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In this chapter we cover two difficult problems frequently encountered byGPU developers: optimizing
memory access for kernels with complex input-dependent access patterns, and mapping the computations
to a GPU or a CPU in composite applications with multiple dependent kernels. Both pose a formidable
challenge as they requiredynamic adaptation and tuning of execution policies to allow high performance
for a wide range of inputs. Not meeting these requirements leads to substantial performance penalty.

In the first part of the chapter we describe our methodology for solving the memory optimization problem
via software-managed caching by efficiently exploiting the fast scratchpad memory. This technique outper-
forms the cache-less and the texture memory-based approaches on pre-Fermi GPU architectures as well as
the one that uses the Fermi hardware cache alone.

The focus of the second part is the algorithm for minimizing the total running time of a complete applica-
tion comprising multiple interdependent kernels. Both a GPU and a CPU can be used to execute the kernels,
but the performance varies greatly for different inputs, calling for dynamic assignment of the computations
to a GPU or a CPU at runtime. The communication overhead due to the data dependences between the
kernels makes per-kernel greedy selection of the best performing device suboptimal. The algorithm opti-
mizes the runtime of the complete application by evaluating the performance of all the assignments jointly,
including the overhead of the data transfers between the devices.

We demonstrate these techniques by applying them to a real application for computing probability of
evidence in probabilistic networks. The combination of memory optimization and dynamic assignment
results in up to three-fold runtime reduction over the non-optimized version onreal inputs, and up to five-
fold over a highly optimized parallel version running on Intel’s latest dual quad-core 16-thread Nehalem
machine.

1 Introduction, Problem Statement, and Context

This chapter endeavors to assist developers in overcoming two major bottlenecks of the high-end GPU plat-
forms: memory bandwidth to the main (global) memory of the GPU, and the CPU-GPUcommunications.
We faced both these problems when developing an application for computing the probability of evidence in
probabilistic networks, and only by solving both we achieved the desired performance improvement. Yet,
we believe that our techniques are applicable in a general context, and can be employed together and sepa-
rately. In the chapter we first describe the solution for each problem, andconclude by demonstrating their
combined effect on a real application as a whole.

Memory access optimization is among the main tools for improving application performance in CPUs and
GPUs. It is of added importance if the algorithm has a low compute-to-memory access ratio. Often the same
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data are reused many times, and reorganizing the computations to exploit small but fast on-die caches might
thus reduce the main memory bandwidth pressure and improve performance.

Hardware caches employ input-independent replacement algorithms, such as Least Recently Used (LRU).
Maximizing cache performance to exploit data reuse requires restructuring the code so that the actual ac-
cess pattern matches the cache replacement algorithm. Unfortunately, high performance is difficult and
sometimes even impossible to achieve without the ability to control the replacement decisions.

Modern NVIDIA GPUs expose fast scratchpad memory shared by multiple streaming processors on a
multiprocessor. By design, the scratchpad memory lacks hardware caching support1; hence it is the respon-
sibility of the kernel to implement asoftware-managed cache, which implies determining which data to
stage from the main memory and when to stage it. For cases where this determination is data-dependent,
the decision must be made at runtime. The main challenge, then, is to minimize the overhead of the cache
management code, which resides on the critical path of every memory access. In the first part of the chap-
ter we introduce techniques for analyzing the data access patterns and designing a read-only low-overhead
software-managed cache for NVIDIA GPUs.

Kernel performance optimization, however, is only one component of making the complete application
run faster. Often, despite optimizations, the kernel performance may varysubstantially for different inputs.
In some cases executing the kernel on a GPU may actually decrease the performance, such as when not
enough parallelism is available. Furthermore, the overhead of the CPU-GPU communications over the PCI
Express bus may reduce or completely cancel out the advantages of using a GPU. In the second part of
the chapter we focus on optimizing the choice of the processor for the kernel execution in applications with
multiple inter-dependent kernels.

A simple approach is to greedily assign the device providing the best overallperformance for a given
input. It will work well for isolated kernels, where both the kernel input and output must reside on a CPU.
For such cases, the data will always be transferred from the CPU to the GPU and back, thus allowing for a
local decision that considers only the performance of a given kernel on each device.

Figure 1: An illustration of the
program task dependency graph
for computingA×B +C of ma-
tricesA,B,C.

