
GPUrdma: GPU-side library for high performance
networking from GPU kernels

Feras Daoud
Technion - Israel Institute of

Technology
ferasd@campus.technion.ac.il

Amir Watad
Technion - Israel Institute of

Technology
amirw@tx.technion.ac.il

Mark Silberstein
∗

Technion - Israel Institute of
Technology

mark@ee.technion.ac.il

ABSTRACT
We present GPUrdma, a GPU-side library for performing Remote
Direct Memory Accesses (RDMA) across the network directly from
GPU kernels. The library executes no code on CPU, directly ac-
cessing the Host Channel Adapter (HCA) Infiniband hardware for
both control and data. Slow single-thread GPU performance and
the intricacies of the GPU-to-network adapter interaction pose a
significant challenge. We describe several design options and ana-
lyze their performance implications in detail.

We achieve 5µsec one-way communication latency and up to
50Gbit/sec transfer bandwidth for messages from 16KB and larger
between K40c NVIDIA GPUs across the network. Moreover, GPUr-
dma outperforms the CPU RDMA for smaller packets ranging from
2 to 1024 bytes by factor of 4.5× thanks to greater parallelism of
transfer requests enabled by highly parallel GPU hardware.

We use GPUrdma to implement a subset of the global address
space programming interface (GPI) for point-to-point asynchronous
RDMA messaging. We demonstrate our preliminary results us-
ing two simple applications – ping-pong and a multi-matrix-vector
product with constant matrix and multiple vectors – each running
on two different machines connected by Infiniband. Our basic ping-
pong implementation achieves 5% higher performance than the base-
line using GPI-2. The improved ping-pong implementation with
per-threadblock communication overlap enables further 20% im-
provement. The multi-matrix-vector product is up to 4.5× faster
thanks to higher throughput for small messages and the ability to
keep the matrix in fast GPU shared memory while receiving new
inputs.

GPUrdma prototype is not yet suitable for production systems
due to hardware constraints in the current generation of NVIDIA
GPUs which we discuss in detail. However, our results highlight
the great potential of GPU-side native networking, and encourage
further research toward scalable, high-performance, heterogeneous
networking infrastructure.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ROSS ’16, June 01 2016, Kyoto, Japan
c© 2016 ACM. ISBN 978-1-4503-4387-9/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2931088.2931091

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design; I.3.1 [Hardware
Architecture]: Graphics processors

Keywords
Operating Systems Design, GPGPUs, Networking, accelerators

1. INTRODUCTION
GPUs have become an integral part of supercomputing systems,

with large-scale deployments reaching thousands of GPUs installed
across the compute nodes. Therefore, high-throughput low-latency
inter-GPU communications are crucial for exploiting the full power
of such multi-GPU systems.

The separate physical memory of discrete GPUs has traditionally
been the main obstacle to achieving low latency and high through-
put transfers between GPU kernels in different nodes. In older ar-
chitectures this memory has not been accessible from peripheral
network devices (NICs), requiring explicit buffer staging from the
GPU to CPU memory and back (see Figure 1(a)) in order to trans-
fer GPU memory buffers across the network. The introduction of
GPUDirect RDMA technology [2] enables direct NIC access to
GPU memory, allowing Remote Direct Memory Access (RDMA)
from and to the GPU without an extra hop through the CPU mem-
ory (see Figure 1(b)). The specialized MVAPICH-2 MPI library
leverages the GPUDirect RDMA mechanism to implement direct
memory transfers across GPUs via standard MPI calls. Similarly,
the GPI-2 communication library [1], which implements the Par-
titioned Global Address Space (PGAS) interface, uses GPUDirect
RMDA to implement zero-copy RDMA across GPUs.

While these inter-GPU communication libraries achieve high per-
formance and are widely used, they share one key limitation: data
transfer calls must be invoked by the CPU, while ensuring that the
GPU kernel that generates the data terminates before the transfer
starts (or, symmetrically, that the kernel that reads the received
content is started only after the transfer is complete). Such a CPU-
centric GPU-as-co-processor design significantly constrains the de-
sign space and complicates development, for the following reasons:

1. Bulk-synchronous design and explicit pipelining. Appli-
cations are forced to be split into bulk-synchronous phases.
Such a design makes overlapping computations and com-
munications challenging. In particular, multiple buffers are
required to implement double buffering, and computations
must be broken down to work on small tiles that fit into
smaller buffers.

2. Complex synchronization. Synchronizing between kernel
execution and network operations is complicated since GPUs
and NICs expose different synchronization mechanisms and

1

http://dx.doi.org/10.1145/2931088.2931091

Figure 1: Evolution of the GPU-NIC interaction. (a) Prior
to GPUDirect RDMA (memory staging). (b) With GPUDirect
RDMA (transfer from GPU memory, CPU controls the NIC).
(c) With GPUrdma (GPU controls the NIC, CPU not involved).

event interfaces, and even more challenging when executing
multiple kernels and I/O calls in parallel to achieve pipelin-
ing.

3. Kernel invocation overheads. Kernel invocation might be
relatively costly for short kernels. Furthermore, kernel ter-
mination and re-invocation make it impossible to store the
kernel state in the fast scratchpad shared memory, which re-
sults in non-negligible performance loss, as we show in Sec-
tion 7.

4. Large buffers for batched transfers. The messages to be
transferred to other machines must be accumulated in inter-
nal GPU buffers during the kernel execution. This in turn
increases the kernel memory consumption, or constrains the
amount of data a kernel may process at once to keep the out-
put within the memory boundaries.

