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In this chapter we cover two difficult problems frequently encountere@BlY developers: optimizing
memory access for kernels with complex input-dependent access pattiednsapping the computations
to a GPU or a CPU in composite applications with multiple dependent kernels. Bsthgformidable
challenge as they requidynamic adaptation and tuning of execution policies to allow high performance
for a wide range of inputs. Not meeting these requirements leads to sullgtarfiiamance penalty.

In the first part of the chapter we describe our methodology for solviagnimory optimization problem
via software-managed caching by efficiently exploiting the fast scratchpad memory. This technique outper-
forms the cache-less and the texture memory-based approacheskermigsPU architectures as well as
the one that uses the Fermi hardware cache alone.

The focus of the second part is the algorithm for minimizing the total running tirmecomplete applica-
tion comprising multiple interdependent kernels. Both a GPU and a CPU casetdaexecute the kernels,
but the performance varies greatly for different inputs, calling forasyit assignment of the computations
to a GPU or a CPU at runtime. The communication overhead due to the dataddapes between the
kernels makes per-kernel greedy selection of the best performirigedewboptimal. The algorithm opti-
mizes the runtime of the complete application by evaluating the performance of albsignments jointly,
including the overhead of the data transfers between the devices.

We demonstrate these techniques by applying them to a real applicationnfiputiog probability of
evidence in probabilistic networks. The combination of memory optimization andrdic assignment
results in up to three-fold runtime reduction over the non-optimized versigeainnputs, and up to five-
fold over a highly optimized parallel version running on Intel’s latest dusldjcore 16-thread Nehalem
machine.

1 Introduction, Problem Statement, and Context

This chapter endeavors to assist developers in overcoming two major boltteof the high-end GPU plat-
forms: memory bandwidth to the main (global) memory of the GPU, and the CPUgBRIthunications.
We faced both these problems when developing an application for compugipgabability of evidence in
probabilistic networks, and only by solving both we achieved the desinddrpence improvement. Yet,
we believe that our techniques are applicable in a general context, arm @mployed together and sepa-
rately. In the chapter we first describe the solution for each problem¢@mclude by demonstrating their
combined effect on a real application as a whole.

Memory access optimization is among the main tools for improving application peafare in CPUs and
GPUs. Itis of added importance if the algorithm has a low compute-to-memoegsicatio. Often the same
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data are reused many times, and reorganizing the computations to exploit ghfaditton-die caches might
thus reduce the main memory bandwidth pressure and improve performance.

Hardware caches employ input-independent replacement algorithrhsaslueast Recently Used (LRU).
Maximizing cache performance to exploit data reuse requires restrugtinencode so that the actual ac-
cess pattern matches the cache replacement algorithm. Unfortunately,darfghr@mnce is difficult and
sometimes even impossible to achieve without the ability to control the replaceswsibas.

Modern NVIDIA GPUs expose fast scratchpad memory shared by multipgarsing processors on a
multiprocessor. By design, the scratchpad memory lacks hardware gathgport; hence it is the respon-
sibility of the kernel to implement aoftware-managed cache, which implies determining which data to
stage from the main memory and when to stage it. For cases where this detemmimali&ba-dependent,
the decision must be made at runtime. The main challenge, then, is to minimize theawef the cache
management code, which resides on the critical path of every memorysadeeake first part of the chap-
ter we introduce techniques for analyzing the data access patternssagdinig a read-only low-overhead
software-managed cache for NVIDIA GPUs.

Kernel performance optimization, however, is only one component of rgakie complete application
run faster. Often, despite optimizations, the kernel performance maysuastantially for different inputs.

In some cases executing the kernel on a GPU may actually decrease ftirenpace, such as when not
enough parallelism is available. Furthermore, the overhead of the CRUeGfmunications over the PCI

Express bus may reduce or completely cancel out the advantages gfaugRU. In the second part of
the chapter we focus on optimizing the choice of the processor for thelletacution in applications with

multiple inter-dependent kernels.

A simple approach is to greedily assign the device providing the best operditirmance for a given
input. It will work well for isolated kernels, where both the kernel inpot @utput must reside on a CPU.
For such cases, the data will always be transferred from the CPU toRblea@d back, thus allowing for a
local decision that considers only the performance of a given kernel dndsadce.

