
Execution of Bags of Tasks
on Multiple Resource Pools

Mark Silberstein, Artyom Sharov
Dan Geiger, Assaf Schuster

Technion – Israel Institute of Technology
2009

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 2

?

How to run efficiently

Experimental science life cycle

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 3

● Resources
● Opportunistic

● Non-dedicated

● Restricted connectivity

Problem
● BOT – Bag of Tasks

● Independent tasks

● Single parallel run

● All results are required

● Multiple resource pools
● Dedicated, collaborative,

volunteer, pay-as-you-use

● No unified management

● Multiple BOTs
● Different parallel runs

● From tens to millions of tasks,
minutes to hours each

How to run
efficiently

?

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 4

Zoo of resource pools

Reliability
Low High

Performance predictability
Low High

High Low

Potential amount of available resources
Thro

ughput c
om

putin
gOpportunistic

“B
urs

t”
 c

om
putin

g
Dedicated

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 5

Resource availability

Grids in a wild

[Dedicated]
Community grid (~15,000 hosts)

Sharp
changes

Queuing time
10-20% started
after one hour

Up to
21%

failures

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 6

On-demand unified
virtual cluster over

resource pools

On-demand unified
virtual cluster over

resource pools
Run-time policy-driven BOT

execution mechanisms

Run-time policy-driven BOT
execution mechanisms

BOT – first class citizen

Solution in a nutshell

Separate resource allocation from scheduling

Scalable implementation
deployed over multiple

resource pools

Scalable implementation
deployed over multiple

resource pools

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 7

Production deployment:
Superlink-online genetic analysis portal

~25,000 active hosts in 3 months

~15,000 hosts

Check out our online monitoring system: http://tiny.cc/GridBot

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 8

Outline

● Challenges
● Policy-driven mechanisms
● Implementation
● Experiments
● Conclusions

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 9

Challenge 1:
Efficient work dispatch

Grid 1
Grid 2

1. Any static solution will result in load imbalance

Stuck in queue

2. High scheduling overhead penalty per task

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 10

Scheduling ServerScheduling Server

Scheduler

Virtual cluster
manager

Task
queue

Resource allocation:
Gluing resource pools via overlay

Submittor
to RP1

Submittor
to RP1

Submittor
to RP2

Submittor
to RP2

● Naturally scalable to more resource pools
● Dynamic load balancing between resource pools
● Reduced task granularity – no scheduling overhead
● Application-specific scheduling

Tasks pushed directly
to resources

How to distribute resource requests between grids ?

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 11

Challenge 2:
Multi-BOT Multi-RP scheduling

● Different BOTs have different requirements
● Example:

● Larger BOTs (millions tasks) delay shorter ones
● Naïve solution: priority queue

● Does it suffice for multiple resource pools?

Grid 1
Owner 1

Cloud
(Paid by Owner 2)

BOT1
Owner 1

BOT2
Owner 2

Desired behavior:
 BOT1 prioritized on Grid1,

 disallowed on Cloud
 BOT2 allowed on Grid2

Runtime host-specific policy

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 12

● Host-specific
● Execute a task only on reliable hosts (RPs)

● Conditional Task bundling (for shorter tasks)
● Pack 10 tasks to reliable host, 2 to unreliable, 100

to GPU-enabled

● Host-specific priority
● Multilevel Feedback Queue Scheduling

– the larger the BOT – the lower its priority

Runtime scheduling policies

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 13

Challenge 3:
Long tail in large-scale systems

Number of unfinished tasks in queue over time

Expected completion

High throughput Tail

Actual completion

[Dedicated]
Community grid (~15,000 hosts)

Need for BOT turnaround-time optimizations

Similar phenomenon
in Google

[Barrozo&Holzel09]

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 14

Replication

● Common practice to reduce BOT turnaround in
faulty environments

● Speculatively invoke running tasks multiple times
● Concurrently run multiple task replicas, first

successful result is acceptedBut replication is wasteful!

Need to allow BOT-specific replication policies to adjust
cost – turnaround time tradeoff

Example - conservative: replicate if all task's other replicas are
running too long on unreliable or slow machines

Example - full: replicate every task twice if in Tail

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 15

Runtime
support

Mechanisms

 Policies
User-specified policy

Scheduling: work-dispatch
and replication logic

Runtime generic policy evaluation engine
Ψ(Task,host,BOT,system parameters)→Boolean or Real

Which task to send
to this host?

Which task to prefer
on this host?

Replicate this task
given all hosts

running task replicas?

How many tasks to send
at once to this host?

When to claim this task
as failed on this host?