Recent works introduce GPUfs [12, 13, 10, 11] and GPUnet [5]
— GPU-side native I/O libraries for direct access to Operating Sys-
tem I/O services from GPU code. These libraries expose high level
programming abstractions such as files and sockets to GPU ker-
nels in order to provide the host file system and network services
to GPUs via POSIX-like interfaces. These libraries enable a GPU-
centric application design, in which I/O operations such as file ac-
cess or network transfers are initiated from GPU code. They high-
light the main programmability and performance benefits of GPU-
native I/O services, showing that the GPU-centric design eliminates
or greatly reduces the outlined above limitations inherent to the
CPU-centric design.

This paper follows the GPU-centric design approach and presents
GPUrdma: a novel GPU-side library for high-performance RDMA
communications from GPU code. GPUrdma differs from previ-
ous works in that the CPU is completely bypassed, executing no
code relevant to GPU communications. As a result, GPUrdma pro-
vides strong performance isolation of GPU communications from
the CPU workloads.

Earlier attempts to build a GPU-side RDMA library showed un-
satisfactory results [7], leading their authors to conclude that the
GPU-native design is inferior to the traditional CPU-controlled I/O
mechanism. In contrast, we show that the high-performance GPU-
side RDMA is feasible, thanks to extensive optimizations in the
API design, as well as advances in recent hardware. We achieve

about 5 µsec latency and 50 Gbit/sec throughput for inter-GPU or
GPU-to-CPU communications over the FDR Infiniband network-
ing infrastructure.

We thoroughly analyze the design options and explain the main
insights that enable high performance. In particular, we show that
the slow performance of a single GPU thread dictates the use of
multiple parallel threads to issue multiple RDMA requests in paral-
lel. Interestingly, the throughput of the parallel GPU implementa-
tion exceeds that of CPU-controlled RDMA for smaller messages
with similar configuration by up to 3.8× for messages ranging from
2B to 1KB.

We use GPUrdma to prototype a subset of a GPU-side global
partitioned address space programming interface (GPI) [1]. GPI is
a popular communication infrastructure and runtime used in many
large-scale supercomputing systems that implements a Partitioned
Global Address Space (PGAS) abstraction. GPI implements a thin
layer on top of an RDMA substrate, providing an efficient and con-
venient means for implementing scalable high-performance appli-
cations.

We implement a subset of essential GPI API calls on NVIDIA
GPUs using GPUrdma, and evaluate the system using a ping-pong
microbenchmark and a more complex matrix-vector product appli-
cation. In the ping-pong microbenchmark the Master node sends
180MB from its CPU memory to the GPU memory in the Worker
node, which immediately sends it back without processing. In the
baseline implementation the CPU on the worker is notified when
the message is received, and it then sends the same data back with-
out any processing (and without GPU kernel invocation). Our first
implementation does the same, but from GPU code using the GPU-
side GPI: it receives the buffer in 30 threadblocks (each 1/30 of the
total data), and then sends data back from each threadblock. The
GPU-side GPI achieves throughput of 40.5Gbit/sec vs. 38Gbit/sec
in the CPU version. The second, enhanced, implementation over-
laps execution with communication by independently sending re-
quests to each threadblock, effectively overlapping execution of
different threadblocks. This implementation achieves throughput
of 52Gbit/sec.

We then evaluate GPUrdma on an application that computes a
product of a constant matrix by each of the short vectors that ar-
rive in stream. We show that the GPU-side GPI implementation
achieves about 4.5× higher performance than the GPI-2 imple-
mentation, thanks to the ability to send small messages with high
throughput and keep the matrix in shared memory while continu-
ously receiving new inputs.

Despite the promising results we report here, the concept of GPU-
side network communication libraries cannot yet be made fully
available in production systems. This is due to the hardware limita-
tion in existing NVIDIA GPUs which do not guarantee consistent
update of GPU memory by the network card while the kernel is run-
ning. We discuss the implications of this issue in detail in Section 5,
and show the example in Section 7. However, we believe that our
current work clearly demonstrates the need for adding the missing
functionality, and are encouraged to see emerging technologies [9]
which might make it available soon.

2. RELATED WORK
The need for high performance GPU I/O services motivated sev-

eral prior works relevant to this paper.
GPUnet [5]. Offers a native GPU networking layer that provides
a socket abstraction and high-level networking APIs for GPU pro-
grams. It allows GPU threads to send and receive data using send/recv
calls, and includes several advanced applications, such as a GPU

2

native server and GPU-native MapReduce, which demonstrate the
benefits of GPU-side I/O services. However, GPUnet does not im-
plement direct control of the HCA. Therefore, although the net-
working APIs are invoked from the kernel itself, all the calls to the
HCA are performed by the CPU. In contrast, GPUs in our system
interact with the HCA directly without CPU involvement.
GPUfs [12, 13]. Implements a file system abstraction for GPU
programs to allow direct access to the host file system. GPUfs im-
plements a buffer cache in GPU memory to achieve higher per-
formance. However, GPUfs does not directly control the storage
device and uses the CPU as a file server.
Infiniband-Verbs on GPU. [7] In this work the idea of GPU-side
VERBs was investigated. However, the results showed signifi-
cant performance degradation compared to the traditional CPU-
originated networking, which led to the conclusion that the GPU-
side VERBs are unlikely to work well.