However, for applications composed of multiple kernels with data de-
pendencies, whereby the subsequent kernels use the results oéthe pr
vious ones, different assignmentssshedules of the computations on a
CPU or a GPU may decisively influence the running time of the complete
application. The schedule, which optimizes the performance of each ker-
nel separately, is no longer sufficient for obtaining the best perforean
of the application as a whole.

Figure 1 shows #ask dependency graph of a program for computing
A x B+ C for three matricesi, B, C. The nodes and edges of the graph
denote kernels and their data dependencies respectively. Computations
are performed by traversing the graph according to the directionality of
the edges. The computations of a node can be started only if all its pre-
decessors in the graph are complete. In this example the first kernel com-
putesA x B and the second one adddo the result. The respective graph

node labels denote the expected running time (the lower the better) of the
Frogram task dependency graphy oo on a CPU or a GPU. Edge labels denote the data transfer times
or computingA x B+ C of ma- ) . . .
trices A, B, C. given that the adjacent nodes are executed on different devicesit In
data nodes represent the original input data residing in CPU memory.

Were the schedule to consider the performance of each kernel alarmeilit assign the product kernel to

a CPU and the summation kernel to a GPU, yielding an execution time of 65 time WhEsagsume that

Figure 1: An illustration of the

1The on-die memory in the Fermi architecture is partitioned into a hardveateecand a scratchpad; in this chapter we focus on
the efficient use of the latter.



input transfer of matrixC for the summation kernel can be overlapped with the execution of the groduc
kernel on matrices! andB.) However, the best schedule requires only 60 time units to complete, aggsignin
both kernels to a GPU. Note that the higher cost of the data transfer retwed&ernels would increase the
performance gap between the greedy and the optimal schedules.

We show a simple and fast algorithm which solves this scheduling probleaiasiodependency trees (task
graphs without undirected cycles). Although the algorithm does notugmdn optimal schedule (finding
the optimal schedule is known to be computationally hard), it has been shamprtove the performance
in real-life computations. Its main advantage is that it does not require citatige original sequential
program flow, complementing other optimizations such as overlapping the datders with the kernel
execution.

Combining the software-managed caching and GPU-CPU scheduling yiel#tednperformance im-
provements over the version which does not use them. We compared tbemaaerce on random and
real-life inputs using three generations of NVIDIA GPUs: GeForce 8308, GeForce GTX 285, and the
Fermi-based Tesla C2050. Finally, with these techniques we obtained upttmadf 5 speedup over the
CPU-only parallel version executed on the latest dual quad core Ietgl”m E5540 CPUs.

2 Core Method

We first demonstrate an efficient software-managed caching schemie prbigdes a structured approach
to using the scratchpad memory. We emphasize that our method is applicabpgitatagms where static
prefetching is not possible due to the input-dependent data access p&tathe management at runtime
would incur high overhead, counteracting the benefits of using the bpetanemory. Our key idea is to
precompute the access pattern on a CPU for each input before the kernel execution and make the results
available to a GPU viaache policy in the form of lookup tables used by the kernel at runtime. Not only does
such a structured approach yield substantial speedups even over tamengation that uses the hardware
cache alone, it also facilitates the development process by allowing atiepasf concerns between data
management and computation.

We then apply a graph-theoretical approach to optimizing the execution of keuattel composite appli-
cations with inter-kernel data dependencies and input-dependeatrparfce of each kernel on CPU-GPU
platforms. We show a fast algorithm which assigns the kernels for exacotia@ CPU or a GPU at run-
time, while taking into account the joint impact of the assignments of all kerneleeoantire application
performance rather than just the impact of assigning each separately.

We conclude by showing the application of these techniques to the computigiabability of evidence
in large probabilistic networks.

3 Algorithms, Implementations, and Evaluations

We now present a “recipe” for designing a kernel with a scratchpased software-managed cache. We
then apply this recipe to build a software-managed cache for sum-priceiunel.

3.1 Software-manged cache recipe

Optimize for locality. As in a CPU implementation, the GPU implementation also requires optimization
for spatial locality (for coalesced memory accesses when fetching data tat¢he), and temporal locality
(for the working set reduction) of memory accesses.



Divide into thread blocks with regular memory accesses and high reze. The number of threads in
the thread block may be dictated by the need to minimize the size of metadata tabldzsy tise caching
mechanisms. For example, if every third thread reuses the data of thenirshe number of threads in a
thread block should be a multiple of three. Then, the access pattern wotlild bame for all thread blocks
and can be computed only once. Internal reuse is important since the isaphivate to a single thread
block. For example, in the matrix product kernel, assigning threads oathe thread block to compute the
entire output row (instead of a block) is suboptimal since the data in the colaram®t reused within the
thread block.

