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Agenda

● Range Matching
○ Applications
○ Background: Recursive Model Index
○ RQ-RMI

● Packet classification
○ NuevoMatch
○ OVS + NuevoMatch

● Future ideas
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Range matching queries

Basic building block in a variety of systems

● virtual memory
● network switchers and routers
● file and storage systems 
● sparse data structures
● DNA sequencing 4

Range Value
0-70 600

80-104 325

...85 325

-10 NIL



Range matching
Traditional data structures

● Regular data (pages)
○ radix trees

● Irregular data (extents) 
○ interval trees

● Overlapping ranges (packet rules)
○ hierarchy of hash-tables and (similar to) interval trees
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Common problem: 
scaling is hard due to  memory wall!
● Architectural trends

○ Fast Memory does not scale
○ Memory latency to memory remains high
○ Memory bandwidth per core remains low

● Large index: spills out of cache
● Pointer-chasing: memory latency on the critical path

6

Impedes performance of 
memory-intensive data structures
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Impedes performance of 
memory-intensive data structures

However! NN inference is getting faster all the time!
This talk: how to use NNs to scale range matching



Agenda

● Background: Learned Indexes

● Motivation: why LI cannot be used as is

● Our solution: RQ-RMI

● Application: packet classification
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Recursive Model Index (RMI) (1/5)
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Key Value
56 value0

60 value1

68 value2

71 value3

80 value4

(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

Model

Btree

sorted 
keys



Recursive Model Index (RMI) (2/5)
Key Mem Offset Value
56 100 value0

60 101 value1

68 102 value2

71 103 value3

80 104 value4

87 105 value5

93 106 value6

100 107 value7

101 108 value8

117 109 value9

Offset

Key

10
(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

: rep.



Max Approximation Error

Recursive Model Index (RMI) (3/5)

Model

Train model using

Offset

Key

11
(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

: rep.
: approx.



Recursive Model Index (RMI) (4/5)

Key Mem Offset Value
60 101 value1

68 102 value2

71 103 value3
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12(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

Model



Recursive Model Index (RMI) (4/5)

13(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

Model
Approximation

Error

Key Mem Offset Value
60 101 value1

68 102 value2

71 103 value3

80 104 value4

87 105 value5

93 106 value6

100 107 value7



Recursive Model Index (RMI) (5/5)

Secondary Search 
over Keys

14(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

Model
Approximation

Error

Key Mem Offset Value
60 101 value1

68 102 value2

71 103 value3

80 104 value4

87 105 value5

93 106 value6

100 107 value7



Recursive Model Index (RMI) (5/5)

submodel

submodel . . . submodel

. . .

Offset

Key

Configurable:
1. Neural Network

2. B-Tree
15

: rep.
: approx.

(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

submodel

submodel

submodel

Stage 0

Stage 1

Stage 2

Model



Btree

13 MB
Tree Traversal

256ns per lookup

Recursive Model Index (RMI) 
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Key Value
56 value0

60 value1

68 value2

71 value3

80 value4
Model

0.15 MB
Neural Network Inference

98ns per lookup

(*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

2.7x lookup performance in databases



RMI does not work for range matching

● RMI requires to learn offset for each key

● Strawman: enumerate values in a range

Problem 1: to estimate the maximum error it must scan all keys

Problem 2: does not work for sparse data - model gets too large - no 
memory savings

Problem 3: How to handle overlaps?
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Our work: 
Range Query Recursive Model Index: RQ-RMI

1. Learns ranges, not keys

2. Ranges may overlap 

3. Supports  multi-dimensional ranges
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Assume no overlaps
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RQ-RMI 
model

Range Value
0-70 600

80-104 125

...

Offset

Range
: representation

: approximation

Sample input domain and learn from valid inputs



Neural 
Network

. . 

.
Neural 

Network

RQ-RMI 
model

. . 

.
Neural 

Network

Neural 
Network

Neural 
Network

Stage 0

Stage 1

Stage 2

Use MLP as a submodel

ReLU

ReLU

ReLU

ReLU

ReLU

20

Regression using a shallow 
neural network

Neural 
Network



How to compute error bound?
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Neural networks with 
ReLU activations are 

piecewise linear 
functions

ReLU

ReLU

ReLU

ReLU

ReLU

A bounded approximation error
Is guaranteed

For the entire input domain!



Intuition by example: M(x) learns 4 outputs
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0

1

2

3

Output
domain

Given x - find  a prediction for its index. 