In this paper we revise these conclusions and demonstrate the
performance and programmability advantages of GPU-side RDMA
networking.
GPUDirect RDMA. GPUDirect RDMA is a mechanism to expose
GPU memory regions to be directly accessible on the PCIe bus via
a Base Address Register (BAR) window. We discuss this mecha-
nism in greater detail in Section 3.2. While this technology is an
enabler for the GPUrdma project, it provides only the low-level
infrastructure and is not intended to be used by GPU developers
directly.
MVAPICH2 with GPUDirect RDMA. MVAPICH2 [3] is a high
performance GPU-aware MPI library that uses GPUDirect RDMA
to allow direct transfer of MPI buffers from GPU memory to the
network. MVAPICH2 is a standard CPU-side library, unlike the
GPU-side library described in this paper.
GPUDirect Async and NCCL. NVIDIA recently announced two
new technologies for efficient inter-GPU communications. NCCL [14]
is a CPU communication library for performing collective commu-
nications across multiple GPUs over NVLINK and PCIe. NCCL
does not deal with cross-machine communication. GPUDirect Async [9]
is a technology that offers efficient scheduling of networking with
GPU computations by exposing network-related events to CUDA
streams. These systems indicate the growing importance of high-
performance GPU networking, however they do not yet support
communications from GPU kernels.

3. BACKGROUND

3.1 GPU hardware and software
We briefly outline the basic concepts of the GPU architecture and

programming model, focusing on discrete GPUs, using NVIDIA
CUDA R© terminology; more details about CUDA R© and the GPU
model can be found in [6].
Execution hierarchy. GPUs are parallel processors that run thou-
sands of threads. Threads are grouped into warps, warps are grouped
into threadblocks, and multiple threadblocks form a GPU kernel,
which is invoked on the GPU by the CPU. A warp is a set of 32
threads executed in lockstep, i.e., at a given step all the threads in
the warp execute the same instruction. Threads in a threadblock are
invoked on the same core, called a streaming multiprocessor (SM),
and can communicate and synchronize efficiently.
Memory hierarchy. Each thread has a set of dedicated private reg-
isters. Threads in the same threadblock share a fast, threadblock-
private, on-die scratchpad called shared memory. The performance
characteristics of shared memory are similar to those of an L1 cache

All threads in the kernel share global GPU memory. Global mem-
ory provides about an order of magnitude lower bandwidth than
shared memory. Accesses to global memory are cached in a two-
level hardware cache. The GPU can also access the CPU’s memory
over the PCIe bus, using pinned pages. Limitations of this access
method include lack of cache coherency and atomic operations. It
also incurs high latencies and is an order of magnitude slower than
the GPU’s internal global memory.
Inter-thread communication. Threads in the kernel may commu-
nicate via global memory. Threads in the same threadblock may
also communicate via shared memory, and synchronize by using
efficient hardware barriers.

3.2 GPUDirect RDMA and peer-to-peer DMA
in PCIe

GPUDirect RDMA is a technology introduced by NVIDIA in
Kepler-class GPUs and CUDA 5.0 that enables a direct path for
data exchange between the GPU and a third-party peer device us-
ing standard features of PCI Express. The technology makes it
possible to configure a desired GPU physical memory segment to
be accessible via memory-mapped I/O operations through the PCIe
bus. It provides a number of low-level functions that perform GPU
memory address translations and mappings.

GPUDirect RDMA relies on the standard PCIe capabilities to
perform peer-to-peer DMA across PCIe devices without CPU in-
volvement. For example, one GPU may read from the memory of
another GPU over PCIe, as long as the memory-mapped I/O region
exposing the memory of the first is mapped into the address space
of the second. These capabilities, combined with the GPUDirect
RDMA API for GPU memory translations and mappings, enable
any PCIe device to access GPU memory in the same way it ac-
cesses the CPU memory.

3.3 Infiniband and HCA
We briefly describe the relevant details of the Infiniband software

and hardware.
Infiniband is a high-throughput low-latency network standard

widely used in high performance computing, Web 2.0, storage sys-
tems and cloud services. The Infiniband standard defines the phys-
ical, data link, network and transport protocols, and requires com-
pliant end node devices (called host channel adapters, or HCAs) to
implement these layers in the HCA hardware, obviating the need
for a network stack in the operating system, and freeing the data
path from OS involvement.

Infiniband’s transport layer supports Remote Direct Memory Ac-
cess (RDMA) operations, which allow a machine to access another
machine’s memory for read, write and atomic operations without
any involvement of the target machine’s CPU.

In order to use the services of the Infiniband transport layer, a
process asks the HCA to create a Queue Pair (QP) — a control
object consisting of a pair of Work Queues: a Send Work Queue,
which allows the process to be the initiator of transport operations,
and a Receive Work Queue, which allows the process to be the
target of a transport layer operation. A QP is identified by a QP
number (analogous to a TCP port number).

A Work Queue is a pinned buffer in memory, accessible to the
CPU process for write and to the HCA for read. A process in-
structs the HCA to execute a task by posting a Work Queue Element
(WQE, also called a Work Request) describing the send task. The
Receive Work Queue is of little relevance to RDMA operations,
which are the focus of this work.

Two processes create a transport connection by instructing the
HCA to pair their local QPs. Once the QPs are paired, the pro-

3

Figure 2: Host channel adapter (HCA) control structures
(QP,CQ) and data buffers in GPU memory. The HCA doorbell
register is mapped into GPU address space.

cesses can communicate. The HCA executes a Work Request asyn-
chronously, and delivers a Completion Notification to the initiating
process with the status of the operation. A Completion Notifica-
tion (called Completion Queue Element – CQE) is delivered to a
Completion Queue (CQ) associated with the initiating QP, which is
usually polled by the communicating process.