Note that the first two “ingredients” above are also important for making optiseof a hardware cache.

Define cache page, determine the cache replacement policy and grdarity. Input blocks used con-
currently by all the threads in a thread block must reside in the caicihe same time. We will call such a
resident set aache page. The policy determines when to switch to a new cache page, which partcdthe
page is to be replaced, and which part of the reused data should remagnnraith memory without being
cached at all. The granularity of the replacement decisions is critical teeqaerformance. A fine-grained
replacement policy might improve the cache hit rate, but would incur higrexheads at runtime.

We emphasize that organizing the computations so that the accesseslaedana cache page is useful
when using a hardware cache too. However the size of the cache pagd as the specific access pattern
within the page must be adjusted to the hardware replacement policy in oeyitbcache thrashing. Fur-
thermore, the same L1 cache is shared by multiple concurrently runningl thi@eks, as opposed to the
disjoint spaces per thread block for the software-managed cache mahkiss the hardware cache perfor-
mance dependent on the interplay between the access pattern of diffieeanl blocks and the cache policy,
whereas the software-managed cache is immune to this problem.

Determine the cache address scheme.The data is located in the cache in different physical addresses
than its global memory locations. Mapping between the old and the new locatiegused. Computing
that mapping may be quite expensive as the address depends on thefdfigedata in the cache and the
cache policy, thus necessitating access to multiple cache policy lookup teblese it may be beneficial to
precompute it on a CPU as well. Fortunately, once constructed for a simgithlock, the same mapping
may be valid for all other thread blocks, thanks to access regularity.

3.2 Software-managed caching for sum-product

Here we demonstrate the application of this “cache recipe” to the sum-prcelnel, which forms the core
of the inference computations in probabilistic networks. In general, satdet computations arise in a
wide variety of scientific applications, such as artificial intelligence, biom#tdics, statistics, image pro-
cessing and digital communications. (See, e.g., Pakzad and Ananthdrffamg4omprehensive overview
of sum-product.)

Consider the following expression:

P(w) =Y fla,y,2) @ gz, w) @ h(y, z,w) €y

Y,zw

This equation describes a functiai(x), which is computed by performing a series of tensor products
followed by a summation. We skip the formal explanation here and focus oacttess pattern of these
computations as shown in the example below.
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Figure 2: Access pattern and cache structures for complting, w) = 3, f(z,y, 2) ® g(w, z). (a) Input and
output accesses for computikgyo, koo1, ko010, ko11- The symbols in the diagram represent which locations in the
tables are accessed when computing the outputs with the samigol. For example: to computgq, (H) one
readsfooo, foo1, 9ooo @Ndgoo1, i.€. the input values which are also markediby(b) Layout of the cache pages, one
cache page per row. (c) Content of the cache policy tablesrdsg two cache pages accessed by a thread block,
two threads per thread block.

Understanding the access pattern The individual functionsf(z,y, z), g(z,w), andh(y, z,w) in this
application can be thought of as similar to multidimensional array accesseBam €&ample, in the function
flz,y,2) (Withz € X,y €Y,z € Z), the valuef, , . is located in the memory at the offset- |Z| x y +
Y| x|Z| x .

Figure 2(a) illustrates the memory accesses for compétifig koo1, ko10, ko11 iNk(z, y, w) = >, f(z,y,2)®
g(w, z) for the case wher&, Y, Z, andW are all of size 2. Observe thatw, z) is accessed in exactly
the same manner when computibigz = 0,y = 0,w = 0) andk(x = 0,y = 1,w = 0), whereas different
locations off are accessed for the same output, exhibiting no reuse at all.

As Figure 2(a) shows, the input data are reused and the access afgeriodic. Furthermore, the data
are accessed in segments since the summation variables are alwaysigaodpterated together (this is,
in fact, a result of optimizing the locality of accesses as described in ouviopsework [5]). However we
also see that the reuse pattern differs for each input function andhdepa the specific variables in the
function’s scope.

Dividing into thread blocks. Each output location can be computed independently in a separate thread,
but each thread is assighed multiple output locations to improve data rews# esexplained later.