However, for applications composed of multiple kernels with data de-
pendencies, whereby the subsequent kernels use the results of the pre-
vious ones, different assignments orschedules of the computations on a
CPU or a GPU may decisively influence the running time of the complete
application. The schedule, which optimizes the performance of each ker-
nel separately, is no longer sufficient for obtaining the best performance
of the application as a whole.

Figure 1 shows atask dependency graph of a program for computing
A×B +C for three matricesA, B, C. The nodes and edges of the graph
denote kernels and their data dependencies respectively. Computations
are performed by traversing the graph according to the directionality of
the edges. The computations of a node can be started only if all its pre-
decessors in the graph are complete. In this example the first kernel com-
putesA×B and the second one addsC to the result. The respective graph
node labels denote the expected running time (the lower the better) of the
kernel on a CPU or a GPU. Edge labels denote the data transfer times
given that the adjacent nodes are executed on different devices. Input
data nodes represent the original input data residing in CPU memory.

Were the schedule to consider the performance of each kernel alone, itwould assign the product kernel to
a CPU and the summation kernel to a GPU, yielding an execution time of 65 time units. (We assume that

1The on-die memory in the Fermi architecture is partitioned into a hardware cache and a scratchpad; in this chapter we focus on
the efficient use of the latter.
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input transfer of matrixC for the summation kernel can be overlapped with the execution of the product
kernel on matricesA andB.) However, the best schedule requires only 60 time units to complete, assigning
both kernels to a GPU. Note that the higher cost of the data transfer between two kernels would increase the
performance gap between the greedy and the optimal schedules.

We show a simple and fast algorithm which solves this scheduling problem fortask dependency trees (task
graphs without undirected cycles). Although the algorithm does not produce an optimal schedule (finding
the optimal schedule is known to be computationally hard), it has been shown toimprove the performance
in real-life computations. Its main advantage is that it does not require changing the original sequential
program flow, complementing other optimizations such as overlapping the data transfers with the kernel
execution.

Combining the software-managed caching and GPU-CPU scheduling yields marked performance im-
provements over the version which does not use them. We compared the performance on random and
real-life inputs using three generations of NVIDIA GPUs: GeForce 8800GTX, GeForce GTX 285, and the
Fermi-based Tesla C2050. Finally, with these techniques we obtained up to a factor of 5 speedup over the
CPU-only parallel version executed on the latest dual quad core Intel Nehalem E5540 CPUs.

2 Core Method

We first demonstrate an efficient software-managed caching scheme which provides a structured approach
to using the scratchpad memory. We emphasize that our method is applicable to applications where static
prefetching is not possible due to the input-dependent data access pattern. Cache management at runtime
would incur high overhead, counteracting the benefits of using the scratchpad memory. Our key idea is to
precompute the access pattern on a CPU for each input before the kernel execution and make the results
available to a GPU viacache policy in the form of lookup tables used by the kernel at runtime. Not only does
such a structured approach yield substantial speedups even over the implementation that uses the hardware
cache alone, it also facilitates the development process by allowing a separation of concerns between data
management and computation.

We then apply a graph-theoretical approach to optimizing the execution of multi-kernel composite appli-
cations with inter-kernel data dependencies and input-dependent performance of each kernel on CPU-GPU
platforms. We show a fast algorithm which assigns the kernels for execution on a CPU or a GPU at run-
time, while taking into account the joint impact of the assignments of all kernels onthe entire application
performance rather than just the impact of assigning each separately.

We conclude by showing the application of these techniques to the computation of probability of evidence
in large probabilistic networks.

3 Algorithms, Implementations, and Evaluations

We now present a “recipe” for designing a kernel with a scratchpad-based software-managed cache. We
then apply this recipe to build a software-managed cache for sum-productkernel.

3.1 Software-manged cache recipe

Optimize for locality. As in a CPU implementation, the GPU implementation also requires optimization
for spatial locality (for coalesced memory accesses when fetching data to the cache), and temporal locality
(for the working set reduction) of memory accesses.
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Divide into thread blocks with regular memory accesses and high reuse. The number of threads in
the thread block may be dictated by the need to minimize the size of metadata tables used by the caching
mechanisms. For example, if every third thread reuses the data of the first one, the number of threads in a
thread block should be a multiple of three. Then, the access pattern would bethe same for all thread blocks
and can be computed only once. Internal reuse is important since the cache is private to a single thread
block. For example, in the matrix product kernel, assigning threads of the same thread block to compute the
entire output row (instead of a block) is suboptimal since the data in the columnsare not reused within the
thread block.

