Enclaves as accelerators: learning lessons from GPU
computing for designing efficient runtimes for enclaves

Meni Orenbach, Mark Silberstein
Technion

ABSTRACT

Intel SGX enclaves is a novel technology that holds the promise
to revolutionize the way secure and trustworthy applications are
built. However, from the perspective of interaction with the rest
of the system, some of the enclave’s characteristics are remarkably
similar to the characteristics of traditional hardware accelerators,
such as GPUs. For example, enclaves suffer from significant in-
vocation overheads, offer space-constrained private memory, and
cannot directly invoke OS services such as network or file I/O.
Over the course of GPU computing evolution there have been de-
veloped many techniques to improve the system performance and
programmability. Our key observation is that the conceptual sim-
ilarities between enclaves and accelerators may help building effi-
cient runtime support for enclaves by learning from the past expe-
rience with GPUs.

We demonstrate this simple idea by implementing SGXIO, a
simple yet powerful enhancement to the current SGX runtime which
boosts the performance of I/O system calls from enclaves. SGXIO
design is almost identical to the design of GPUfs and GPUnet [8]
4] systems for efficient I/O services for GPU programs. Our pre-
liminary evaluation shows that GXIO improves the performance of
a simple network parameter server for distributed machine learning
by up to 3.7x. These promising results suggest new ways to design
more efficient runtime and system services for enclaves.

1. ENCLAVES AS ACCELERATORS

Intel Software Guard Extensions (SGX) introduce a mechanism
for dynamically instantiating private, secure and trusted containers
called enclaves for executing security-sensitive sections of applica-
tion code [6, |1} 2} [3]].

However, an isolated execution environment of the enclave is
both a blessing and a curse. While the isolation is fundamental for
confidentiality and trust, it implies that the enclave also blocks di-
rect interaction of the trusted code with the rest of the system, for
example, preventing access to OS I/O abstractions like files and net-
working services. Therefore, performing an I/O operation requires
the enclave to voluntary transition into untrusted mode, perform
the I/O system call and then resume its execution. As we show

ACM ISBN 978-1-4503-2138-9.
DOI:110.1145/1235

in the next section, these transitions between trusted and untrusted
execution modes are quite expensive. The runtime support for effi-
cient system services in enclaves is therefore the key to achieving
convenient programming and high performance with SGX.

Our main observation is that although enclaves are new in com-
modity systems, many lessons for designing their runtime and man-
agement may be learned from the design of system support for
computing accelerators like GPUs. Indeed, much like accelera-
tors used to enhance specific functionalities (e.g., highly parallel
processing in GPUs), enclaves enable efficient execution of appli-
cation segments in a trusted execution environment. A closer look
reveals many surprising similarities.

e Both SGX enclaves and GPUs operate in separate execution con-
texts from the main CPU, i.e., to initiate execution the CPU must
explicitly pass instructions and data to the enclave/GPU and sig-
nal its execution. Switching in and out the secure context is
costly, and may reach a few microseconds in total, as we show
in the next section.

e An enclave must be invoked by the CPU via a driver (at least
for the first initialization), much like the CPU that fully manages
the GPU kernel execution. SGXv1.5 does not allow dynamic
code loading and dynamic thread invocation in enclaves, just
like GPUs cannot load new code and invoke it in a new GPU
kernel.

e An enclave has a private memory (EPC) which forms a separate
address space which is not accessible from the untrusted CPU
code, similarly to the high bandwidth GPU local memory which
is not directly accessible to the CPU. Here, however, GPUs went
a long way to provide substantial flexibility, e.g., allow GPU
memory pointers to be used in asynchronous DMA calls from
the CPU.

e In order to ensure privacy, enclave’s inputs and outputs must be
encrypted outside the enclave, explicitly copied from/to the un-
trusted memory and decrypted in the enclave code. These copies
are akin the staging of input/output into GPU memory for the
GPU kernel execution. Here, however, the availability of GPU
DMA engines and runtime support for asynchronous DMA en-
ables higher performance than there exists in enclaves.

e An enclave may directly access untrusted CPU memory, just like
the GPU may access the host memory. However this mem-
ory should not be used for saving its private execution state,
much like the GPUs should avoid using the CPU memory for
performance-critical memory accesses

e An enclave currently cannot dynamically change the amount of
physical memory it is allocated at the initialization ﬂ and pro-
vides runtime support for dynamic management of that memory
in the enclave. GPUs share the same memory management con-

"Though expected to change in SGX 2.0

10.1145/1235

straints and provide similar in-GPU memory management capa-
bilities.

e An enclave cannot directly invoke system calls or any CPU func-
tions, just like GPUs, and in particular, cannot manipulate its
virtual address space.

We believe that these similarities are informative to understand
the programming constraints which enclave programmers are fac-
ing today, and which GPU programmers have successfully over-
come during the several years of GPU computing evolution. In
this short paper we show, for example, that we can build efficient
I/O services for enclaves by retrofitting the design of the GPU-side
runtime for efficient I/O accesses from GPU kernels.

2. SGXIO: SUPPORTING LOW-OVERHEAD

I/0 FROM ENCLAVES

Much like in GPU kernels, we observe a significant overhead
exists whilst transitioning in and out of enclave context, named in
SGX’s SDK as Ocalls. We have measured the cost of EENTER
and EEXIT to be about 7110 cycles (about 2usec) in total on an i7
4-core Skylake CPU. For comparison, invoking a GPU kernel is up
to Susec in NVIDIA K40 GPU, and native function call is about
200 cycles [9].