The size of the thread block cannot be chosen arbitrarily. In the exampigume 2(a), we see that the
access pattern is correlated with the domain size of the function variablesnyagroup of power-of-two
outputs the data used have the same offsets, but different basesaddiees, computing the pairs of output
kooo, koo1 andko1o, ko11 requires accessing two adjacent entrieg,istarting from offse0 for the first pair
and offset2 for the second one. So for the access pattern in different threadstiodde the same, the set
of outputs for every block should be aligned to a multiple of power-of-twend¢¢, if we let one thread
compute one output, the thread block size can be 2,4 or 8. For the castheffitst thread block would
computekogo, k001 ,k()l(), andkon 2.

Cache page. Each cache page is split into multipdegments, one per input function. The size of each
segment depends on the amount of data accessed in each function bytlaiedds of one thread block. For
example, each row in the table in Figure 2(b) represents one cachegsagenfng one output per thread,
two threads per block). The sizes of the segments as well as the totalsiaetaee computed on a CPU for
each set of input functions, as will be explained below. The resultd@medsas arrays in the GPU constant
memory?® (SegmentSizes and SegmentOffsets arrays in Figure 2(c)).

2These sizes are used only for the purpose of this example, but in eramtich larger thread blocks should be used
3See the CUDA C Programming Guide for more details on the constant rgemor



Cache replacement policy. The amount of data accessed concurrently by all the threads, or, in othe
words, the size of one cache page, may exceed the available scratcbpexty size. Reducing this size by
decreasing the number of threads per thread block may reduce theananghilization. Partial caching of
the data, whereby one part of the function data can remain uncacheldl, require that an additional policy
table be checked upa@very memory accessin order to determine whether the specific location is cached.

Our solution balances cache management overhead and cache hit emtear®some functions as not
cached. These functions are accessed directly from the global mdmpassing the cache. The choice of
which functions to cache is precomputed on a CPU as follows: we add tbi&dng in the order of the sizes
of their cache segments, starting from the smallest and continuing for aasaraghe space permits. Other
replacement algorithms may of course be better suited for other computations.

Which data to fetch when switching to another cache page is also determirtied tBplacement policy.
As mentioned above, multiple cache pages are accessed by the same tbckaid lexploit data reuse
between the pages.(In Figure 2(b), the same data of fungtisrused in all four cache pages, which can
be leveraged if all four pages are processed by the same thread blgmdr) switching to the next page,
only the data of the functions which differ from the previous cache pegjéetched. In the example above,
if all four cache pages are processed by the same thread block, orgttheff would be replaced when
moving to the next page.

A CPU is used to determine which functions are to be replaced when movimgdine page to another;
this information is used by the kernel each time the cache page is switched.

Examples of all the cache policy tables are presented in Figure 2(c).e Podisy tables correspond to
the setup with two threads per thread block, two outputs per thread (hsre@ages per thread block).
SegmentSizes and SegmentOffsets are used to determine how much data to fetch per cache page and where
each function is placed in the cachBageOffsets is used to determine the offset to the respective input
function for each cache page. TRagelnvalid table determines which function should be replaced when
the page is switched. In this example both functions are to be fetched whiirstisache page is accessed,
but only f has to be fetched again. The data corresponding to the second pagetbfdhd block is to be
read from the global memory starting from offset 2.

Cache address scheme.Each thread determines the data to be accessed by computing the offgehasin
local thread index and the cache segment offset for the function betegsed. For example, in Figure 2(b)
the thread with index 1, which comput&g,, will access two values from each input function (for= 0
andz = 1), with offsets 0 and 2 respectively. Since all the summation values aresstsequentially,
computing the offset is necessary only once per summation loop (providpdrdoop unrolling).

3.2.1 Kernel for computing sum-product

The kernel that computes sum-product is presented in Figure 3. Th#fietsrstarting with capital letters
denote the data structures precomputed on the CPU, and the underlinexidsarote the cache policy tables
in the constant memory. The remaining precomputed data are placed in the teetmory*.

The kernel can be logically split into four parts: determining the input bléckse processed by a given
thread block (lines 3—-8), cache prefetching viadaehePrefetchPage procedure (lines 26 —41), computation
loop (10-23), and writing back the result (23).