Note that the first two “ingredients” above are also important for making optimal use of a hardware cache.

Define cache page, determine the cache replacement policy and granularity. Input blocks used con-
currently by all the threads in a thread block must reside in the cacheat the same time. We will call such a
resident set acache page. The policy determines when to switch to a new cache page, which part of thecache
page is to be replaced, and which part of the reused data should remain in the main memory without being
cached at all. The granularity of the replacement decisions is critical to cache performance. A fine-grained
replacement policy might improve the cache hit rate, but would incur higher overheads at runtime.

We emphasize that organizing the computations so that the accesses are localized in a cache page is useful
when using a hardware cache too. However the size of the cache page as well as the specific access pattern
within the page must be adjusted to the hardware replacement policy in order toavoid cache thrashing. Fur-
thermore, the same L1 cache is shared by multiple concurrently running thread blocks, as opposed to the
disjoint spaces per thread block for the software-managed cache. Thismakes the hardware cache perfor-
mance dependent on the interplay between the access pattern of different thread blocks and the cache policy,
whereas the software-managed cache is immune to this problem.

Determine the cache address scheme.The data is located in the cache in different physical addresses
than its global memory locations. Mapping between the old and the new location is required. Computing
that mapping may be quite expensive as the address depends on the offset of the data in the cache and the
cache policy, thus necessitating access to multiple cache policy lookup tables.Hence it may be beneficial to
precompute it on a CPU as well. Fortunately, once constructed for a single thread block, the same mapping
may be valid for all other thread blocks, thanks to access regularity.

3.2 Software-managed caching for sum-product

Here we demonstrate the application of this “cache recipe” to the sum-product kernel, which forms the core
of the inference computations in probabilistic networks. In general, sum-product computations arise in a
wide variety of scientific applications, such as artificial intelligence, bioinformatics, statistics, image pro-
cessing and digital communications. (See, e.g., Pakzad and Anantharam [4] for a comprehensive overview
of sum-product.)

Consider the following expression:

ψ(x) =
∑

y,z,w

f(x, y, z) ⊗ g(x, w) ⊗ h(y, z, w) (1)

This equation describes a functionψ(x), which is computed by performing a series of tensor products
followed by a summation. We skip the formal explanation here and focus on theaccess pattern of these
computations as shown in the example below.
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Figure 2: Access pattern and cache structures for computingk(x, y, w) =

∑
z
f(x, y, z) ⊗ g(w, z). (a) Input and

output accesses for computingk000, k001, k010, k011. The symbols in the diagram represent which locations in the
tables are accessed when computing the outputs with the samesymbol. For example: to computek000 (¥) one
readsf000, f001, g000 andg001, i.e. the input values which are also marked by¥. (b) Layout of the cache pages, one
cache page per row. (c) Content of the cache policy tables assuming two cache pages accessed by a thread block,
two threads per thread block.

Understanding the access pattern The individual functionsf(x, y, z), g(x, w), andh(y, z, w) in this
application can be thought of as similar to multidimensional array accesses in C.For example, in the function
f(x, y, z) (with x ∈ X, y ∈ Y, z ∈ Z), the valuefx,y,z is located in the memory at the offsetz + |Z| × y +
|Y | × |Z| × x.

Figure 2(a) illustrates the memory accesses for computingk000, k001, k010, k011 in k(x, y, w) =
∑

z f(x, y, z)⊗
g(w, z) for the case whereX, Y , Z, andW are all of size 2. Observe thatg(w, z) is accessed in exactly
the same manner when computingk(x = 0,y = 0, w = 0) andk(x = 0,y = 1, w = 0), whereas different
locations off are accessed for the same output, exhibiting no reuse at all.

As Figure 2(a) shows, the input data are reused and the access patternis periodic. Furthermore, the data
are accessed in segments since the summation variables are always grouped and iterated together (this is,
in fact, a result of optimizing the locality of accesses as described in our previous work [5]). However we
also see that the reuse pattern differs for each input function and depends on the specific variables in the
function’s scope.

Dividing into thread blocks. Each output location can be computed independently in a separate thread,
but each thread is assigned multiple output locations to improve data reuse, aswill be explained later.