In order for a process to specify a memory buffer for RDMA op-
erations, the buffer must be mapped into the HCA’s virtual memory
system via an operation called Memory Registration. A user pro-
cess performs Infiniband transport operations using VERBs, which
is the transport layer API of the Infiniband protocol
Controlling the HCA from the CPU. Data transfer from the HCA
is triggered by writing into a respective doorbell register in the
HCA. Each QP has its own doorbell register. The write to the door-
bell notifies the HCA to handle the next Work Request by advanc-
ing to the next WQE in the QP.

4. BASIC SUPPORT FOR GPUrdma
We briefly describe the low-level infrastructure for RDMA sup-

port in GPUs.
HCA control and data in GPU memory. We create QP and CQ
control structures and associated data buffers in GPU memory us-
ing standard CUDA memory allocation API, and use peer DMA
API [2] to expose them to the HCA. We modify the HCA initializa-
tion routines in the original network libraries [4] to make it possible
to initialize QP/CQ with pointers to GPU memory.
GPU driver modifications for mapping doorbell registers. The
HCA doorbell registers are mapped into CPU address space, and
can be accessed as regular memory by leveraging the memory mapped
input/output mechanism (MMIO). They must be mapped into GPU
address space in order to be accessible from the GPU. However, the
cudaHostRegister() call, which is used to map CPU physi-
cal memory into the GPU address space, does not support MMIO
pages. This is because the current NVIDIA GPU driver requires
CPU virtual memory pages to be backed by physical pages in order
to map them into the GPU address space.

To overcome this limitation, we modify the open-source part of
the NVIDIA closed-source driver such that the MMIO pages are
determined at runtime and mapped appropriately. In addition, we
obtained custom-modified Mellanox HCA firmware, which guar-
antees that the HCA PCIe BAR (Base Address Register) will be al-
located in the address range below 42 bits. This turns out to be the
maximum PCIe bus address range supported by modern NVIDIA
GPUs.

Stage Latency (µsec) Accumulated
WQE writing 1.6 1.6

Doorbell access 1.5 3.1
CQ polling 3.1 6.2

Measurement overhead -0.4 5.8

Table 1: Latency breakdown for the single-thread implemen-
tation

Limits on GPU network buffer size. NVIDIA GPUs prior to K40
constrain the amount of memory which can be concurrently ac-
cessed over the PCIe bus to about 220MB. Starting from NVIDIA
K40 (excluding K40C), this limit has been raised to 16GB, im-
plying that the whole GPU physical memory can be accessed via
RDMA operations.
GPU in-kernel software support. Data sent from/to GPU memory
buffers by GPU code must be consistently stored in GPU memory
so that it can be read by the HCA over the PCIe. Two important
precautions must therefore be taken. First, the memory buffers ex-
posed to HCA must be marked volatile, to prevent compiler
optimizations, such as keeping their contents in registers. Second,
the set of threads that update the buffer must complete the write op-
eration by issuing a __threadfence_system() CUDA call
to guarantee that the writes are observable in the right order by the
HCA. This call, however, is not necessary for the receive path.
PCIe switch. As has been noted in prior work [5], Intel PCIe
switches suffer from severe read/write performance asymmetry when
two PCIe peers communicate directly. In the context of the GPU-
HCA communications, writing into GPU memory from the HCA
(receive path) achieves close to maximum throughput (50Gbit/s),
which is about twice as high as that obtained when the HCA reads
from GPU memory (send path). In our work, therefore, we use
PLX PEX8747 PCIe switches, which, fortunately, do not suffer
from this problem.

4.1 Single GPU thread performance
We implement the basic support for GPU-side RDMA using a

NVIDIA K40c GPU with 15 streaming multiprocessors (SMs) and
a Mellanox Connect-IB HCA supporting FDR (56Gbit/s). In our
experiments we invoke a GPU kernel with a single thread that is-
sues 1024 RDMA write requests. This number of requests fits into
the work queue of a single QP.

We run each experiment 3 times and report the average. We
measure the transfer time from the point we start the writing of
the first Work Queue Entry (WQE) until the point we receive a
successful Completion Notification for the last sent message. We
measure the time using the clock64() GPU intrinsic.
Naive version. The GPU thread performs the following opera-
tions for every message it sends: (1) it creates a Work Queue En-
try (WQE) in the QP, with information about the source and the
destination addresses and data size; (2) it updates the QP’s door-
bell record with the index of the last posted WQE; (3) it writes to
the QP’s doorbell register, triggering the HCA to start execution of
the work request; (4) it waits for the completion of the request by
polling the respective CQ for a Completion Queue Entry (CQE).

Figure 3 shows the bandwidth and Table 1 shows the latency
breakdown for a GPU kernel with a single thread performing an
RDMA write to the CPU memory of a remote host. RDMA read
performance is similar and not shown.

We observe that the maximum bandwidth is about 43Gbit/sec,
and it is achieved for very large (1 MB) messages. Smaller mes-
sages of up to 32KB achieve only 15Gbit/sec, less than one-third
of the maximum network bandwidth. We also observe an unex-

4

�

�

��

��

��

��

��

��

��

��

��

��

� � �� ��� ��� ���� ���� ��	
� ����	� ������ ���	��� ����
��

�
�
�
�
�
��
��
	

�
�

��

����������	��
��
���

�������
����������������	��������������
���
���	�
����

���������� 	���
��� 	���
�����������

	������������ 	���������������� �����������������

Figure 3: Single GPU-thread network bandwidth for different
message sizes: naive version, WQE reuse, pipelining, reduced
doorbell

pected performance drop for messages above 2MB. This degrada-
tion is most likely due to the PCIe switch limitations for peer-to-
peer communications, since we observed no such degradation with
Intel PCIe switches.