A few important points should be emphasized. First, despite the many condisiat@ments in the
kernel, there is no divergence between the threads in a warp. Thisagdeethe outcome of the statement
is independent of the thread identity and thus is the same for all threads irathe 8econd, all the threads
in a warp always access the same location in the cache policy tables, whiehligidthe constant memory

“See the CUDA C Programming Guide for more details on the texture memory



Function SumProductKernel
Input: Input functions
outputPtr — call computeOutputPtb{ockl dx)
for all input functionsf do
inputPtrs| f] < call computelnputPtr&{ockldx, f)
end for
for all cache pagegage do
call cachePrefetchPage@ge,inputPtrs)
sum « 0, counter < 0
10: for all summation valuedo

11: product «— 1

12: for all input functionsf do

13: if SegmentSizesf] > 0 then

14: value « call cacheFetchthreadOffsetsthreadldx] [f] + counter)
15: else

16: offset «— inputPtrs[f] 4+ PageOffsets|page] [ f] + ThreadOffsets|threadldx] [f] + counter
17: value < call memoryFetchtffset)

18: end if

19: product « product x value

20: end for

21: sum «— sum + product, counter < counter + 1

22:  endfor

23: outputPtr[page x ThreadBlockSze + threadldx] «— sum

24: end for

25:

26: Function cachePrefetchPage

27: Input: page number to fetcpage, pointers to the the thread block inputputPtrs
28: forall input functionsf do

29: if PageValid[page][f] is false AND SegmentSizes[f] > 0 then

30: call__syncthreads()

31: call parallelCopySegmentOffsets[f], inputPtrg[f]+ PageOffsets[page][f], SegmentSizes(f])
32: call__syncthreads()

33: end if

34: end for

35:

36: Function parallelCopy

37: Input: cache offsetO f f set, global memory pointeg M em, words to copysize
38: for i = threadldx to size do

39:  CACHEI[cOf fset + i) «— gMemli]

40: i «— i + ThreadBlockSize

41: end for

Figure 3: GPU kernel pseudocode

cache. Similarly, the data structures residing in the texture memoryRaggOffsets ) are small, and fit the
small texture cache well. Finally, this procedure can be heavily unrolleajvatlows for the overhead of
accesses to the policy tables to be amortized over several iterationsngeiewen further.

The full GPU kernel code together with the CPU preparation procedsieesilable for download [1].

3.3 Algorithm for task tree scheduling

Here we present a fast algorithm for scheduling task dependensyltyesssigning the tasks for execution
toa CPU or a GPU.

The problem of task dependency graph scheduling on heterogenechitectures has drawn a lot of
attention (see, for example, an overview of the DAG scheduling [3]). Als¢halgorithms try to decrease
the running time by keeping all the processors busy, scheduling diffgraph nodes to different processors
in parallel. Finding an optimal schedule that accounts for bandwidth camsteand processor heterogeneity
is hard even for task trees (graphs without undirected cycles).

Our approach is different. We target acceleration schedule, for the programming model where a GPU
is considere@ co-processor. In such an asymmetric setup, a GPU cannot operate on its own; the CPU must
dedicate some of its time to GPU management. Hence the algorithm optimizes the runtifme ¢ase



where the CPU or GPU do not concurrently execute tasks. Indeedcateetion schedule may not be an
optimal parallel schedule in cases other than the chain dependency graghis because the algorithm
does not exploit the parallelism available in the graph itself: while one bremphocessed on a CPU
another could be processed on a GPU. Yet the acceleration model ipoular among GPU developers:
it allows for a simple and easily implementable algorithm, while still enabling perfocenanprovement
over only-CPU or only-GPU implementations, and over the greedy algoritimibiming both.

Because the assignment of a task in one tree branch does not influerssidmment of a task in another
branch, we can apply a dynamic programming approach.

The input to the algorithm is a task dependency #¢¥, ) with the noded” and edgesr. Every node
v € V has the following attributes:

1. Kernel performance vectdr, with two entries for the expected kernel execution time for the respec-
tive taskv on a CPU or a GPU respectively.

2. Transfer time matrixD,, with four entries for the time required to transfer the kernel input for all
the combinations of source and destination: GPCPU, CPU-GPU, GPU-GPU, CPU-CPU.
Clearly, D,[CPU — CPU| = D,[GPU — GPU] = 0, as long as the source and destination are
the same GPU.

For every node € V, the algorithm maintains the following variables:

1. Subtree processing time vectyof the subtree rooted at with two entriesS, [C PU| andS, [GPU],
each for the best processing time of that subtree assumimgxecuted on a CPU or a GPU respec-
tively.

