

Zero-effort adaptable security

Mark Silberstein

- Security-sensitive code
 - Tiny TCB
 - Thoroughly verified
 - Hand-crafted protection against side channels

Security-sensitive code development Only for experts

Security-sensitive code development And for the rest of us

SECURITY IS HARD

Nowadays

Power to the people! Security for masses!

- 1. Take your favorite app
- 2. Run in SGX enclave
- 3. Done

2. Run in ei Gave

3. Done

Why is it secure and fast?

- Reversed sandbox
- Private code & data
 - Confidentiality
 - Integrity
 - Freshness
- Defends against OS!
- HW acceleration
- Scales with CPU scaling

2. Run in ei Gave

3. Done

Running unsecured/unmodified applications

System support

Performance Convenience

Security issues

Side channels Buffer overflows ROP

System support for zero-cost security

- Compatibility layers / LibOS
 - SCONE[OSDI16], Graphene-SGX[ATC17], Haven[OSDI14]
- Reducing huge TCB
 - Glambdring[ATC17]
 - Panoply[NDSS17]
- Performance enhancement
 - Eleos[EUROSYS17]

Hardening SGX security

- Page table attacks and mitigation
 - T-SGX[NDSS17], Leaky Cauldron [CCS17]
- Cache-timing attacks and mitigation
 - DR.SGX[Arxiv], Cloack[USENIX Sec17]
- ROP/ASLR
 - Dark-ROP[USENIX Sec17] vs. SGX-Shield [NDSS17]
- Branch predictor attacks
 - Branch shadowing [USENIX Sec17]
- Preventing buffer overflows
 - SGXBounds [Eurosys17]

So what's the problem?

Security 10x-4000x slowdown for full protection Performance Security costly

The level of protection depends on:

- Execution environment and expected threats
 - Public vs. private clouds
 - Side channels vs. direct attacks
 - Multi-tenant vs. exclusive use
- Operational requirements
- Tolerable performance cost

The level of protection depends on:

- Execution environment and expected threats
 - Public vs. private clouds
 - Side channels vs. direct attacks
 - Multi-tenant vs. exclusive use
- Operational requirements
- Tolerable performance cost

ISVs must support different levels in the same application!

How to support all of them at once without code modification??

Needed: adaptable security at low development cost

ZIKIT: Zero-effort Instrumentation toolKit for adaptable securiTy

Developer annotates sensitive memory regions

DONE

ZIKIT: Zero-effort Instrumentation toolKit for adaptable securITy

Developer annotates sensitive memory regions

DONE

At runtime/deployment: choose desirable protection level

Unprotected

Fully Protected

Under the hood

 Compiler-based selective hardening of data and code via static analysis

 Performance optimizations for memoryintensive SGX applications

 Pluggable modules for ORAM, bounds checking, remote communication,...

Biometric Identity validation server

Biometric Identity validation server

- 1. Take your favorite app
- 2. Compile with ZIkIT
- 3. Run in SGX
- 4. Done

Thank you!

Watch for open source code at https://github.com/acsl-technion

https://sites.google.com/site/silbersteinmark