These results are clearly unsatisfactory, and warrant several op-
timizations, which we describe next.
WQE reuse. A WQE is a 64-byte structure that describes the re-
quest to the HCA, including, the request type, size, and local and
remote memory addresses. Many of the fields in WQE remain the
same across multiple requests. Pre-initializing all the WQEs to
minimize the number of writes helps reduce latency and improve
single-thread communication throughput. Figure 3 shows that this
optimization does not improve performance for larger messages,
but it does help reduce the latency of each WQE by about 0.76
µsec, yielding a total latency of 5.1 µ sec per message.
Request pipelining. The original implementation polls the com-
pletion queue after issuing each work request, waiting for each job
to be received and acknowledged by the remote HCA before post-
ing the next job. This delay is clearly unnecessary if one sends a
large data stream, as we do in this bandwidth experiment. There-
fore, a throughput-optimized version requests and waits for com-
pletion only when the QP’s work queue is full; in this way, the
queue can be reused for another batch. We show that this optimiza-
tion provides a significant performance boost, making it possible to
reach the maximum bandwidth of 45Gbit/sec for 32KB messages.
Reduced writes to doorbell. Doorbell registers reside across the
PCIe bus in the HCA. Writing to these registers to signal the HCA
to send the message is a costly operation that also incurs the over-
head of the memory fences which precede it. Our naive implemen-
tation writes to the doorbell register for each message separately.
Our optimization reduces the number of writes to the doorbell to
a bare minimum, writing into it only after the QP is full. Figure 3
shows the results of adding this optimization to the pipelined ver-
sion. We see that this optimization indeed works well for small
messages. For larger messages, however, the HCA remains under-
utilized: it sends the data faster than the GPU produces the requests.
Conclusions. While the optimizations enable improved perfor-
mance, even the optimized implementation achieves about 10%
lower bandwidth than the CPU-controlled RDMA transfers.

4.2 Exploiting GPU parallelism for efficient net-
working

In this section we take a complementary approach to throughput

�

�

��

��

��

��

��

��

��

��

��

��

� � �� �� ��� ���� ���� ���	� ����� ������ ���	�
�

�
�
�
�
�
��
��
	

�
�

��

����������	��
��
���

�������
����������������	���������
��������������
����

���������� 	���
��������

�
����� 	�����������
��� 	���
�����������

Figure 4: Bandwidth optimization via GPU and HCA paral-
lelism.

optimization. We increase the number of QPs to leverage multiple
GPU threads to concurrently create multiple transfer requests. It
is important to note that the use of multiple QPs is a well-known
optimization for CPU transfer performance. As we show, however,
this optimization has a dramatically positive effect on GPU perfor-
mance.

In all the following experiments we use the best pipelined single-
thread configuration, but replicate it across multiple threads.
QP per warp. We run one threadblock with 30 warps. Each warp
has its own QP, and all QPs are associated with a single CQ. This
is convenient, since only one thread is sufficient to poll for com-
pletion. Figure 4 shows that we reach a transfer throughput of 50
Gbit/sec with 16K messages, more than 10% higher than the GPU
single QP case. While this configuration performs well, its memory
consumption is rather high, with 128MB for all the QPs. Using the
GPU with full occupancy while assigning a QP to each warp will
consume a large amount of the GPU memory.
QP per threadblock. We invoke 30 threadblocks with 1 warp each,
and create one QP per threadblock. All QPs are connected to the
same CQ. The threads in the threadblock perform an RDMA call
in a collaborative manner. All the threads first create their own
WQEs but store each in its own offset in the QP. The last thread in
the threadblock writes into the doorbell. The threads poll collabora-
tively for a CQE containing the QP number assigned to their thread-
block: each thread polls in a different offset in the CQ buffer, and
the threads use CUDA R© warp vote intrinsics to determine whether
one of them has found the CQE. We achieve a bandwidth com-
parable to the QP-per-warp case, reaching 50 Gbit/sec with 16KB
messages, with better scalability with respect to GPU memory con-
sumption.
Conclusions. Packet ordering rules of the RDMA transport proto-
col force the HCA to serialize the processing of packets that belong
to the same QP. Increasing the number of QPs allows the HCA to
process different packets from different QPs in parallel.
We exploit this ability, as well as the ability to write multiple WQEs
to the work queue of the same QP in parallel. This results in faster
job submission, while also allowing faster processing of the net-
work traffic by the HCA.

4.3 Understanding optimal QP/CQ locations
The intricacies of PCIe peer-to-peer transfer performance neces-

sitate additional analysis for the optimal location of the QP/CQ
structures. Specifically, our basic design moves both QP and CQ to
the GPU, and forces the HCA to access them from the GPU mem-
ory. However, since such an access results in peer-to-peer transfers,

5

�

��

��

��

��

��

��

�
�
�
�
�
��
��
		

�
�

��

����������	�

����

����������

��������	
 ��������	
 ����	
 �	��	
 �	
����	

Figure 5: Transfer bandwidth as a function of different loca-
tions of HCA control structures

QP-CPU QP-GPU
CQ-CPU 8.6 6.2
CQ-GPU 6.8 4.8

Table 2: Transfer latency (in µsec) as a function of different
locations of HCA control structures.

performance might be slower than if the HCA accessed these data
structures from CPU memory.