2. Subtree scheduling decision vecfy, containing the task assignmedf[C PU] andO%[G PU] for
every immediate descendant (chittlpf v corresponding t&,[C PU| and.S, |G PU]. This variable
storesd’s assignment which resulted in the best total elapsed time including the memafetriiaom
d to v wered executed on a CPU or a GPU. Itis used in the backtracking step.

3. Scheduling decisioA,, regarding where to execute the node.

The acceleration schedule algorithm presented in Figure 4 runs in two stetbe forward traversal it
traverses the tree from the leaves to the root. For eachmibdemputes the cost for all possible assignments
of nodev given the cost of computing its child nodes on a CPU and a GPU and thectigsmiata transfer
times (lines(11-21). When this step completes, every node holds the sgsbtacomputing its subtree for
both its schedules on a CPU or a GPU. The backtracking step then tiatleggece in the prefix DFS order
from the root and determines the assignment for all the nodes, using tieabpcheduling decision for
their respective parents and generating an optimal acceleration schedule

3.3.1 Transfer and execution time predictions

The algorithm requires knowledge of the expected running time of a gig&rotma CPU and a GPU, and
the times of the input data transfers. The latter is easy to estimate using theahalmhmdwidth and the
input data size known before the run.

The kernel time prediction is more complicated, and several approacisesThe first approximation is
to assume a constant device capacity and derive the running time from theutmtaer of computations to
be performed. More precise methods apply various machine learninggaebno predict the performance
by using the profiles of the previous kernel invocations. In our worlapg@ied a regression tree classifier
which allowed runtime predictions to be derived from the traces of the kariceobenchmarks.



1: Input: T(V, E) - Task dependency tre&, - postfix DFS traversal order Gf
2: Output: Scheduling decisiond,, for all the nodes € V.
Forward traversal
3: while R is not emptydo
4 /lget next tree node
5. v+« pop(R)
6: pushv — R // maintain prefix DFS order
7. forall device e CPU,GPU do
8 /I set the cost of on device
9 Sy [device] « Py[device]

10: /I compute the costs assumidgs executed on a CPU (GPU) andn device
11: for all d € child nodes ofv do
12: CPUCOST «— S4[CPU] + Dy[CPU — device]
13: GPUCOST « S4[GPU] + Dy[GPU — device]
14: Il choose the best schedule tbassumingy is executed ordevice
15: if CPUCOST > GPUCOST then
16: Od[device] «— GPU
17: Sy [device] — Sy[device] + GPUCOST
18: else
19: O%[device] — CPU
20: Sy[device] «— Sy [device] + CPUCOST
21: end if
22: end for
23:  endfor
24: end while
Backtrack

25: v — pop(R)
/I choose the device to compute the root node
26: if S,[CPU] > S,[GPU] then
27: A, — GPU
28: else
29: A, — CPU
30: end if
31: // traverse in prefix DFS order
32: while R is not emptydo
33: forall d € child nodes ofv do

34 /I scheduled on the device which led to the best cost for
35: Ag — O%Ay]

36: endfor

37: v pop(R)

38: end while

Figure 4: Acceleration scheduling algorithm pseudo-code
3.4 Application to inference in probabilistic networks

The general problem is:
Y ®; fiXh), McC| X' feF, ©)
M %

whereM is the set of summation variables, aRds the set of all input functions. One of the methods to
compute this expression is by splitting the set of all functions into groupsgddaliekets, and process each
bucket separately using the sum-product kernel described in SecBdn Jhe algorithm for creating the
buckets is outside of the scope of this chapter and can be found elssf@her

For a given set of buckets, computation can be represented as a pasiddacy tree traversal from the
leaves to the root, where each bucket is a tree node and the edgesrbéteiemdes represent the data
dependencies.

We use the scheduling algorithm in section 3.3 to assign the computations to ar@RERY, and then
employ the GPU kernel described in section 3.2.1 to compute the results of hha@&iRyned nodes.

We patrtially relax the assumption of no concurrency between CPU and &&duteon by implementing
CPU execution and GPU management in two different CPU threads. All thesnecheduled on a CPU
are computed by an OpenMP-based parallel CPU kernel that uses muRBiple@es. The CPU execution
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thread keeps processing the nodes assigned to a CPU until until theara&PU is found. When that
happens, the CPU execution thread analyzes the input to tune the kexedtion parameters and then
passes this information to the GPU management thread, which is responsitsen&ierring the data and
invoking the GPU kernel. Meanwhile the CPU thread continues with the ingesf the tasks in another
task tree branch, until it runs out of CPU-assigned nodes becausgaoflependency, or there are no GPU-
assigned nodes left to be prepared for execution.

