of levels Size (B)

2 216

3 224

4 232

5 240

It is clear that the maximum full hash size possible for imple-

mentation is of up to three levels. If the match is found on these

levels, then the rest of the input is matched with all the strings

sharing the common prefix from the matched levels.

Trie performance estimation

In order to estimate the average time it takes to check one signature,

the following formulae should be evaluated:�������
	�	
��������������������� ��!��"��#$#$�&%"%'�)(*�

where i is the level number, P is the probability,�+�,�,�"�&�,!,�*�,#$#$�&%*%.-/�10�2 #$��#$3���45�6%*%��&%,7 ���)89("�'�:�,�';<("�'�'�=��>?�
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The skeleton code for trie traversal is presented on Figure 3

Assuming that all the data resides in the L1 cache, it takes about

4 cycles to complete the traversal of one level of a trie. However such

assumption is unrealistic due to poor spatial and temporal locality

of memory access during trie traversal. Every next level requires

access to another pointer array at the different location. Sequential
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Figure 3: Program skeleton for trie traversal
r2=0;
trie_trace:

r0=input_string[r2];
r1=trie_level[r0];
if (r1==null) goto failed;
if (i==TRIE_MAX_LEVEL-1) goto continue_match;
r2++;

goto trie_trace;

accesses to the same array have purely random nature in terms of

time of access.

In order to better understand the cache performance of trie traver-

sal we ran the antivirus in cache simulator Cachegrind [26]. Cache

configuration of the real Intel M-1.5 GHz CPU was used - 32K D1,

32K I1, 8-way, 64 B per line. The following results were obtained:
max trie levels D1 cache miss rate

2 12.2%

3 10%
All the rest of the tests were performed with the trie depth equals

to 3.

To count the average number of cycles required for completion of

traversal it is necessary to obtain the statistics regarding the distri-

bution of the search length, which also depends on the total number

of viral signatures in the trie. For this purpose the code was instru-
mented to record this information.

The results are presented on the graph on the Figure 4

The results show that for any number of signatures the probabil-

ity of access to the second level is 100%, that is the loop will always

be executed at least twice. Assuming 100K signatures in the trie, as

much as 72% of the accesses will require the third loop. This leads

to the average of 1.9 traversals per input string.

Another algorithm is used to match strings which resulted in a

full trie traversal. The trie leaves contain the list of the signatures

with the same prefix, and the string is matched with each one se-
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Figure 4: Frequency of accesses to the first three trie levels
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quentially. The code skeleton on Figure 5 can be used.

There are two memory accesses and one comparison involved.

The graph on Figure 6 shows the distribution of the number of

signatures at the trie leaf, normalized by the number of accesses to

the leaf.

It follows from the graph that about 40% of all accesses require

up to 7 iterations at the trie leaf to check all possible signatures

with the same prefix. The mean value is 4.093 iterations per leaf.

Such high rate is observed when the real antivirus signatures are

Figure 5: Program skeleton for string comparison
r0=trie_size;
start:

r1=input[r0];
r2=signature[r0];
if (r1!=r2) goto failed;
r0++;

goto start
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Figure 6: Distribution of how many times more than one string is
compared, after all trie levels are matched
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used, as opposed to the randomly generated signatures. The reason

is in similarity in the prefixes of many viruses.

And finally the graph on Figure 7 depicts the distribution of the
accesses which traversed the trie and arrived matched more than 3

symbols of the signature, that is, employing at least one comparison

operation. The graph is normalized by the total number of accesses

to the trie, i.e. is in the same units as the first one.

The results show that there are on average 2.8 comparisons per

access. Together with the previous value it gives 2.8*4.093=13.8

times the comparison loop should be performed, once the trie traver-

sal is complete.

The final computation is as follows:

Cache miss
Each execution of the first loop requires 2 memory accesses.

Each execution of the second loop requires 2 memory accesses as
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Figure 7: Frequency of search lengths where more than 3 symbols
match

5 10 15 20
Match length

0

0.05

0.1

0.15

0.2

Fr
eq

ue
nc

y
Distribution of match lengthes above 3

well. Thus, there are 13.8*2+1.9*2=31.4 memory accesses. Given

miss rate of 10%, there are on average 3.1 cache misses per each

input string.

Cache hit
Assuming all memory accesses to be cache hits (single cycle),

and assuming that each compare and branch requires only one

cylce, both loops would take about 4 cycles, two for each memory

access and two for both compare and branch operations. It would

result in total of 31.4 cycles for memory and the same number for

compare and branch. Given cache hit of 90%, there will be on av-

erage 60 cycles per each input string.

Total
Matching strings using trie takes on average 3.1*(cache miss

penalty)+60 cycles to execute. Assuming miss penalty as an ac-

cess time to L2 cache, i.e. about 10 cycles, the result is 91 cycles
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CAM-based string matching

Content Addressable Memory (CAM) allows for detecting string match

within a single memory access. This unique feature of CAMs is

widely used in network routers and network switches. Read access

time is the same as the one of regular memories. Access rates as

large as 800MHz are reported.[24, 25]

We propose using CAMs as a first stage for lookup of the match-

ing signature, effectively substituting trie. All the signatures, more

exactly, their first N symbols are loaded to the CAM at the boot
time. Signatures with the same prefix are saved at the same ad-

dress. CAM’s output is used to index a standard memory array,

serving as a repository for the signatures tails, exactly as in the

case of trie-based implementation. Once CAM match is detected

the comparison is continued sequentially. It is important to note,

though, that the number of the signatures sharing the same prefix

decreases exponentially with the length of that prefix. In order to

improve the performance of the sequential comparison, small cache

is sufficient for holding the string being checked and for prefetch-

ing the array pointed by the CAM, which contains the signature tail

left to be matched. This cache reduces the sequential comparison

penalty to only single cache miss.