Therefore, we evaluate the throughput and latency of all four
possible designs, in which the QP and CQ buffers are located ei-
ther on the GPU or on the CPU. Figure 5 shows that the config-
uration where the QP is located in CPU memory and the CQ is
in the GPU memory achieves slightly better bandwidth than the
case where both the QP and CQ are located in GPU memory. This
is consistent with the observation that HCA reads from the GPU
memory are slower than HCA reads from the CPU memory.
Conclusions. The best location for QP and CQ buffers in native
GPU networking is the GPU memory. Moving the QP buffer to the
host memory increases the latency of posting new jobs and ringing
the doorbell: in this case, for each new job the GPU writes to the
host memory and then to the doorbell across the PCIe. For the CQ
buffer, polling a completion from a buffer which resides in host
memory increases the overhead of the poll command.

5. LIMITATIONS
Our work is pushing the current GPU hardware to extremes, and

requires capabilities which are not yet officially supported. Specif-
ically, a network card, or any other third party I/O device, can-
not guarantee consistent updates of GPU memory via peer-to-peer
DMA while a GPU kernel is running. The implication of this con-
straint is that causally dependent RDMA writes into GPU memory
(e.g., one for sending a data buffer and another for the consequent
receiver notification) might be observed by a GPU kernel in reverse
order. In practice, this behavior is indeed observed under very high
data transfer load 7, and eventually all the data that has been writ-
ten into GPU memory becomes available to the kernel. However
this limitation obviously prevents current broader adoption of the
GPU-side networking concepts in production.

However, we believe that early experimental uses of our work
might be already advantageous today, and will likely become even
more so in the future. First, RDMA calls which read from GPU
memory are not affected by the inconsistency problem. Thus, one
can use GPUrdma for sending strided or irregularly organized data
directly from the kernel. Further, certain applications like asyn-

Figure 6: A code sketch for using GPU-side GPI calls for sim-
ple stencil computations.

chronous Stochastic Gradual Decent (SGD) [8] might benefit from
low latency and high bandwidth of GPU memory updates via GPUr-
dma even without full data integrity guarantee. Finally, we believe
that the recently announced GPUDirectAsync [9] technology will
help solving the consistency issue.

6. GPI PROTOTYPE
Background. The GPI library provides a variety of naming, point-
to-point and collective messaging services. However, most pro-
grams use a handful of API calls that implement asynchronous
one-sided communication with a remote node (read/write), and ap-
plication level synchronization via GPI’s notification mechanism.
Specifically, each communicating process declares a local memory
region where it stores all the notification flags. A remote sender
may update the respective notification flag in the receiver after send-
ing a message, so that the receiver can check the flag to see that the
message is available.
GPU-side GPI calls. We use GPUrdma to implement the four
commonly used GPI calls: gpu_gaspi_write, which imple-
ments RDMA write, gpu_gaspi_notify, which sends remote
notifications, gpu_gaspi_notify_waitsome, which checks
notifications locally, and gpu_gaspi_write_notify, which
combines write and notify in one call.
Threadblock-wide API calls. In our prototype we implement co-
alesced threadblock-wide function calls, which are invoked by all
the threads in a threadblock at the same point in the program, with
the same arguments. This design pattern has been successfully
used in other GPU-side I/O libraries [12, 5]. The main intuition
behind the threadblock-wide calls is that they match the common
GPU kernel design pattern whereby each threadblock represents an
independent task collaboratively performed by all the threads in a
threadblock. Therefore, threadblock-wide I/O calls naturally match
the synchronization points at the boundaries of each task, and serve
for data exchange with other tasks.

We illustrate the idea in Figure 6, which shows a sketch of a func-
tion for computing a 1D stencil in one threadblock. The boundaries
are received and sent from and to other nodes before and after the
computation.

Future versions of the GPU-side calls, however, may need to
implement warp-level API for potentially higher performance, but
will also incur the cost of more complicated programming.
Implementing GPI on GPUrdma. We use a threadblock per QP/CQ
design described in the previous section to prevent contention among
the threadblocks. In accordance with GPI terminology, each thread-
block uses its own GPI queue. This design might result in high
memory consumption due to too many QP/CQ data structures, each
usually occupying 128KB. We plan to revisit this design in the fu-
ture.

6

All the calls are implemented using the standard RDMA VERB
API. In addition, we leverage an optimized version of inline RDMA
write to reduce the latency of gpu_gaspi_notify.

6.1 Discussion
GPU-side I/O and persistent kernels. The most common GPU
programming practices involve invocation of a multitude of short-
lived threadblocks in each kernel, each executing a small chunk of
computations, after which it terminates. Such a design matches
the GPU-as-co-processor model well, because the kernels cannot
obtain any new input or output the results other than at the kernel
invocation boundaries.

GPU-side I/O libraries enable a more natural application design
in which computations and I/O are interleaved, and the I/O calls
are performed directly from GPU code. As a result, rather than
terminate the kernel for performing I/O, we can execute long run-
ning threadblocks throughout the entire lifetime of the application.
Hence, the kernel is invoked with just as many threadblocks as can
be concurrently executed by GPU hardware — the approach com-
monly referred as persistent kernels.

Persistent kernels provide many advantages, saving kernel invo-
cation overhead and simplifying application design. One particu-
lar benefit we explore in this paper (see Section 7) is the ability
to keep the entire threadblock state in fast, on-die shared memory.
This memory is reset every time a threadblock terminates; there-
fore persistent kernels are the only way to leverage shared memory
for storing the state throughout the execution.

One downside of persistent kernels is the lack of an efficient
global barrier across its threadblocks, which otherwise is imple-
mented by terminating a kernel and restarting it again. Further, us-
ing the GPU-provided 3D index space across threadblocks is some-
times more convenient than implementing one manually.