4 Final evaluation

We conducted our experiments on both synthetic benchmarks and rbabjistic networks used for ana-
lyzing genetic data [6]. We performed three sets of experiments: (1) dkeghel performance comparison
on random inputs in order to test the software-managed caching onediff&PU architectures; (2) the
impact of CPU-GPU scheduling on the application performance; (3) comapgtiécation speedups over
CPU-only execution.

4.1 Software-managed caching performance

Figure 5(a) and (b) presents the kernel performance on two diff&léiDIA GPUs (GeForce GTX 285
and Tesla C2050) and the Intel E5540 hyper-threaded dual quadntachine on 5,000 random inputs.
The inputs were generated by randomly selecting various input paramtgteraumber of variables per
function, number of functions per input, variable domain size, data rearsegut, output size and number
of summation variables per input. Each dot in the graph represents tloerparice of one run. Here and in
the rest of the experiments in this subsection, the running times represgth®actual computing times
without the data transfer. The input complexity FLOPs were computed bytioguonly the theoretical
number of double-precision multiplications and summations required to computeghks. The CPU
OpenMP implementation used up to 16 threads.

Table 1 summarizes the peak performance results for double-preci®onten. Note that the peak
speedup may readalp to a factor of 50 for some inputs: for these inputs, a CPU performs poorly, but a
GPU achieves the highest performance.

E5540 1 core| 2xE5540 quad core, 16 HW threadsGTX 285 | C2050
1.8 15.5 34 84

Table 1: Peak double-precision performance in GFLOPs/eaeth on different processors.

Observe the performance variability which characterizes the kernel: uieigaithe internal properties of
the computations. More specifically, some of the inputs have more parallelsitatdg and require less
cache space, thereby enabling higher performance gains on a GRsthan@PU alike. That is why the
dynamic selection of execution policies is imperative — some inputs clearlyrpeletter on a CPU than
on a GPU.

4.1.1 Cache performance comparison

Figure 5(c) presents the relative speedup of the software-managbéd oger the version that uses only
global memory and the version that uses texture memory for the input on IRMBE2Force GTX 285.
We see that the hardware texture cache improves the kernel perf@ainlls short of the performance
achieved by the software-managed caching techniques. Overall, theflpobper hardware cache on this
and earlier architectures made software-cacttiegnly way to achieve high performance.
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Figure 5: Random-input performance of the double-pregigernel execution. Each dot represents the perfor-
mance of one run. The dotted lines represent the peak andwhestl performance measured. The continuous line
is the average performance. (a) NVIDIA GeForce GTX 285 GPY).NVIDIA Tesla C2050 GPU and OpenMP
parallel execution on dual 4-core 8-thread Intel E5540@133 CPU. (c) Relative speedup of the software-manged
cache over pure global memory and texture memory runs in eF8TX 285. (d) Relative speedup of the hard-
ware and software-managed cache combined over hardwhreamhe in Tesla C2050.

Figure 5(d) shows the hardware/software cache comparison on aJ23%) GPU featuring a hardware
cache. The experiments with the software-managed cache were paitfosing a 48K/16K scratchpad/L1
partition; therefore, the figure reflects the combined performance ofafuevare cache and the software-
managed cache.

To test the hardware cache performance we modified the original kermeimoving all the cache-related
logic, including the thread synchronizations, and configured a 16K/48chpad/L1 partition. We see that
the software-managed cache performance is not stable and can bedos¢hand better than the hardware-
only cache, with the speedup being about 25% on average. Despite thedaage-case speedup, there are
two important observations that justify application of software caching.,Five software cache enables
much higher peak performance. Only 0.4% of the hardware cache-baise exceeded the 60 GFLOPs/s
performance threshold, and none reached 70 GFLOP/s, versus Bb2%@of the software-managed cache
kernel runs, respectively. Second, for a given input, the besitbfdorlds can be achieved by analyzing the
input properties and selecting the expected-to-be-optimal kernel coatiign on the fly. Specifically, we
observed that the hardware cache usually performs better for inputfewith summation variables, where
the software-managed cache access overhead cannot be amoréezeduttiple memory accesses. Thus,
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Figure 6: Part of the 268-node task tree with the hybrid-dyesnd hybrid communication-aware schedule. Nodes
marked with diamonds denote the tasks assigned to a GPU bgbtloédules. Circles denote only the tasks assigned
to a GPU according to the communication-aware scheduleuriiarked nodes are assigned to a CPU.