The size of the thread block cannot be chosen arbitrarily. In the example inFigure 2(a), we see that the
access pattern is correlated with the domain size of the function variables: for any group of power-of-two
outputs the data used have the same offsets, but different base address. Here, computing the pairs of output
k000, k001 andk010, k011 requires accessing two adjacent entries inf , starting from offset0 for the first pair
and offset2 for the second one. So for the access pattern in different thread blocks to be the same, the set
of outputs for every block should be aligned to a multiple of power-of-two. Hence, if we let one thread
compute one output, the thread block size can be 2,4 or 8. For the case of 4,the first thread block would
computek000, k001 ,k010, andk011

2.

Cache page. Each cache page is split into multiplesegments, one per input function. The size of each
segment depends on the amount of data accessed in each function by all the threads of one thread block. For
example, each row in the table in Figure 2(b) represents one cache page (assuming one output per thread,
two threads per block). The sizes of the segments as well as the total cachesize are computed on a CPU for
each set of input functions, as will be explained below. The results are stored as arrays in the GPU constant
memory3 (SegmentSizes andSegmentOffsets arrays in Figure 2(c)).

2These sizes are used only for the purpose of this example, but in practice much larger thread blocks should be used
3See the CUDA C Programming Guide for more details on the constant memory
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Cache replacement policy. The amount of data accessed concurrently by all the threads, or, in other
words, the size of one cache page, may exceed the available scratchpadmemory size. Reducing this size by
decreasing the number of threads per thread block may reduce the hardware utilization. Partial caching of
the data, whereby one part of the function data can remain uncached, would require that an additional policy
table be checked uponevery memory access in order to determine whether the specific location is cached.

Our solution balances cache management overhead and cache hit rate. We mark some functions as not
cached. These functions are accessed directly from the global memory,bypassing the cache. The choice of
which functions to cache is precomputed on a CPU as follows: we add the functions in the order of the sizes
of their cache segments, starting from the smallest and continuing for as longas cache space permits. Other
replacement algorithms may of course be better suited for other computations.

Which data to fetch when switching to another cache page is also determined bythe replacement policy.
As mentioned above, multiple cache pages are accessed by the same thread block to exploit data reuse
between the pages.(In Figure 2(b), the same data of functiong is used in all four cache pages, which can
be leveraged if all four pages are processed by the same thread block.)Upon switching to the next page,
only the data of the functions which differ from the previous cache page are fetched. In the example above,
if all four cache pages are processed by the same thread block, only thedata off would be replaced when
moving to the next page.

A CPU is used to determine which functions are to be replaced when moving from one page to another;
this information is used by the kernel each time the cache page is switched.

Examples of all the cache policy tables are presented in Figure 2(c). These policy tables correspond to
the setup with two threads per thread block, two outputs per thread (hence,two pages per thread block).
SegmentSizes andSegmentOffsets are used to determine how much data to fetch per cache page and where
each function is placed in the cache.PageOffsets is used to determine the offset to the respective input
function for each cache page. ThePageInvalid table determines which function should be replaced when
the page is switched. In this example both functions are to be fetched when thefirst cache page is accessed,
but onlyf has to be fetched again. The data corresponding to the second page of this thread block is to be
read from the global memory starting from offset 2.

Cache address scheme.Each thread determines the data to be accessed by computing the offset using the
local thread index and the cache segment offset for the function being accessed. For example, in Figure 2(b)
the thread with index 1, which computesk001, will access two values from each input function (forz = 0
andz = 1), with offsets 0 and 2 respectively. Since all the summation values are accessed sequentially,
computing the offset is necessary only once per summation loop (provided proper loop unrolling).

3.2.1 Kernel for computing sum-product

The kernel that computes sum-product is presented in Figure 3. The identifiers starting with capital letters
denote the data structures precomputed on the CPU, and the underlined names denote the cache policy tables
in the constant memory. The remaining precomputed data are placed in the texture memory4.

The kernel can be logically split into four parts: determining the input blocksto be processed by a given
thread block (lines 3–8), cache prefetching via thecachePrefetchPage procedure (lines 26 – 41), computation
loop (10–23), and writing back the result (23).