This is the learned model



Observation: maximum error is in vantage points 

23Error bound can be computed using only a few vantage points

0

1

2

3

Output
domain



Training Range-Query RMI 
● For each layer and each submodel: 
● Uniformly sample an input domain of a model
● Train on the samples: wider ranges get more samples

● For leaf models: compute error using vantage points 
● If error is above threshold - add more samples, retrain
● if does not work after few tries - increase the number of submodels 

in the model and try again
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Summary: 1D Range-Query RMI, no overlaps

1. Enables range matching

2. Effective training technique

3. Correctness guarantees
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Handling Overlaps + Dimensionality
Y

X
Geometrical 

representation

1

4

2

5
7

6

3
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8

Example: 2D ranges with overlaps
(2<x<4) AND (3<y<5)



Handling Overlaps + Dimensionality: iSets (1/5)
Y

X
Geometrical 

representation

1

4

2

5
7

6

3
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8

iSet 
partitioning 
algorithm

Idea: create multiple sets of 
non-overlapping ranges, strive to cover as 
many as possible with fewest sets



Handling Overlaps + Dimensionality: iSets (1/5)
Y

X
Geometrical 

representation

iSet 
partitioning 
algorithm

iSet 1 - rules do not 
overlap on X1

4

2

5
7

6

3

4 5 6 3

28

8

Interval scheduling optimization algorithm



Handling Overlaps + Dimensionality: iSets (1/5)
Y

X
Geometrical 

representation

iSet 
partitioning 
algorithm

iSet 1 - rules do not 
overlap on X

iSet 2 - rules do not 
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4 5 6 3
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Handling Overlaps + Dimensionality: iSets 
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X
Geometrical 

representation
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8

Remainder - rules that 
do not fit in any iSet
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Handling Overlaps + Dimensionality: iSets 
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iSet 1 - rules do not 
overlap on X

iSet 2 - rules do not 
overlap on Y

4 5 6 3

2 71

Remainder - rules that 
do not fit in any iSet

8

The remainder set is 
handled by any 

classification method

Any 
Existing 
Method



Handling Overlaps + Dimensionality: iSets

32

Validation

Validate all 
other 

Dimensions

Neural Network 
Inference

on dimension D

RQ-RMI Secondary 
Search

Resolve
approximation 

errors
for dimension D

0100
1001
10...

Match /
No Match

iSet Flow

Matching 
Candidate



Putting it all together: computational cache

33

0100
1001
10... Remainder Selector

iSet 1

iSet 2

Computational cache

In some cases we can eliminate the 
remainder search if match is found



Summary so far
● RQ-RMI learns ranges via sampling

● Offers efficient error estimation

● Deals with overlaps and multi-dimensional cases using remainder 

34

Does it work in practice?

yes!
SIGCOMM’20



A Brief about Packet Classification (1/3)
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0100
1001
10...

Incoming Packets

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

Outgoing Packets

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10... 0100

1001
10...

0100
1001
10...

● Access Control
● Quality of Service
● Packet Forwarding
● Firewalls



A Brief about Packet Classification (2/3)
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0100
1001
10...

Incoming Packets

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
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10...

0100
1001
10...
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10...
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10...
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10...
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10...
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10...
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Src IP Dst IP Src Port Dst Port Action Priority

10.0.10.* 8.8.*.* 0-65535 80 Port 1 3

10.0.20.* 8.8.7.* 0-65535 443 Port 2 2

10.0.*.* 8.8.7.1 0-65535 0-65535 Drop 1



A Brief about Packet Classification (3/3)
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Src IP Dst IP Src Port Dst Port Action Priority
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Hardware vs. Software

38

Ternary Content 
Addressable 

Memory (TCAM)

Hardware Software

High Throughput
Dedicated ASICs

Low Throughput
Commodity Hardware

Various Algorithms



Hardware vs. Software
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Ternary Content 
Addressable 

Memory (TCAM)

Hardware

High Throughput
Dedicated ASICs

Software

Low Throughput
Commodity Hardware

Various Algorithms



The Problem (1/2)

As we add more rules to virtual switches...
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Virtual Switch
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The Problem (2/2)

...we lower their throughput!
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The Problem (2/2)

...we lower their throughput!
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Virtual Switch
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Let’s add rules...
Bottleneck!

10
11Large Rule Sets

Spill Out of CPU Core Cache!



Large Rule Sets Spill Out of CPU Cache (1/2)

43(*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.
(*) Taylor et al., “Classbench: A Packet Classification Benchmark”. TON 2007.

Actual

Expected

TupleMerge:
State-of-the-art



Large Rule Sets Spill Out of CPU Cache (2/2)

44

2x

Actual

Expected

L3 cache is
10x slower

than L1 cache

TupleMerge:
State-of-the-art

(*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.
(*) Taylor et al., “Classbench: A Packet Classification Benchmark”. TON 2007.



RQ-RMI 1

RQ-RMI 2

RQ-RMI N

External

...
iSet 1

iSet 2

iSet N

...
Remainder

NuevoMatch: 
Using RQ-RMI for packet classification

Src IP Dst IP Port

10.0.10.* 8.8.*.* 0-80

10.0.20.* 8.8.7.* 443

10.0.*.* 8.8.7.1 *

55.0.0.* 3.3.*.* 22

iSet 
partitioning 
algorithm

45

Selector



Can We Fit in L2 Cache? 