Tasks in tree Runtime (seconds) Nodes mapped to GPU
Hybrid communication-aware | Hybrid-greedy| CPU-only | GPU-only || Hybrid communication-aware Hybrid-greedy
390 110 126 213 211 25 14
529 86 86 119 174 41 28
268 55 55 408 67 86 62
595 21 25 174 33 139 111
1194 35 44 364 60 301 230
505 126 140 494 250 46 21

Table 2: Comparative performance analysis of the dynantiedude for several real genetic analysis inputs. The
optimal acceleration schedule is the one produced by thaitiigy described here. The hybrid-greedy schedule
considers only single kernel performance.

we dynamically select the best expected kernel configuration as affiag complete application. As we
will show in the following sections, the use of software caching was critmafttaining high performance
exceeding that of the CPU implementation.

4.2 Influence of CPU-GPU scheduling

Another set of experiments examined the impact of the CPU-GPU schedule grerformance of the
entire multi-kernel application. The experiments used task dependensyfttoee probabilistic networks
for genetic linkage analysis, and were invoked on a 4-core Intel Ca2e33GHz CPU with the NVIDIA
GeForce GTX 285 GPU. The performance results for a few repraaenitaputs are shown in Table 2.

We observe that the best CPU-only multi-threaded version or GPU-ordiovecan be each up to a factor
of two slower than the combined CPU-GPU execution using the hybrid comntiameavare schedule
produced by our algorithm. Observe

that this schedule (the column marked in bold) usually results in more nodes fnejpped to a GPU.
Figure 6 shows a part of the task tree, with the diamonds denoting the ndusguéed on a GPU by both
the hybrid-greedy and hybrid communication-aware schedules and thesailenoting those scheduled by
the communication-aware schedule only. Observe that the latter effectesdhedules the “islands” of
CPU-scheduled nodes to a GPU.

We found, however, that for the task trees having a set of dominating legngsks for which GPU
performance substantially exceeds CPU performance and the 1/0 to @B taw, mapping kernels with
larger input sizes is sufficient for achieving the best performance. &tdh then, the dynamic schedule that
combines CPU and GPU execution remains superior to the static schedulesetioaly one or the other.

4.3 Performance on large probabilistic networks

The last set of experiments evaluated the speedups of the entire appligglial the optimizations. The
experiments were carried out on real-life probabilistic networks usethéoanalysis of genetic diseases.
Table 3 summarizes the results of execution on 11 different networks tabtee shows speedup over the
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Network | E5540 4 core| E5540 1 core| 2xE5540 8 core§ GTX 285 | C2050 (h/w cache) C2050 (s/w cache
BN1 97s 0.26 1.9 2.3 1.1 3.8
BN2 27s 0.29 2.0 - 1.9 2.28
BN3 3s 0.37 1.8 1.3 1.4 1.3
BN4 21s 0.25 2.0 0.5 1.4 1.8
BN5 844s 0.25 15 - 1.7 3.3
BN6 66s 0.26 1.3 - 3.1 6.0
BN7 316s 0.31 2.1 - 1.7 54
BN8 74s 0.25 1.9 29 24 54
BN9 17s 0.25 1.8 - 1.6 3.3
BN10 72s 0.25 21 - 3.9 6.5
BN11 91s 0.25 2.1 - 1.9 4.3

Table 3: Complete application performance on large inpdtke first column shows the absolute runtime in
seconds, while the rest show the relative speedup over #cre execution. Some inputs could not be computed
on GeForce GTX 285 due to insufficient memory.

guad-core only execution on a single chip E5540 CPU. Using the singdgpehformance as the baseline
allows for a chip-to-chip comparison with GPUs. We also provided the resithe dual-CPU performance
with 16 concurrent hardware threads; hence the speedup may exceed

The kernel that uses the software-managed cache outperforms #ilkelpgingle CPU version by up to
a factor of 6.5. Furthermore, using the hardware-only cache results updo three-fold performance
drop, often yielding slower execution than the eight-core parallel CP&lorer Observe that the software-
managed cache is faster than the hardware cache in all but one cdsds e result of the automatic
selection of the purely-hardware and combined hardware-softwahe @nfigurations, depending on the
specific input, as described above.
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