A few important points should be emphasized. First, despite the many conditional statements in the
kernel, there is no divergence between the threads in a warp. This is because the outcome of the statement
is independent of the thread identity and thus is the same for all threads in the warp. Second, all the threads
in a warp always access the same location in the cache policy tables, which is ideal for the constant memory

4See the CUDA C Programming Guide for more details on the texture memory
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1: Function SumProductKernel
2: Input: Input functions
3: outputPtr ← call computeOutputPtr(blockIdx)
4: for all input functionsf do
5: inputPtrs[f ] ← call computeInputPtrs(blockIdx, f )
6: end for
7: for all cache pagespage do
8: call cachePrefetchPage(page,inputPtrs)
9: sum ← 0, counter ← 0

10: for all summation valuesdo
11: product ← 1
12: for all input functionsf do
13: if SegmentSizes[f ] > 0 then
14: value ← call cacheFetch(ThreadOffsets[threadIdx][f] + counter)
15: else
16: offset ← inputPtrs[f ] + PageOffsets[page][f ] + ThreadOffsets[threadIdx][f] + counter
17: value ← call memoryFetch(offset)
18: end if
19: product ← product × value
20: end for
21: sum ← sum + product, counter ← counter + 1
22: end for
23: outputPtr[page × ThreadBlockSize + threadIdx] ← sum
24: end for
25:
26: Function cachePrefetchPage
27: Input: page number to fetchpage, pointers to the the thread block inputsinputPtrs
28: for all input functionsf do
29: if PageValid[page][f ] is false AND SegmentSizes[f] > 0 then
30: call __syncthreads()
31: call parallelCopy(SegmentOffsets[f], inputPtrs[f]+ PageOffsets[page][f], SegmentSizes[f])
32: call __syncthreads()
33: end if
34: end for
35:
36: Function parallelCopy
37: Input: cache offsetcOffset, global memory pointergMem, words to copysize

38: for i = threadIdx to size do
39: CACHE[cOffset + i] ← gMem[i]
40: i ← i + ThreadBlockSize
41: end for

Figure 3: GPU kernel pseudocode

cache. Similarly, the data structures residing in the texture memory (e.g.PageOffsets ) are small, and fit the
small texture cache well. Finally, this procedure can be heavily unrolled, which allows for the overhead of
accesses to the policy tables to be amortized over several iterations, reducing it even further.

The full GPU kernel code together with the CPU preparation proceduresis available for download [1].

3.3 Algorithm for task tree scheduling

Here we present a fast algorithm for scheduling task dependency trees by assigning the tasks for execution
to a CPU or a GPU.

The problem of task dependency graph scheduling on heterogeneousarchitectures has drawn a lot of
attention (see, for example, an overview of the DAG scheduling [3]). All these algorithms try to decrease
the running time by keeping all the processors busy, scheduling different graph nodes to different processors
in parallel. Finding an optimal schedule that accounts for bandwidth constraints and processor heterogeneity
is hard even for task trees (graphs without undirected cycles).

Our approach is different. We target anacceleration schedule, for the programming model where a GPU
is considereda co-processor. In such an asymmetric setup, a GPU cannot operate on its own; the CPU must
dedicate some of its time to GPU management. Hence the algorithm optimizes the runtime for the case
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where the CPU or GPU do not concurrently execute tasks. Indeed, an acceleration schedule may not be an
optimal parallel schedule in cases other than the chain dependency graph. That is because the algorithm
does not exploit the parallelism available in the graph itself: while one branchis processed on a CPU
another could be processed on a GPU. Yet the acceleration model is verypopular among GPU developers:
it allows for a simple and easily implementable algorithm, while still enabling performance improvement
over only-CPU or only-GPU implementations, and over the greedy algorithm combining both.

Because the assignment of a task in one tree branch does not influence the assignment of a task in another
branch, we can apply a dynamic programming approach.

The input to the algorithm is a task dependency treeT (V, E) with the nodesV and edgesE. Every node
v ∈ V has the following attributes:

1. Kernel performance vectorPv with two entries for the expected kernel execution time for the respec-
tive taskv on a CPU or a GPU respectively.

2. Transfer time matrixDv with four entries for the time required to transfer the kernel input for all
the combinations of source and destination: GPU→ CPU, CPU→GPU, GPU→GPU, CPU→CPU.
Clearly,Dv[CPU → CPU ] = Dv[GPU → GPU ] = 0, as long as the source and destination are
the same GPU.

For every nodev ∈ V , the algorithm maintains the following variables:

1. Subtree processing time vectorSv of the subtree rooted atv, with two entriesSv[CPU ] andSv[GPU ],
each for the best processing time of that subtree assumingv is executed on a CPU or a GPU respec-
tively.

2. Subtree scheduling decision vectorOv, containing the task assignmentOd
v [CPU ] andOd

v [GPU ] for
every immediate descendant (child)d of v corresponding toSv[CPU ] andSv[GPU ]. This variable
storesd’s assignment which resulted in the best total elapsed time including the memory transfer from
d to v wered executed on a CPU or a GPU. It is used in the backtracking step.