46
(*) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". INFOCOM 2018.
(*) Liang et al., "Neural Packet Classification". SIGCOMM 2019.
(*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.
(*) Taylor et al., “Classbench: A Packet Classification Benchmark”. TON 2007.

Remainder 20x 
smaller than the 
original data structure 

RQ-RMI all fits in L1 
cache



Can We Fit in L2 Cache? 
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State of the art
techniques

1024 KB
L2 Cache Size

32 KB
L1 Cache Size

Geomean compression
 factor of 4.9x, 8x, 82x

(*) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". INFOCOM 2018.
(*) Liang et al., "Neural Packet Classification". SIGCOMM 2019.
(*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.
(*) Taylor et al., “Classbench: A Packet Classification Benchmark”. TON 2007.



Isn’t Neural Network Inference Slow?

48

Use Small and Shallow
Neural Networks

Not if you...

Use Wide Vector 
Instructions

ReLU

ReLU

ReLU

ReLU

ReLU

40-50 ns on a CPU!

2.5X



The iSet compute-vs-coverage Tradeoff 
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The iSet compute-vs-coverage Tradeoff 
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How many iSets needed for high coverage

iSet coverage is high for large rulesets!

Ruleset
Size

51



iSet coverage is high for large rulesets!

Ruleset
Size

52

How many iSets needed for high coverage



What About Updates? (1/2)

53

New rules get 
into the 
remainder

We easily can 
remove rules 
from the models

We retrain the models after a certain 
threshold in the number of new rules.

RemainderRQ-RMI Models



Expected performance with periodic training
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What About Updates? (2/2)

55

Training with TensorFlow takes between
10-40 min on a CPU

In our recent work we run at 10ms-1s for 
the largest datasets

RemainderRQ-RMI Models



Evaluation: see the paper
End-to-end performance

● Single-core vs. multi-core settings
● Small vs. large rule sets
● Traffic with uniform / skewed temporal locality
● Memory footprint comparison
● Performance under L3 cache contention
● Real-world forwarding rules

Performance analysis
● iSet Coverage
● Impact of the number of iSets
● Partitioning effectiveness
● Training time and search bounds
● Performance with many fields
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Evaluation - Uniform Access

57
(*) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". INFOCOM 2018.
(*) Liang et al., "Neural Packet Classification". SIGCOMM 2019.
(*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.
(*) Taylor et al., “Classbench: A Packet Classification Benchmark”. TON 2007.

Geomean throughput
speedup of
2.4x, 2.6x, 1.6x



Evaluation - Skewed Traces

58

(*) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". INFOCOM 2018.
(*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.
(*) Katta et al., “CacheFlow: Dependency-Aware Rule-Caching for Software-Defined Networks”. SOSR 2016.
(*) Taylor et al., “Classbench: A Packet Classification Benchmark”. TON 2007.
(*) The CAIDA UCSD Anonymized Internet Traces 2019 (www.caida.org/data/passive/passive_dataset.xml).

High locality speeds up the
baseline 

http://www.caida.org/data/passive/passive_dataset.xml


Evaluation - Skewed Traces
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(*) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". INFOCOM 2018.
(*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.
(*) Katta et al., “CacheFlow: Dependency-Aware Rule-Caching for Software-Defined Networks”. SOSR 2016.
(*) Taylor et al., “Classbench: A Packet Classification Benchmark”. TON 2007.
(*) The CAIDA UCSD Anonymized Internet Traces 2019 (www.caida.org/data/passive/passive_dataset.xml).

Real-world 
temporal 
locality

http://www.caida.org/data/passive/passive_dataset.xml


Agenda

● A computational approach to packet classification
● Ongoing/Future work

○ Faster training + integration with production virtual switches 
○ Updatable models
○ Hardware acceleration
○ More applications
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OpenV switch integration [under submission]
● 1000x faster training
● From 3X to 25X higher performance on real traces
● Updates: up to 50,000 rules/s 

○ Previous versions are slow even with a few
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Future work
● Updatable models

○ Efficient updates without retraining
● Hardware acceleration

○ Build hardware accelerator for more application domains
● More applications

○ Handling sparse data structures
○ Variable-size pages in VM
○ In-storage indexing for flash drives
○ Can we get rid of radix trees?
○ In-switch network functions
○ ...

62

Your application here!



Conclusions

1. RQ-RMI for range-value queries
2. NuevoMatch: a new point in the design space of packet classification
3. Promising results using Open vSwitch
4. First application: packet classification, but more to come!

Thank You
See More On

https://acsl.group/publications/
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Mark Silberstein
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