
Short paper: Materializing Highly Available Grids

Mark Silberstein, Gabriel Kliot,
Artyom Sharov and Assaf Schuster

Technion, Haifa, Israel
{marks, gabik, sharov, assaf}@cs.technion.ac.il

Miron Livny
University of Wisconsin, Madison, USA

miron@cs.wisc.edu

Abstract

Grids are becoming a mission-critical component in
research and industry. The services they provide are
thus required to be highly available, contributing to the
vision of the Grid as a dependable virtual computer of
infinite power. However, building highly available ser-
vices in Grid is particularly difficult due to the unique
characteristics of the Grid environment. We believe
that high availability functionality should itself be pro-
vided as a service, which can be used by transparently
decorating, but not changing, the original services, thus
making them highly available. In this work we highlight
the major challenges and describe our initial experience
in building such a generic high availability service in
the context of the Condor system.

1 The Problem of High Availability in
Grids

The ever-growing computational and storage needs
of contemporary science and industry led to broad
adoption of computational Grids, making them an es-
sential tool in everyday practice. Naturally, their pop-
ularity resulted in a growing dependence upon the ser-
vices which they provide, and they often become a crit-
ical link in production and research chains. However,
numerous factors contribute to a decreased availability
of Grid-supplied services. Such factors include frequent
network interruptions common in large scale deploy-
ments over WANs, uncoordinated maintenance tasks
due to multiple administrative domains, and commod-
ity hardware and software components, susceptible to
frequent failures.

It could be expected that the problem of building
highly available (HA) services, which has been stud-
ied extensively over the last 30 years, and successfully
solved in small-scale cluster environments, should not
require any additional effort in the context of Grid.

However, the characteristics of large-scale Grid en-
vironments differ significantly from those of tightly-
coupled clusters, making the previous solutions inade-
quate in a new setup. We identify the following major
challenges:

Service replication over WAN Imminent net-
work failures, common in large scale deployments over
WAN, make it desirable to set backup replicas of a ser-
vice at multiple sites, on different subnets. Thus, IP
fail-over techniques, such as [4, 1] are inapplicable in
these cases.

Lightweight protocols Large scale deployment of
HA services makes it impossible to use tightly cou-
pled, heavily synchronized protocols (such as tradi-
tional Group Communication systems [2]). The inher-
ent dynamicity of the Grid environment may result in
frequent state changes, making them a common sce-
nario and requiring optimized protocols.

Autonomous partitions Multiple service replicas
in large scale deployment can be partitioned in the case
of network failure. It is often desirable that a service be
provided in each partition independently, falling back
to a single replica when the network is reconnected.

Network anomalies Trivial assumptions of sym-
metry, transitivity and bounded network delays, which
significantly simplify implementation of HA in LANs,
are no longer valid for WANs.

Handling transient failures Transient short net-
work outages may be quite frequent in WANs, chal-
lenging the robustness of failure detection protocols.
For example, in the context of primary/backup sce-
nario, improper handling of such failures may result
in undesirable ”fibrillation” of the primary server be-
tween backup instances, only decreasing the quality of
service.

We propose to encapsulate the handling of these and
other issues related to HA in Grids in a single service,
HADecorator, which can be used to augment any exist-
ing service with HA functionality. There are two main
requirements for designing the HADecorator. First, it

3211-4244-0307-3/06/$20.00 ©2006 IEEE.

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on June 29, 2009 at 16:21 from IEEE Xplore. Restrictions apply.

should allow transparent addition of HA via decora-
tion of existing and already deployed services, requir-
ing no or minimal change, and freeing the service devel-
oper from the need to deal with HA issues. Second, it
should be capable of providing different HA semantics
as required by various services, such as single/multiple
active replicas, state replication consistency schemes,
and others. Ultimately, our goal is to turn HA into an
easy-to-use commodity, which can be adjusted to the
specific requirements of different services.

Our design separates HADecorator into two loosely
coupled building blocks: HAInvocator, which main-
tains a set of active and backup replicas of a given ser-
vice according to the required semantics, and HARepli-
cator, which ensures a consistent service state in all
replicas, in accordance with the required consistency
scheme. This modular design, which decouples the
state replication from service availability, achieves the
degree of flexibility required to accommodate a wide
variety of HA semantics via combination of different
implementations of both components.

In the next section we describe our experience in
building HADecorator and applying it in a production
system.

2 Work in Progress: Adding High
Availability to the Condor Central
Manager

Condor [5] is a high throughput batch system,
widely used in many production Grid deployments.
Condor’s core capability to find and allocate computa-
tional resources that match pending execution requests
is encapsulated in a single node, called the Central
Manager (CM). The CM is comprised of two compo-
nents: Collector and Negotiator. Collector serves as a
global pool metadata repository, that stores the state
of the pool, namely, the information about all resources
and execution requests, sent periodically by all Condor
components. Negotiator uses the data accumulated in
Collector for the actual resource allocation.

CM failure paralyzes Condor’s ability to match
newly submitted jobs, thus requiring this service to
be highly available. While CM was not originally de-
signed for HA, adding this functionality by changing
the service’s internals is not a viable option, a decora-
tion approach is thus required.

We separate the issue of providing HA to Collector
from that of providing it to Negotiator. Collector ’s HA
is accomplished by redundancy, as Collector is essen-
tially a passive data repository and permits multiple

active instances to coexist in a pool. Periodic state up-
dates from all Condor components are sent to multiple
active Collector instances, replicating the pool state in
all of them.