Our current prototype requires the persistent kernel design in or-
der to work. We, however, are working on extending it to support
more traditional GPU programming practices as well.
Scalability challenges. Scaling the runtime system to support hun-
dreds and thousands of communicating GPUs poses a challenge.
This is because each threadblock must have one separate QP/CQ
for each peer threadblock or CPU it communicates with, which re-
sults in space requirements quadratic to the number of nodes in the
system. This problem exists in the original GPI as well but is exac-
erbated in the case of GPUs because the number of QP/CQ struc-
tures is increased by a factor equal to the number of threadblocks.

One possible solution is to set a pool of QP/CQ structures reused
across multiple connections. This idea has been employed in large-
scale CPU systems; however, it becomes truly necessary only for
applications running on thousands of nodes. In the case of GPUs it
must be used for significantly smaller environments.

Another design we consider is the use of 1-to-N communication
primitives enabled via Mellanox’s Dynamically Connected QPs.
Register pressure. Register pressure is a known problem with
many GPU workloads, and the use of GPU-side networking library
potentially increases the number of hardware registers required for
a GPU kernel. We, however, believe that the register pressure is
gradually becoming less critical, since the register file is growing
as GPUs are evolving. For example, in K80 NVIDIA GPU the
number of registers is doubled compared to the previous K40.

7. GPI EVALUATION
In this section we implement several benchmark applications to

evaluate the performance of the GPU-side GPI prototype. We de-
sign the benchmarks to obtain the lower and upper bounds on the

performance of the GPU-side I/O operations. We use GPU-2 v1.1.1
for baseline implementations.
Latency Ping-Pong. We seek to measure application-level latency
of GPI notification across the network. We implement a GPU ker-
nel with a single threadblock that issues
gpu_gaspi_notify_waitsome() to wait for the notification
from a remote node, and then gpu_gaspi_notify() to notify
the sender back. The counterpart is implemented in the CPU and
performs the same operations but in reverse order. We measure the
latency on the CPU.

The result is a roundtrip of 10µsec, or 5µsec one way, which is
consistent with our earlier results in Section 4. GPI API adds no
noticeable latency overhead.
Throughput Ping-Pong. The throughput ping-pong application
transfers 180MB from CPU memory to GPU memory and back
without any processing.

The baseline version is implemented using the GPI-2 framework,
which uses GPUDirect RDMA to send network buffers directly
from the GPU memory. It does not invoke any GPU kernel, and
therefore encounters no kernel invocation overhead, which is the
most optimistic scenario for the original CPU-controlled I/O de-
sign.

In both the baseline and the GPU-side GPI cases, we run a master
process on the CPU. This process opens 30 GPI queues, registers a
180MB memory segment in CPU memory, and initiates the trans-
fer from that segment to the worker’s GPU memory directly via
the gaspi_write_notify call. The master sends all the data
at once using one of the queues, and notifies the worker. Then the
master waits for notification from the worker that the return mes-
sage has been sent.

The worker process runs on the CPU for the baseline version
and on the GPU for the GPU-side GPI. A CPU worker allocates
the receive buffer in GPU memory, waits for the notification from
the master that the data has arrived, and then sends the same buffer
back over 30 GPI queues by splitting the buffer contents evenly
among all the queues. A GPU worker invokes 30 threadblocks,
where each first waits for a notification (one for all the thread-
blocks) from the master, then selects a 1/30 slice of the received
data and sends it back using its own queue.

The basic GPU-side GPI implementation results in better through-
put than the CPU GPI-2 baseline, with peak throughput of 40.5Gbit/sec
versus 38Gbit/sec for GPI-2.

We note that these results are particularly encouraging because
this kind of application demonstrates the worst-case performance
for GPUrdma and GPU-side GPI. Indeed, it provides no oppor-
tunity for computation and communication overlap. Yet, the per-
formance is higher because there is no kernel invocation overhead
which is among the important benefits of GPU-side communica-
tions.
Throughput Ping-Pong with block overlapping. We implement
an enhanced version of the throughput Ping-Pong. Unlike the pre-
vious bulk synchronous implementation which waits for notifica-
tions from all the threadblocks before sending the next chunk of
data, this version triggers send individually to each threadblock
once it is ready, without waiting for other threadblocks to complete.
As a result, the GPU is fully utilized.

At this point, unfortunately, we face the memory consistency up-
date problem that we explain in Section 5 in detail. Our solution
is application specific. To measure the throughput in this experi-
ment we check the data correctness in GPU memory before sending
it back to the master. Specifically, since the expected contents of
the receive buffer are known, the threads check the buffer in data-

7

Batch size (KB) 60 120 240 480 960 1920
GPI 4.9 9.2 1.1 26.5 37.9 46.3

GPUrdma 22.4 35.9 48.1 55.6 57.7 60

Table 3: The system throughput in millions of vector multipli-
cations per second as a function of batch size

parallel manner and keep waiting in a loop until the data arrives in
full. Another alternative would be to use parallel CRC32, as has
been done in GPUnet [5].

Despite these additional checks, this implementation provides
higher throughput than any previous implementation, with the peak
throughput of 52Gbit/sec.
Multi-matrix-vector product. The multi-matrix-vector product
application compares the throughput of the GPI-2 and GPU-side
GPI library when running GPU applications using messages of dif-
ferent sizes. The application multiplies each vector in a stream of
short 32x1 vectors by a fixed 32x32 matrix of floats, which fits into
shared memory of each threadblock.

