
A computational cache
A neural-net based algorithm for range matching with

application to packet classification

Mark Silberstein
EE, Technion:

Joint work with Alon Rashelbach and Ori Rottenstreich

https://acsl.group

Agenda

● Range Matching
○ Applications
○ Background: Recursive Model Index
○ RQ-RMI

● Packet classification
○ NuevoMatch
○ OVS + NuevoMatch

● Future ideas

3

Range matching queries

Basic building block in a variety of systems

● virtual memory
● network switchers and routers
● file and storage systems
● sparse data structures
● DNA sequencing 4

Range Value
0-70 600

80-104 325

...85 325

-10 NIL

Range matching
Traditional data structures

● Regular data (pages)
○ radix trees

● Irregular data (extents)
○ interval trees

● Overlapping ranges (packet rules)
○ hierarchy of hash-tables and (similar to) interval trees

5

Common problem:
scaling is hard due to memory wall!
● Architectural trends

○ Fast Memory does not scale
○ Memory latency to memory remains high
○ Memory bandwidth per core remains low

● Large index: spills out of cache
● Pointer-chasing: memory latency on the critical path

6

Impedes performance of
memory-intensive data structures

Common problem:
scaling is hard due to memory wall!
● Architectural trends

○ Fast Memory does not scale
○ Memory latency to memory remains high
○ Memory bandwidth per core remains low

● Large index: spills out of cache
● Pointer-chasing: memory latency on the critical path

7

Impedes performance of
memory-intensive data structures

However! NN inference is getting faster all the time!
This talk: how to use NNs to scale range matching

Agenda

● Background: Learned Indexes

● Motivation: why LI cannot be used as is

● Our solution: RQ-RMI

● Application: packet classification

8

Recursive Model Index (RMI) (1/5)

9

Key Value
56 value0

60 value1

68 value2

71 value3

80 value4

(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

Model

Btree

sorted
keys

Recursive Model Index (RMI) (2/5)
Key Mem Offset Value
56 100 value0

60 101 value1

68 102 value2

71 103 value3

80 104 value4

87 105 value5

93 106 value6

100 107 value7

101 108 value8

117 109 value9

Offset

Key

10
(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

: rep.

Max Approximation Error

Recursive Model Index (RMI) (3/5)

Model

Train model using

Offset

Key

11
(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

: rep.
: approx.

Recursive Model Index (RMI) (4/5)

Key Mem Offset Value
60 101 value1

68 102 value2

71 103 value3

80 104 value4

87 105 value5

93 106 value6

100 107 value7

12(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

Model

Recursive Model Index (RMI) (4/5)

13(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

Model
Approximation

Error

Key Mem Offset Value
60 101 value1

68 102 value2

71 103 value3

80 104 value4

87 105 value5

93 106 value6

100 107 value7

Recursive Model Index (RMI) (5/5)

Secondary Search
over Keys

14(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

Model
Approximation

Error

Key Mem Offset Value
60 101 value1

68 102 value2

71 103 value3

80 104 value4

87 105 value5

93 106 value6

100 107 value7

Recursive Model Index (RMI) (5/5)

submodel

submodel . . . submodel

. . .

Offset

Key

Configurable:
1. Neural Network

2. B-Tree
15

: rep.
: approx.

(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

submodel

submodel

submodel

Stage 0

Stage 1

Stage 2

Model

Btree

13 MB
Tree Traversal

256ns per lookup

Recursive Model Index (RMI)

16

Key Value
56 value0

60 value1

68 value2

71 value3

80 value4
Model

0.15 MB
Neural Network Inference

98ns per lookup

(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

2.7x lookup performance in databases

RMI does not work for range matching

● RMI requires to learn offset for each key

● Strawman: enumerate values in a range

Problem 1: to estimate the maximum error it must scan all keys

Problem 2: does not work for sparse data - model gets too large - no
memory savings

Problem 3: How to handle overlaps?