Adding HA to Negotiator is much more challeng-
ing. First, only a single active instance of Negotiator
should be available in a connected network partition.
Second, Negotiator maintains its own state, which com-
prises pool accounting and user priority information,
and should be made available in all replicas to pre-
serve the correctness of resource allocation protocol in
case of failover.

These requirements are satisfied as follows. The
HAInvocator module implements primary/backup se-
mantics, making only one active instance of the service
available at any moment. Multiple HAInvocator dae-
mons run on different machines in the pool, each one
controlling a single Negotiator. Only one HAInvoca-
tor instance acts as an active leader at any given mo-
ment, maintaining an active Negotiator. When failure
is detected, backup HAInvocators trigger a leader elec-
tion protocol, eventually selecting a new leader, which
starts the Negotiator instance it controls. In the case
of network failure, a leader is elected in each connected
partition, acting autonomously until network connec-
tivity is restored. Merging of partitions may result in
multiple active leaders. When this is detected by the al-
gorithm, the process of conflict resolution is triggered,
again yielding only a single active instance of Negotia-
tor. Our leader election algorithm is a modified version
of the Bully algorithm [3].

Negotiator ’s state is encapsulated in a set of files,
which are reliably and periodically replicated by
HAReplicator, collocated with every replica. HARepli-
cator maintains a consistent state among connected
replicas, accommodating for conflicts that arise when
multiple instances running autonomously in different
network partitions are reconnected.

Figure 1 depicts the main components of our sys-
tem. Every Central Manager machine runs an instance
of Collector daemon and an instance of HADecora-
tor, comprising of HAInvocator and HAReplicator dae-
mons. Notice that only a single instance of Negotiator
exists in the pool in any instant. One HAInvocator
acts as a leader and maintains a running instance of
Negotiator on its machine, while backup HAInvoca-
tors monitor leader’s activity and are ready to trigger
a leader election process once leader’s failure is rec-
ognized. Negotiator ’s state is being periodically repli-
cated by a leader HAReplicator to all backup HARepli-
cators.

We emphasize that neither Collector nor Negotiator
are aware of being made highly available, so that not a

322

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on June 29, 2009 at 16:21 from IEEE Xplore. Restrictions apply.

Figure 1. HA Architecture in Condor

single line of code needs to be changed or added. Fur-
thermore, the lightweight asynchronous protocols be-
have as self stabilizing in the case of transient network
failures, which makes them suitable for both LAN and
WAN environments. HADecorator has been already
integrated into the mainstream Condor release and is
being adapted for use by additional Condor compo-
nents.

HADecorator is a critical component in the system,
and any potential correctness flaws, inevitable in a de-
velopment cycle, should be eliminated. To ensure the
correctness of the implementation, we have developed
a distributed testing system which allows to simulate
a steady state, crashes, network disconnections and
network partitions. The testing system automatically
creates test cases from the set of possible scenarios.
Each test case is run distributively over a set of
computers, allowing to validate the correctness of
the implementation in a real setup, as opposed to
single-machine testing systems. The system monitors
the activities of all relevant components (Negotiator,
Collector, HAInvocator and HAReplicator) and verifies
in an online manner that a set of distributed invariants
defined for a given scenario is not violated. Examples
of such invariants include ”exactly one Negotiator in
every network partition” (except for short stabilization
periods), consistency of Negotiator ’s replicated state,
consistency between multiple Collector instances and
others.

3 Conclusions and future work

This paper draws the general design guidelines and
emphasizes the main challenges for building a generic
service for high availability. Such service hides the
complexities of providing HA functionality in the Grid
and allows the developer to concentrate on the business
logic. We believe that the separation into two loosely
coupled building blocks, each of which (and many vari-
ants of each) can be built using existing algorithms, is
what allows to accomplish the two goals we strive for,
namely decorability and flexibility. The Condor CM
is our initial attempt to apply HADecorator in a real
system, which will be extended for a broad set of Grid
services.

There are still several challenging issues which are
the subject of active research. They include adding
support for various consistency schemes and different
HA semantics, as well as coping with lack of network
transitivity and symmetry in WANs, dynamic addition
and removal of replicas, and dynamic registration of
additional services that require HA functionality.

References

[1] http://www.linux-ha.org.

[2] G. Chockler, I. Keidar, and R. Vitenberg. Group com-
munication specifications: a comprehensive study. ACM
Computing Surveys, 33(4):427–469, 2001.

[3] H. Garcia-Molina. Elections in a Distributed Comput-
ing System. IEEE Trans. on Computers, C-31(1):48–59,
Jan 1982.

[4] Kshitij Limaye, Box Leangsuksun, Venkata K. Munga-
nuru, Zeno Greenwood, Stephen L. Scott, Richard
Libby, and Kasidit Chanchio. Grid-Aware HA-OSCAR.
In Proc. of 19th Annual International Symposium on
High Performance Computing Systems and Applications
(HPCS), pages 333–339, 2005.

[5] D. Thain and M. Livny. Building reliable clients and
servers. In Ian Foster and Carl Kesselman, editors, The
Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San-Francisco, 2003.

323

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on June 29, 2009 at 16:21 from IEEE Xplore. Restrictions apply.