3. Scheduling decisionAv regarding where to execute the node.

The acceleration schedule algorithm presented in Figure 4 runs in two steps: in the forward traversal it
traverses the tree from the leaves to the root. For each nodev it computes the cost for all possible assignments
of nodev given the cost of computing its child nodes on a CPU and a GPU and the respective data transfer
times (lines(11-21). When this step completes, every node holds the best costs of computing its subtree for
both its schedules on a CPU or a GPU. The backtracking step then traverses the tree in the prefix DFS order
from the root and determines the assignment for all the nodes, using the optimal scheduling decision for
their respective parents and generating an optimal acceleration schedule.

3.3.1 Transfer and execution time predictions

The algorithm requires knowledge of the expected running time of a given task on a CPU and a GPU, and
the times of the input data transfers. The latter is easy to estimate using the hardware bandwidth and the
input data size known before the run.

The kernel time prediction is more complicated, and several approaches exist. The first approximation is
to assume a constant device capacity and derive the running time from the total number of computations to
be performed. More precise methods apply various machine learning techniques to predict the performance
by using the profiles of the previous kernel invocations. In our work weapplied a regression tree classifier
which allowed runtime predictions to be derived from the traces of the kernel microbenchmarks.
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1: Input: T (V, E) - Task dependency tree,R - postfix DFS traversal order ofT
2: Output: Scheduling decisionsAv for all the nodesv ∈ V .

Forward traversal
3: while R is not emptydo
4: //get next tree node
5: v ← pop(R)
6: pushv → R̂ // maintain prefix DFS order
7: for all device ∈ CPU, GPU do
8: // set the cost ofv ondevice

9: Sv [device] ← Pv[device]
10: // compute the costs assumingd is executed on a CPU (GPU) andv ondevice

11: for all d ∈ child nodes ofv do
12: CPUCOST ← Sd[CPU ] + Dv [CPU → device]
13: GPUCOST ← Sd[GPU ] + Dv [GPU → device]
14: // choose the best schedule ford assumingv is executed ondevice

15: if CPUCOST > GPUCOST then
16: Od

v [device] ← GPU
17: Sv [device] ← Sv [device] + GPUCOST

18: else
19: Od

v [device] ← CPU
20: Sv [device] ← Sv [device] + CPUCOST

21: end if
22: end for
23: end for
24: end while

Backtrack
25: v ← pop(R̂)

// choose the device to compute the root node
26: if Sv [CPU ] > Sv [GPU ] then
27: Av ← GPU
28: else
29: Av ← CPU
30: end if
31: // traverse in prefix DFS order
32: while R̂ is not emptydo
33: for all d ∈ child nodes ofv do
34: // scheduled on the device which led to the best cost forv

35: Ad ← Od
v [Av ]

36: end for
37: v ← pop(R̂)
38: end while

Figure 4: Acceleration scheduling algorithm pseudo-code

3.4 Application to inference in probabilistic networks

The general problem is:
∑

M

⊗
i f

i(Xi), M ⊆
⋃

i

Xi, f i ∈ F, (2)

whereM is the set of summation variables, andF is the set of all input functions. One of the methods to
compute this expression is by splitting the set of all functions into groups, called buckets, and process each
bucket separately using the sum-product kernel described in Section 3.2.1. The algorithm for creating the
buckets is outside of the scope of this chapter and can be found elsewhere [2].

For a given set of buckets, computation can be represented as a task dependency tree traversal from the
leaves to the root, where each bucket is a tree node and the edges between the nodes represent the data
dependencies.

We use the scheduling algorithm in section 3.3 to assign the computations to a CPU or a GPU, and then
employ the GPU kernel described in section 3.2.1 to compute the results of the GPU-assigned nodes.

We partially relax the assumption of no concurrency between CPU and GPU execution by implementing
CPU execution and GPU management in two different CPU threads. All the nodes scheduled on a CPU
are computed by an OpenMP-based parallel CPU kernel that uses multiple CPU cores. The CPU execution
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thread keeps processing the nodes assigned to a CPU until until the node for a GPU is found. When that
happens, the CPU execution thread analyzes the input to tune the kernel invocation parameters and then
passes this information to the GPU management thread, which is responsible for transferring the data and
invoking the GPU kernel. Meanwhile the CPU thread continues with the processing of the tasks in another
task tree branch, until it runs out of CPU-assigned nodes because ofdata dependency, or there are no GPU-
assigned nodes left to be prepared for execution.