17

Our work:
Range Query Recursive Model Index: RQ-RMI

1. Learns ranges, not keys

2. Ranges may overlap

3. Supports multi-dimensional ranges

18

Assume no overlaps

19

RQ-RMI
model

Range Value
0-70 600

80-104 125

...

Offset

Range
: representation

: approximation

Sample input domain and learn from valid inputs

Neural
Network

. .

.
Neural

Network

RQ-RMI
model

. .

.
Neural

Network

Neural
Network

Neural
Network

Stage 0

Stage 1

Stage 2

Use MLP as a submodel

ReLU

ReLU

ReLU

ReLU

ReLU

20

Regression using a shallow
neural network

Neural
Network

How to compute error bound?

21

Neural networks with
ReLU activations are

piecewise linear
functions

ReLU

ReLU

ReLU

ReLU

ReLU

A bounded approximation error
Is guaranteed

For the entire input domain!

Intuition by example: M(x) learns 4 outputs

22

0

1

2

3

Output
domain

Given x - find a prediction for its index.

This is the learned model

Observation: maximum error is in vantage points

23Error bound can be computed using only a few vantage points

0

1

2

3

Output
domain

Training Range-Query RMI
● For each layer and each submodel:
● Uniformly sample an input domain of a model
● Train on the samples: wider ranges get more samples

● For leaf models: compute error using vantage points
● If error is above threshold - add more samples, retrain
● if does not work after few tries - increase the number of submodels

in the model and try again

24

Summary: 1D Range-Query RMI, no overlaps

1. Enables range matching

2. Effective training technique

3. Correctness guarantees

25

Handling Overlaps + Dimensionality
Y

X
Geometrical

representation

1

4

2

5
7

6

3

26

8

Example: 2D ranges with overlaps
(2<x<4) AND (3<y<5)

Handling Overlaps + Dimensionality: iSets (1/5)
Y

X
Geometrical

representation

1

4

2

5
7

6

3

27

8

iSet
partitioning
algorithm

Idea: create multiple sets of
non-overlapping ranges, strive to cover as
many as possible with fewest sets

Handling Overlaps + Dimensionality: iSets (1/5)
Y

X
Geometrical

representation

iSet
partitioning
algorithm

iSet 1 - rules do not
overlap on X1

4

2

5
7

6

3

4 5 6 3

28

8

Interval scheduling optimization algorithm

Handling Overlaps + Dimensionality: iSets (1/5)
Y

X
Geometrical

representation

iSet
partitioning
algorithm

iSet 1 - rules do not
overlap on X

iSet 2 - rules do not
overlap on Y

1

4

2

5
7

6

3

4 5 6 3

2 71

29

8

Handling Overlaps + Dimensionality: iSets
Y

X
Geometrical

representation

iSet
partitioning
algorithm

iSet 1 - rules do not
overlap on X

iSet 2 - rules do not
overlap on Y

1

4

2

5
7

6

3

4 5 6 3

2 71

30

8

Remainder - rules that
do not fit in any iSet

8

Handling Overlaps + Dimensionality: iSets

31

iSet 1 - rules do not
overlap on X

iSet 2 - rules do not
overlap on Y

4 5 6 3

2 71

Remainder - rules that
do not fit in any iSet

8

The remainder set is
handled by any

classification method

Any
Existing
Method

Handling Overlaps + Dimensionality: iSets

32

Validation

Validate all
other

Dimensions

Neural Network
Inference

on dimension D

RQ-RMI Secondary
Search

Resolve
approximation

errors
for dimension D

0100
1001
10...

Match /
No Match

iSet Flow

Matching
Candidate

Putting it all together: computational cache

33

0100
1001
10... Remainder Selector

iSet 1

iSet 2

Computational cache

In some cases we can eliminate the
remainder search if match is found

Summary so far
● RQ-RMI learns ranges via sampling

● Offers efficient error estimation

● Deals with overlaps and multi-dimensional cases using remainder

34

Does it work in practice?

yes!
SIGCOMM’20

A Brief about Packet Classification (1/3)

35

0100
1001
10...