These invocation costs are incurred by every system call and ev-
ery 1/0O operation for applications that run in an enclave, and are an
impediment to running I/O intensive workloads in enclaves.

Recent work on GPU OS services [?, ?] proposed a runtime
that allows 1I/O calls directly from GPU kernels by implementing
remote procedure calls infrastructure (RPC) with the CPU backend.
‘We use the same idea for implementing SGX/0, a mechanisms that
enables SGX enclaves to invoke untrusted functions and system
calls.

SGXIO implements an RPC infrastructure that offers transition-
less communication between enclaves and the untrusted software.
In SGXIO, all I/O calls are delegated to a separate worker thread
running in parallel with the enclave in an untrusted context of the
same application. An I/O request from an enclave creates a request
in a queue in the untrusted memory shared with the worker thread,
and waits for its completion. The worker thread detects a request
and invokes the actual I/O call.

This architecture eliminates the transition costs associated with
original Ocalls, without affecting the security guarantees of the en-
claves. Specifically, the I/O request parameters and return values
are passed in the untrusted memory as in Ocall.

We implemented SGXIO prototype as part of the SGX SDK, by
replacing Ocalls with our RPC infrastructure. Unfortunately, as en-
claves today does not support exit-less synchronization primitives,
SGXIO currently implements synchronization using spinlocks via
x86 atomic instructions.

3. PRELIMINARY RESULTS

We implement a simple parameter server commonly used in dis-
tributed machine learning systems, to maintain shared model state
across a cluster of workers which run model training tasks [5].
Specifically, the server stores the model (e.g., weights of a neu-
ral network) shared across multiple workers. Each worker inter-
acts with the server to update a certain variable or retrieve its fresh
value. As both the data, and the model are considered private in-
tellectual properties, a parameter server in an enclave is a realistic
need.

Our implementation stores the model’s features in a hash table
which fits into the processor’s last level cache (LLC) (4MB).

We compare the same parameter server in which network I/O

Slowdown factor

[N

5
4
3
B Ocalls
2 m RPC worker
0 . II . .
16K 32K 64K

128K 256K 512K

Requests/second to the parameter server

Figure 1: Requests to parameter server can scale better with
RPC worker.

is handled via Ocalls, SGXIO, or through regular function calls in
clear. We run each experiment 1000 times, after 10 warmup runs,
measuring only the trusted execution time, reducing noise intro-
duced by the network and focusing on the enclave’s performance.
We report the average measured value, observing the standard de-
viation to be below 5%. We perform the evaluation on a Dell Op-
tiPlex 7040 platformEl, running Ubuntu 14.04-64bit with the latest
SGX SDK and driver.

Figure |I| shows the performance results of the parameter server
while varying the frequency of requests to update random features.
Comparing SGXIO, Ocalls and regular system calls, we observe
that SGXIO is less sensitive to the request rate, thus achieve con-
stant performance, while Ocalls suffers from the high costs of fre-
quent transitions once the rate increases.

4. CONCLUSIONS

SGXIO is just one example of where the enclaves-as-accelerators

analogy is useful. Others may include

o A DMA engine with re-encryption mechanisms to avoid enclave
transitions while allowing asynchronous data transfers into en-
clave.

e Asynchronous enclave execution akin to GPU streams.

e Provide enclave-native virtual memory management akin to Ac-
tivePointers [/7]]

S. REFERENCES

[1] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent
Scarlata. Innovative technology for cpu based attestation and
sealing. In Proceedings of the 2nd international workshop on
hardware and architectural support for security and privacy,
volume 13, 2013.

Victor Costan and Srinivas Devadas. Intel sgx explained.
Technical report.

[3] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay
Phegade, and Juan Del Cuvillo. Using innovative instructions
to create trustworthy software solutions. In HASP@ ISCA,
page 11, 2013.

Sangman Kim, Seonggu Huh, Xinya Zhang, Yige Hu, Amir
Wated, Emmett Witchel, and Mark Silberstein. Gpunet:
Networking abstractions for gpu programs. In //th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 14), pages 201-216, 2014.

Dell OptiPlex 7040: Intel Skylake i7 4-core CPU with 8MB L3,
128 MB dedicated EPC, 16 GB RAM, and 256 GB SSD drive

[2

—

[4

—

(5]

(6]

(7]

(8]

(9]

Mu Li, David G Andersen, Jun Woo Park, Alexander J Smola,
Amr Ahmed, Vanja Josifovski, James Long, Eugene J Shekita,
and Bor-Yiing Su. Scaling distributed machine learning with
the parameter server. In 1/th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 14),
pages 583-598, 2014.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V
Rozas, Hisham Shafi, Vedvyas Shanbhogue, and Uday R
Savagaonkar. Innovative instructions and software model for
isolated execution. In HASP@ ISCA, page 10, 2013.

Sagi Shahar, Shai Bergman, and Mark Silberstein.
Activepointers: A case for software address translation on
gpus.

Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett
Witchel. Gpufs: integrating a file system with gpus. In ACM
SIGPLAN Notices, volume 48, pages 485-498. ACM, 2013.
Livio Soares and Michael Stumm. Flexsc: flexible system call
scheduling with exception-less system calls. In Proceedings of
the 9th USENIX conference on Operating systems design and
implementation, pages 33—46. USENIX Association, 2010.

	Enclaves as accelerators
	SGXIO: supporting low-overhead I/O from enclaves
	Preliminary results
	Conclusions
	References