Matching Ranking Replication Bundling Deadline

Scheduling ServerScheduling Server

Virtual cluster
manager

SchedulerJob
queue

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 16

Runtime support: classads

● Schema-less list of name-value attributes
● Attribute can be a function of other attributes
● Classad runtime allows on-demand evaluation

Host=[RAM=2048;
 CPUbench=3;
 Performance=RAM*CPUbench;
 Quality=Performance*2.5;

];

Runtime query: Host.Quality yields 15360

● Convenient for runtime policy specification:

- Quality, Performance – user specified functions

- RAM, CPUbench – updated by the infrastructure

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 17

Replication policy example

Running replica 1

Running replica 2

Reference to the
properties of the host where

the replica is running

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 18

Implementation challenge:
Connectivity and scalability

● Connectivity

● Firewalls/private networks

● Support for large number of task requests

● Too many open connections

● Scheduling overhead (per request) affects throughput

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 19

Implementation

● Enhanced Berkeley Open Infrastructure for
Network Computing (BOINC) with support for
dynamic policies
● Production middleware used for establishing

community grids (e.g SETI@HOME)
● Uses HTTP protocol from client to server for control

and data
● Disconnected mode of operation
● Well-suited for faulty environments

● Use of BOINC allows for the first time
interoperability between all types of grids

mailto:SETI@HOME

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 20

Grid Overlay

● BOINC clients are sent to grids as regular jobs
● Obey local grid policy

● Avoid resource underutilization
● Self-terminate when idle

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 21

Evaluate the classad only once per BOT

Scheduling scalability

● Policy evaluation performed per request for
every task (millions) in a queue!

● Optimization 1:
● Representative sample: sample constant number of

jobs from every BOT
Consider only these jobs

● Complexity: O(#BOTs)

● Optimization 2:
● Observation: jobs of a BOT almost always have the

same scheduling properties

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 22

Replication scalability

● Replication is performed periodically for some
subset of running jobs

● Allowed only during BOT Tail (more on Tail
later) to avoid overload

● No overhead for large runs

● Task with less replicas prioritized

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 23

The system updates Tail classad attribute -

Dynamically affects scheduling policy

Tail detection

● What is Tail?

● Load imbalance

● Occurs in the end of the run due to resource idling

● Determined automatically when no idle tasks
for the BOT

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 24

Production deployment:
Superlink-online genetic analysis portal

~25,000 active hosts in 3 months

~15,000 hosts

Check out our online monitoring system: http://tiny.cc/GridBot

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 25

Experiments

● Plain BOINC overlay vs. GridBot
● GridBot vs. Condor
● Scalability

● #Jobs in queue, # requests/sec, #BOTs

● Replication and policies
● Replication
● Multi-BOT scheduling

Real data of Superlink-online runs used in all experiments

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 26

Scalability benchmark: #Tasks in Queue
2.2 mln tasks ~40 min each

Stable sustained throughput
despite the failures

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 27

Scalability benchmark: #BOTs in Queue
● 50 BOTs submitted at once, 1000 tasks each
● Each BOT i has Rank=i

Throughput is not affected!

BOTs run according
to the RANK order

despite of queue sampling

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 28

Scalability benchmarks
Task request rate

Throughput is not affected!

BOT #Tasks Time/Task Dispatched
Tasks/sec

Throughput

A 42,200 10-50 min Up to 20 ~3,700 cores

As A, each
task split in 5

211,000 2-10 min Up to 93 ~3,700 cores

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 29

Scheduling policies and short runs
(1200 tasks/BOT, 3 min/task)

Turnaround times:
B1 ~ 6.8h
B2 ~ 6.5h
B3 ~ 1.8h
B4 ~ 1.4h

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 30

Replication policies
Collaborative grids alone

● 30,000 tasks, 10-15 min each

Replication policy Scheduling policy Replicas
(%)

Waste
(%)

Runtime
(h)

Up to 5 replicas/task Any host 58 30 4.1

Only unreliable host or no
response for >30 min

Only reliable 11 7 3.2

Up to 5 replicas/task Only reliable 73 57 4.2

Disabled Only reliable 0 0 5.1

Disabled Any host 0 0 5.8

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 31

Replication policies
All grids including community grid

● 30,000 tasks, 10-15 min each

Replication policy Scheduling policy Replicas
(%)

Waste
(%)

Runtime
(h)

Up to 5 replicas/task Any host 188 105 4.2

Up to 5 replicas/task No community grid
resources in Tail

129 75 3.8

15 min between replicas
and one of them on
unreliable host

No community grid
resources in Tail

49 25 4.3

No replication until below
2000 tasks in BOT

As above, Tail statically
recognized when below
2000 tasks in BOT

35 21 14.2

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 32

Replication policies
All grids including community grid

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 33

Conclusions

● Contributions
● Policy-driven mechanisms for efficient BOT

execution
● Scalable implementation in a production system
● Large-scale experiments over multiple production

grids including community grid with various policies

● Future work
● Incorporate supercomputers (TSUBAME)
● Different overlay establishment target functions
● Cost-efficient combination of grids and clouds
● Data-intensive computing in clouds

Portland, SC09, 19/11/2009 Mark Silberstein, Technion 34

Acknowledgments

● Miron Livny, UW Madison
● David Anderson, UC Berkeley