There is a clear tradeoff between CAM width and performance.

The wider the CAM, the less is the chance to execute sequential

string comparison. However it might be beneficial to make CAM as

small as possible in order to shorten the access times by making on-

chip implementation possible. Unfortunately such implementation

seems to be unlikely, at least today, assuming that there is a need

to save about 100K of signatures.

From the analysis of the trie performance above it follows that

there are on average 6 symbols long comparisons required per one

input string. That would be the minimum CAM width, resulting in

48 bit wide CAM, to overcome the high performance penalty of the
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trie-based design, requiring only single memory access for 90% of

the accesses. For other 10% it follows that on average 2 compar-

isons would have to be made, resulting in one additional memory

access and several comparison cycles.

The general result:

Average CAM access time: 0.9*(1 CAM access)+0.1*(1 cache miss

penalty + 2*4 cycles)

Cache miss penalty in this case should be assumed as a time to

access main memory, since there is no L2 cache in our configura-
tion. Assuming 100 cycles cache miss penalty and 10 cycles CAM

access, the result is ~15.8 cycles per access, about 6 times faster
than in the case of trie-based implementation.

Increasing the CAM width to 10 symbols ( 80 bits ) would allow

to increase that number to 12 cycles per access. Total size of CAM

in that case is about 1MB, which is the size of today’s L2 caches,

still allowing for just 10 cycles access penalty.

The graph on Figure 8 presents the estimated access time as a

function of CAM width:

System architecture with the antivirus copro-
cessor

In the following, we propose the possible system design with the

integration of the antivirus coprocessor.

The coprocessor offloads all the signature matching code from

the main processor. However, it is likely that the coprocessor will be

used not only for the simple signature matching, as we described

in the previous sections, but for other more complicated tasks, like

sequence matching and string search, and etc. It may implement

various computational primitives for string search, string compar-

ison and etc. For the purpose of the antivirus software, it should
implement at least one operation:
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Figure 8: Access time as a function of CAM size
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find_position(start_addr, end_addr,

result_register, end_offset_register)

This operation matches any string from the database with the

continuous memory area between start_addr and end_addr. These

addresses point to the main-CPU memory. The result is the offset

from the starting address, representing the first match found. The

end_offset_register points to the end of the matched signature

allowing to exactly identify the found sequence.

The coprocessor should be capable of asynchronous operations.

It should support the pipelined mode of operation, so that while

searching for the first match, the next addresses can be provided to

perform the next search.

Our system architectural model is shown on Figure 9, and is

comprised of the main CPU, copocessor and the RAM.
Coprocessor has its private RAM, divided into two parts. The

first one contains the string block to be checked, transferred via
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Figure 9: High level system architecture
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DMA channel between the main and coprocessor memories. The

second part is initialized during the boot with the signature tails

arrays. The coprocessor cache is big enough to hold the minimum

block of input data.

Coprocessor has several registers to receive parameters from the

main CPU. The registers are grouped in register files, each one con-

taining two registers. These registers are used for the input by the

main CPU to pass the memory range, and for the output by the co-

processor to pass the resulting offset and the pointer to the matched

string. Additional register is used as a flag register to point to the

active register file. This is useful for pipelining the string match-
ing requests, so that the next address range is set by the time the

coprocessor completes the current run. In addition, the interrupt

line is set in both directions to support asynchronous operation: an

interrupt is issued by the main CPU to the coprocessor, to indicate

that the data is ready for the processing, and by the coprocessor to

the CPU, to indicate the completion of the operation.
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Summary and future work

In this report we analyzed the applicability of coprocessors in an-

tivirus applications, which protect the computer from the computer

virus attacks. This analysis included the overview of the modern

antivirus tools and algorithms in order to better understand their

computational requirements and detect the compute intensive ker-

nels. The analysis revealed that the most frequently operation used

during the virus scan is a signature matching, i.e. the search for

the given string in the large database. Profiling of the real antivirus

application proved that the signature matching is indeed very com-

pute intensive, justifying its implementation in hardware. Based on

this evaluation we proposed the high level system architecture with

the integrated antivirus coprocessor based on CAM.

There are several possible directions to develop this interesting
subject. There are a lot of computer applications which require

string search. CAM -based coprocessor can be used to boost their

performance

� Personal Firewall. More and more people are realizing the

need to tighten access to their data, and install security toolk-

its with personal firewalls. These firewalls, or so-called port fil-

ters, trace all the network traffic, allowing or rejecting packets

to get through according to their destination and source ad-

dresses. Application of fast string matching processor would

significantly boost their performance.

� Computational biology. Adding write operation to the copro-

cessor would allow for using it in sequence matching applica-

tions in order to boost their performance.

� Data mining. Data mining applications in the area of plain

text mining many times require searching over and over the

same data trying to find specific string patters. For instance,
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the operation of detecting the frequency of the word entries

in the text is very common in the process of data clustering.

Searching for specific words can be improved if the coproces-

sor allows to first initialize it with the file contents and then

attempt to search for the required items.

� Text search. As in the previous case the text search speed can

be increased if the coprocessor is used.

In general, it seems that the subject of using CAMs in personal

computer is not sufficiently explored, despite of the high potential

found in it.
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