Incoming Packets

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

Outgoing Packets

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10... 0100

1001
10...

0100
1001
10...

● Access Control
● Quality of Service
● Packet Forwarding
● Firewalls

A Brief about Packet Classification (2/3)

36

0100
1001
10...

Incoming Packets

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

Outgoing Packets

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10... 0100

1001
10...

0100
1001
10...

Src IP Dst IP Src Port Dst Port Action Priority

10.0.10.* 8.8.*.* 0-65535 80 Port 1 3

10.0.20.* 8.8.7.* 0-65535 443 Port 2 2

10.0.*.* 8.8.7.1 0-65535 0-65535 Drop 1

A Brief about Packet Classification (3/3)

37

0100
1001
10...

Incoming Packets

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

Outgoing Packets

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10... 0100

1001
10...

0100
1001
10...

src-ip: 10.0.10.1
dst-ip: 8.8.7.1
src-port: 7870
dst-port: 80

Src IP Dst IP Src Port Dst Port Action Priority

10.0.10.* 8.8.*.* 0-65535 80 Port 1 3

10.0.20.* 8.8.7.* 0-65535 443 Port 2 2

10.0.*.* 8.8.7.1 0-65535 0-65535 Drop 1

Hardware vs. Software

38

Ternary Content
Addressable

Memory (TCAM)

Hardware Software

High Throughput
Dedicated ASICs

Low Throughput
Commodity Hardware

Various Algorithms

Hardware vs. Software

39

Ternary Content
Addressable

Memory (TCAM)

Hardware

High Throughput
Dedicated ASICs

Software

Low Throughput
Commodity Hardware

Various Algorithms

The Problem (1/2)

As we add more rules to virtual switches...

40

Virtual Switch

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

Let’s add rules...

10
11

10
11

10
11

10
11

The Problem (2/2)

...we lower their throughput!

41

Virtual Switch

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

Let’s add rules...
Bottleneck!

10
11

The Problem (2/2)

...we lower their throughput!

42

Virtual Switch

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

10
11

Let’s add rules...
Bottleneck!

10
11Large Rule Sets

Spill Out of CPU Core Cache!

Large Rule Sets Spill Out of CPU Cache (1/2)

43(*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.
(*) Taylor et al., “Classbench: A Packet Classification Benchmark”. TON 2007.

Actual

Expected

TupleMerge:
State-of-the-art

Large Rule Sets Spill Out of CPU Cache (2/2)

44

2x

Actual

Expected

L3 cache is
10x slower

than L1 cache

TupleMerge:
State-of-the-art

(*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.
(*) Taylor et al., “Classbench: A Packet Classification Benchmark”. TON 2007.

RQ-RMI 1

RQ-RMI 2

RQ-RMI N

External

...
iSet 1

iSet 2

iSet N

...
Remainder

NuevoMatch:
Using RQ-RMI for packet classification

Src IP Dst IP Port

10.0.10.* 8.8.*.* 0-80

10.0.20.* 8.8.7.* 443

10.0.*.* 8.8.7.1 *

55.0.0.* 3.3.*.* 22

iSet
partitioning
algorithm

45

Selector

Can We Fit in L2 Cache?

46
(*) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". INFOCOM 2018.
(*) Liang et al., "Neural Packet Classification". SIGCOMM 2019.
(*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.
(*) Taylor et al., “Classbench: A Packet Classification Benchmark”. TON 2007.

Remainder 20x
smaller than the
original data structure

RQ-RMI all fits in L1
cache

Can We Fit in L2 Cache?

47

State of the art
techniques

1024 KB
L2 Cache Size

32 KB
L1 Cache Size

Geomean compression
 factor of 4.9x, 8x, 82x

(*) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". INFOCOM 2018.
(*) Liang et al., "Neural Packet Classification". SIGCOMM 2019.
(*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.
(*) Taylor et al., “Classbench: A Packet Classification Benchmark”. TON 2007.