The master node runs on the CPU. It generates a batch of vectors
and sends the batch to the worker together with the GPI notifica-
tion. The master waits for the notification from the worker that the
results have been sent back, and then transfers the next batch.

We compare two implementations of the worker. The baseline
GPI-2 implementation waits for the notification from the master
in CPU code. Once the notification has been received, the worker
starts a kernel with 30 blocks, each having 1024 threads. The ker-
nel copies the matrix from global memory to shared memory, cal-
culates the multiplications on its batch and terminates. After the
GPU kernel terminates, the worker sends the data back to the mas-
ter and notifies it. These operations are performed from the CPU.
When the new batch is received, a new kernel is started.

The worker that uses the GPU-side GPI also invokes the kernel
with 30 blocks and 1024 threads per threadblock, but does that only
once. In the kernel it uses GPU-side GPI calls to receive and send
the input vectors. It copies the matrix to multiply the vectors to the
shared memory of each threadblock only once, and never reads it
again. For each batch the kernel calculates the results, and sends
them back to the master without requiring termination of the ker-
nel to perform communications, and therefore eliminating the need
to copy the data from global to shared memory for every kernel
invocation.

We measured the throughput of these two application with 75M
vectors, with total input of 2.4GB, and different batch sizes. The
results are as shown in Table 3

We observe that our GPU-side GPI implementation is signifi-
cantly faster for smaller batches than the one that uses GPI-2, out-
performing it by up to 4.5×. There are two main sources of over-
head in the GPI-2 implementation that are not present in the GPU-
side GPI-based design: (a) the matrix is repeatedly copied from the
global memory to the shared memory, as opposed to only once in
the GPU-side GPI design (about 20% of the performance gain) (b)
lower performance when transferring shorter messages.

8. CONCLUSIONS
GPU-side native networking is a promising direction for high

performance computing systems. Efficient inter-GPU communica-
tion is critically important to achieve scaling in multi-GPU appli-
cations.

In this paper we describe GPUrdma – an RDMA library which
implements high-throughput, low-latency communications for GPU
kernels. GPUrdma is the first library to completely bypass the CPU

and directly access the network adapter for both data and control.
We leverage GPUrdma to prototype several common global parti-
tioned address space APIs from the GPI library, and implemented
two applications to evaluate its performance.

We show that our GPU-side GPI prototype can achieve higher
application performance than the traditional CPU-side GPI for these
workloads, also exposing several important directions for future re-
search, such as better scaling to large numbers of GPUs.

Acknowledgements
Mark Silberstein is supported by the Israel Science Foundation (grant
No. 1138/14), the National Science Foundation (grant No. CCF-
1333594), as well as the Israeli Ministry of Science and the Israeli
Ministry of Economics via HiPer consortium.

9. REFERENCES
[1] GPI-2. http://www.gpi-site.com/gpi2/.
[2] GPUDirectRDMA technology.

http://docs.nvidia.com/cuda/gpudirect-rdma/index.html.
[3] MVAPICH2: High performance MPI over InfiniBand,

iWARP and RoCE. http://mvapich.cse.ohio-state.edu.
[4] OpenFabrics Enterprise Distribution. https:

//www.openfabrics.org/index.php/openfabrics-software.html.
[5] Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu, Amir

Wated, Emmett Witchel, and Mark Silberstein. Gpunet:
Networking abstractions for GPU programs. In 11th USENIX
Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 201–216, 2014.

[6] David B Kirk and Wen-mei W Hwu. Programming
Massively Parallel Processors: A Hands-on Approach.
Newnes, 2012.

[7] Lena Oden and Holger Fröning. Infiniband verbs on GPU: a
case study of controlling an InfiniBand network device from
the GPU. International Journal of High Performance
Computing Applications, page 8, 2015.

[8] Benjamin Recht, Christopher Re, Stephen Wright, and Feng
Niu. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In Advances in Neural
Information Processing Systems, pages 693–701, 2011.

[9] Davide Rossetti. GPUDirect async: integrating the GPU with
a network interface.

[10] Sagi Shahar, Shai Bergman, and Mark Silberstein.
ActivePointers: A Case For Software Translation on GPUs .
In Proceedings of the ACM IEEE International Symposium
on Computer Architecture (ISCA). IEEE, 2016.

[11] Sagi Shahar and Mark Silberstein. Supporting Data-Driven
I/O on GPUs using GPUfs. In ACM International
Conference on Systems and Storage (SYSTOR). ACM, 2016.

[12] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett
Witchel. GPUfs: Integrating a file system with GPUs. In
Proceedings of the ACM International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 2013.

[13] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett
Witchel. GPUfs: Integrating a file system with GPUs. ACM
Transactions on Computer Systems (TOCS), 2014.

[14] https://github.com/NVIDIA/nccl. NCCL: optimized
primitives for collective multi-GPU communication.

8

http://www.gpi-site.com/gpi2/
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://mvapich.cse.ohio-state.edu
https://www.openfabrics.org/index.php/openfabrics-software.html
https://www.openfabrics.org/index.php/openfabrics-software.html
https://github.com/NVIDIA/nccl

	Introduction
	Related work
	Background
	GPU hardware and software
	GPUDirect RDMA and peer-to-peer DMA in PCIe
	Infiniband and HCA

	Basic support for GPUrdma
	Single GPU thread performance
	Exploiting GPU parallelism for efficient networking
	Understanding optimal QP/CQ locations

	Limitations
	GPI prototype
	Discussion

	GPI evaluation
	Conclusions
	References