4 Final evaluation

We conducted our experiments on both synthetic benchmarks and real probabilistic networks used for ana-
lyzing genetic data [6]. We performed three sets of experiments: (1) singlekernel performance comparison
on random inputs in order to test the software-managed caching on different GPU architectures; (2) the
impact of CPU-GPU scheduling on the application performance; (3) completeapplication speedups over
CPU-only execution.

4.1 Software-managed caching performance

Figure 5(a) and (b) presents the kernel performance on two different NVIDIA GPUs (GeForce GTX 285
and Tesla C2050) and the Intel E5540 hyper-threaded dual quad core machine on 5,000 random inputs.
The inputs were generated by randomly selecting various input parameters: the number of variables per
function, number of functions per input, variable domain size, data reuse per input, output size and number
of summation variables per input. Each dot in the graph represents the performance of one run. Here and in
the rest of the experiments in this subsection, the running times represent only the actual computing times
without the data transfer. The input complexity FLOPs were computed by counting only the theoretical
number of double-precision multiplications and summations required to compute theresults. The CPU
OpenMP implementation used up to 16 threads.

Table 1 summarizes the peak performance results for double-precision execution. Note that the peak
speedup may reachup to a factor of 50 for some inputs: for these inputs, a CPU performs poorly, but a
GPU achieves the highest performance.

E5540 1 core 2xE5540 quad core, 16 HW threadsGTX 285 C2050
1.8 15.5 34 84

Table 1: Peak double-precision performance in GFLOPs/s achieved on different processors.

Observe the performance variability which characterizes the kernel: it is due to the internal properties of
the computations. More specifically, some of the inputs have more parallelism available and require less
cache space, thereby enabling higher performance gains on a GPU andon a CPU alike. That is why the
dynamic selection of execution policies is imperative – some inputs clearly perform better on a CPU than
on a GPU.

4.1.1 Cache performance comparison

Figure 5(c) presents the relative speedup of the software-managed cache over the version that uses only
global memory and the version that uses texture memory for the input on NVIDIA GeForce GTX 285.
We see that the hardware texture cache improves the kernel performance but falls short of the performance
achieved by the software-managed caching techniques. Overall, the lackof proper hardware cache on this
and earlier architectures made software-cachingthe only way to achieve high performance.
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Figure 5: Random-input performance of the double-precision kernel execution. Each dot represents the perfor-
mance of one run. The dotted lines represent the peak and the lowest performance measured. The continuous line
is the average performance. (a) NVIDIA GeForce GTX 285 GPU. (b) NVIDIA Tesla C2050 GPU and OpenMP
parallel execution on dual 4-core 8-thread Intel E5540 2.53GHz CPU. (c) Relative speedup of the software-manged
cache over pure global memory and texture memory runs in GeForce GTX 285. (d) Relative speedup of the hard-
ware and software-managed cache combined over hardware-only cache in Tesla C2050.

Figure 5(d) shows the hardware/software cache comparison on a TeslaC2050 GPU featuring a hardware
cache. The experiments with the software-managed cache were performed using a 48K/16K scratchpad/L1
partition; therefore, the figure reflects the combined performance of the hardware cache and the software-
managed cache.

To test the hardware cache performance we modified the original kernelby removing all the cache-related
logic, including the thread synchronizations, and configured a 16K/48K scratchpad/L1 partition. We see that
the software-managed cache performance is not stable and can be both worse and better than the hardware-
only cache, with the speedup being about 25% on average. Despite the lowaverage-case speedup, there are
two important observations that justify application of software caching. First, the software cache enables
much higher peak performance. Only 0.4% of the hardware cache-based runs exceeded the 60 GFLOPs/s
performance threshold, and none reached 70 GFLOP/s, versus 5.5% and 2% of the software-managed cache
kernel runs, respectively. Second, for a given input, the best of both worlds can be achieved by analyzing the
input properties and selecting the expected-to-be-optimal kernel configuration on the fly. Specifically, we
observed that the hardware cache usually performs better for inputs withfewer summation variables, where
the software-managed cache access overhead cannot be amortized over multiple memory accesses. Thus,
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Figure 6: Part of the 268-node task tree with the hybrid-greedy and hybrid communication-aware schedule. Nodes
marked with diamonds denote the tasks assigned to a GPU by both schedules. Circles denote only the tasks assigned
to a GPU according to the communication-aware schedule. Allunmarked nodes are assigned to a CPU.