Isn’t Neural Network Inference Slow?

48

Use Small and Shallow
Neural Networks

Not if you...

Use Wide Vector
Instructions

ReLU

ReLU

ReLU

ReLU

ReLU

40-50 ns on a CPU!

2.5X

The iSet compute-vs-coverage Tradeoff

49

The iSet compute-vs-coverage Tradeoff

50

How many iSets needed for high coverage

iSet coverage is high for large rulesets!

Ruleset
Size

51

iSet coverage is high for large rulesets!

Ruleset
Size

52

How many iSets needed for high coverage

What About Updates? (1/2)

53

New rules get
into the
remainder

We easily can
remove rules
from the models

We retrain the models after a certain
threshold in the number of new rules.

RemainderRQ-RMI Models

Expected performance with periodic training

54

What About Updates? (2/2)

55

Training with TensorFlow takes between
10-40 min on a CPU

In our recent work we run at 10ms-1s for
the largest datasets

RemainderRQ-RMI Models

Evaluation: see the paper
End-to-end performance

● Single-core vs. multi-core settings
● Small vs. large rule sets
● Traffic with uniform / skewed temporal locality
● Memory footprint comparison
● Performance under L3 cache contention
● Real-world forwarding rules

Performance analysis
● iSet Coverage
● Impact of the number of iSets
● Partitioning effectiveness
● Training time and search bounds
● Performance with many fields

56

Evaluation - Uniform Access

57
(*) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". INFOCOM 2018.
(*) Liang et al., "Neural Packet Classification". SIGCOMM 2019.
(*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.
(*) Taylor et al., “Classbench: A Packet Classification Benchmark”. TON 2007.

Geomean throughput
speedup of
2.4x, 2.6x, 1.6x

Evaluation - Skewed Traces

58

(*) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". INFOCOM 2018.
(*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.
(*) Katta et al., “CacheFlow: Dependency-Aware Rule-Caching for Software-Defined Networks”. SOSR 2016.
(*) Taylor et al., “Classbench: A Packet Classification Benchmark”. TON 2007.
(*) The CAIDA UCSD Anonymized Internet Traces 2019 (www.caida.org/data/passive/passive_dataset.xml).

High locality speeds up the
baseline

http://www.caida.org/data/passive/passive_dataset.xml

Evaluation - Skewed Traces

59

(*) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". INFOCOM 2018.
(*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.
(*) Katta et al., “CacheFlow: Dependency-Aware Rule-Caching for Software-Defined Networks”. SOSR 2016.
(*) Taylor et al., “Classbench: A Packet Classification Benchmark”. TON 2007.
(*) The CAIDA UCSD Anonymized Internet Traces 2019 (www.caida.org/data/passive/passive_dataset.xml).

Real-world
temporal
locality

http://www.caida.org/data/passive/passive_dataset.xml

Agenda

● A computational approach to packet classification
● Ongoing/Future work

○ Faster training + integration with production virtual switches
○ Updatable models
○ Hardware acceleration
○ More applications

60

OpenV switch integration [under submission]
● 1000x faster training
● From 3X to 25X higher performance on real traces
● Updates: up to 50,000 rules/s

○ Previous versions are slow even with a few

61

Future work
● Updatable models

○ Efficient updates without retraining
● Hardware acceleration

○ Build hardware accelerator for more application domains
● More applications

○ Handling sparse data structures
○ Variable-size pages in VM
○ In-storage indexing for flash drives
○ Can we get rid of radix trees?
○ In-switch network functions
○ ...

62

Your application here!

Conclusions

1. RQ-RMI for range-value queries
2. NuevoMatch: a new point in the design space of packet classification
3. Promising results using Open vSwitch
4. First application: packet classification, but more to come!

Thank You
See More On

https://acsl.group/publications/

Ori Rottenstreich
or@technion.ac.il

Alon Rashelbach
alonrs@campus.technion.ac.il

Mark Silberstein
mark@ee.technion.ac.il