Tasks in tree Runtime (seconds) Nodes mapped to GPU
Hybrid communication-aware Hybrid-greedy CPU-only GPU-only Hybrid communication-aware Hybrid-greedy

390 110 126 213 211 25 14
529 86 86 119 174 41 28
268 55 55 408 67 86 62
595 21 25 174 33 139 111
1194 35 44 364 60 301 230
505 126 140 494 250 46 21

Table 2: Comparative performance analysis of the dynamic schedule for several real genetic analysis inputs. The
optimal acceleration schedule is the one produced by the algorithm described here. The hybrid-greedy schedule
considers only single kernel performance.

we dynamically select the best expected kernel configuration as a part of the complete application. As we
will show in the following sections, the use of software caching was critical for attaining high performance
exceeding that of the CPU implementation.

4.2 Influence of CPU-GPU scheduling

Another set of experiments examined the impact of the CPU-GPU schedule onthe performance of the
entire multi-kernel application. The experiments used task dependency trees from probabilistic networks
for genetic linkage analysis, and were invoked on a 4-core Intel Core 2, 2.33GHz CPU with the NVIDIA
GeForce GTX 285 GPU. The performance results for a few representative inputs are shown in Table 2.

We observe that the best CPU-only multi-threaded version or GPU-only version can be each up to a factor
of two slower than the combined CPU-GPU execution using the hybrid communication-aware schedule
produced by our algorithm. Observe

that this schedule (the column marked in bold) usually results in more nodes being mapped to a GPU.
Figure 6 shows a part of the task tree, with the diamonds denoting the nodes scheduled on a GPU by both
the hybrid-greedy and hybrid communication-aware schedules and the circles denoting those scheduled by
the communication-aware schedule only. Observe that the latter effectivelyreschedules the “islands” of
CPU-scheduled nodes to a GPU.

We found, however, that for the task trees having a set of dominating complex tasks for which GPU
performance substantially exceeds CPU performance and the I/O to CPU ratio is low, mapping kernels with
larger input sizes is sufficient for achieving the best performance. Still,even then, the dynamic schedule that
combines CPU and GPU execution remains superior to the static schedules thatuse only one or the other.

4.3 Performance on large probabilistic networks

The last set of experiments evaluated the speedups of the entire applicationwith all the optimizations. The
experiments were carried out on real-life probabilistic networks used forthe analysis of genetic diseases.
Table 3 summarizes the results of execution on 11 different networks. Thetable shows speedup over the
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Network E5540 4 core E5540 1 core 2xE5540 8 cores GTX 285 C2050 (h/w cache) C2050 (s/w cache)
BN1 97s 0.26 1.9 2.3 1.1 3.8
BN2 27s 0.29 2.0 – 1.9 2.28
BN3 3s 0.37 1.8 1.3 1.4 1.3
BN4 21s 0.25 2.0 0.5 1.4 1.8
BN5 844s 0.25 1.5 – 1.7 3.3
BN6 66s 0.26 1.3 – 3.1 6.0
BN7 316s 0.31 2.1 – 1.7 5.4
BN8 74s 0.25 1.9 2.9 2.4 5.4
BN9 17s 0.25 1.8 – 1.6 3.3
BN10 72s 0.25 2.1 – 3.9 6.5
BN11 91s 0.25 2.1 – 1.9 4.3

Table 3: Complete application performance on large inputs.The first column shows the absolute runtime in
seconds, while the rest show the relative speedup over the quad-core execution. Some inputs could not be computed
on GeForce GTX 285 due to insufficient memory.

quad-core only execution on a single chip E5540 CPU. Using the single-chip performance as the baseline
allows for a chip-to-chip comparison with GPUs. We also provided the resultsof the dual-CPU performance
with 16 concurrent hardware threads; hence the speedup may exceed2.

The kernel that uses the software-managed cache outperforms the parallel single CPU version by up to
a factor of 6.5. Furthermore, using the hardware-only cache results in an up to three-fold performance
drop, often yielding slower execution than the eight-core parallel CPU version. Observe that the software-
managed cache is faster than the hardware cache in all but one case. This is the result of the automatic
selection of the purely-hardware and combined hardware-software cache configurations, depending on the
specific input, as described above.
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