ASSL

Accelerated Computing
Systems Lab

A computational cache

A neural-net based algorithm for range matching with
application to packet classification

Mark Silberstein
EE, Technion

Joint work with Alon Rashelbach and Ori Rottenstreich

Aol

Accelerated Computing
Systems Lab

About Us ~

Research

@
Welcome to the Accelerated Computing
Systems Lab (ACSL)!

We work on a broad range of computer
systems projects spanning hardware
architecture, compilers, operating systems,
security and privacy, high-speed networking.

All our software is open-source and free) .

Feel passionate about building secure and fast
computer systems of the future?! Check out
how to apply!

ApPLY NOW

WEREHIRING

Publications

RESEARCH

LS B R R S B s = R R T R R R R R R R s s s R

Accelerator-Centric
Operating System
Accelerator-centric

Operating System
Architecture, OmniX,

enables direct

interaction between
accelerators and I/0
devices, for example,

files and network

sockets for GPU kernels

Team ~

=
\"7 TECHNION
u Israel Institute

of Technology

Teaching

application

0S Services for
Trusted Execution
Environments

Our work facilitates the
development of
complex applications in
Secure Enclaves by
providing secure virtual
memory services.

https://acsl.group

Undergraduate Projects ~

Harware Side
Channels

Side channels have
become one of the
major threats for
systems security. We
work on protecting
systems from CPU
hardware side channels
and speculative
execution attacks.

. . - . . THE ANDREW & ERNA VITERBI

FACULTY OF

EEEEE) cTRICAL
B EEE ENGINEERING

News & Events

all research areas

Miscellaneous

GPU computing,
Networking, Machine
Learning, Distributed

Systems
Playground for exploring
interesting topics in a
search for new ideas

Agendad

e Range Matching
o Applications
o Background: Recursive Model Index
o RQ-RMI

e Packet classification

o NuevoMatch
o QOVS + NuevoMatch

e Futureideas

Range matching queries

Value

600

Range
85 0-70
o =

80-104

325

Basic building block in a variety of systems

virtual memory

network switchers and routers
file and storage systems
sparse data structures

DNA sequencing

325

NIL

Range matching

Traditional data structures

e Regular data (pages)

o radix trees

e lIrregular data (extents)
o interval trees

e Overlapping ranges (packet rules)
o hierarchy of hash-tables and (similar to) interval trees

Common problem:
scaling is hard due to memory wall!

e Architectural trends

o Fast Memory does not scale
o Memory latency to memory remains high
o Memory bandwidth per core remains low

Impedes performance of
memory-intensive data structures

e Large index: spills out of cache
e Pointer-chasing: memory latency on the critical path

Common problem:
scaling is hard due to memory wall!

e Architectural trends

o Fast Memory does not scale
o Memory latency to memory remains high
o Memory bandwidth per core remains low

Impedes performance of
memory-intensive data structures

e Large index: spills out of cache
e Pointer-chasing: memory latency on the critical path

However! NN inference is getting faster all the time!
This talk: how to use NNs to scale range matching

Accelerated Computing

Accelerated Computing

Agendad

e Background: Learned Indexes
e Motivation: why LI cannot be used as is
e Our solution: RQ-RMI

e Application: packet classification

Recursive Model Index (RMI) (1/5)

sorted
keys

Key
56
60
68
71
80

(*) Kraska et al,, "The Case for Learned Index Structures”. SIGMOD 2018.

Value
valueO
valuel

value?2
value3

valued

Model

Btree

ACSSL

Acceler. tdeptg
System:

Recursive Model Index (RMI) (2/5)

Key Mem Offset = Value
] 56 100 valuel Ofiset
60 101 valuel f(x):rep.
68 102 value?
[] 7 103 value3
80 104 valued T
g7 105 valueb :> f()
] 93 106 value6
100 107 value?/ > Key
101 108 value8
D 117 109 value9

IndevedKeys={ [0 O }

(*) Kraska et al, "The Case for Learned Index Structures”. SIGMOD 2018.

Recursive Model Index (RMI) (3/5)

v > fle)

f(z): approx.
R o
Max Approximation Error f(x)
; f(z)
[f(z) = f(z)] <e
x € Keys 4
Z
—_ > Key

Train model using

IndevedKeys={ [0 O }

(*) Kraska et al,, "The Case for Learned Index Structures”. SIGMOD 2018.

ACSSL

Acceler: IdEmptg
System:

Recursive Model Index (RMI) (4/5)

Key Mem Offset | Value
|:| 60 101 valuel
68 102 value?
71 103 value3d
D 80 104 valued
87 105 valueb
93 106 valueb
|:| 100 107 value?

(*) Kraska et al, "The Case for Learned Index Structures”. SIGMOD 2018, 12

/\CSL

Recursive Model Index (RMI) (4/5)
Key Mem Offset | Value
|:| 60 101 valuel
O ror 68 102 value?
o
. € = 2 7 103 value3
>
r = 08 [] so 104 values
Approximotion> 87 105 valueb
f(;y) = 104 93 106 values
|:| 100 107 value?
13

(*) Kraska et al, "The Case for Learned Index Structures”. SIGMOD 2018,

Recursive Model Index (RMI) (5/5)

Key Mem Offset | Value
|:| 60 101 valuel
O 68 102 value?
o Error
. € = 2 7 103 value3
r = 068 < [eo 104 valued
P
Approximation 87 105 valueb
flz) =104 03 106 valued
|:| 100 107 value?
[
O

(*) Kraska et al, "The Case for Learned Index Structures”. SIGMOD 2018.

Secondary Search

over Keys

ACSSL

Accelerated Computing
Systems Lab

14

Recursive Model Index (RMI) (5/5)

x ~
~
~
~
// ~
P ~
. ~
~
s ~
- ~
- ~o
// ~
. ~
P ~
. ~
~
- ~
- ~
- ~
~
/’ \\
2 ~
~
~
~
~
~
~
~
~
~
1
1
1

~"Stage 0
Stage 1

Stage 2

submodel

T submodel
submodel e o o
xr
submodel submodel

submodel

(*) Kraska et al,, "The Case for Learned Index Structures”. SIGMOD 2018.

Offset

A
f(x):rep.

A~

f(z): approx.

Configurable:
. Neural Network
2. B-Tree

15

ACSSL

Accelerated Computing
Systems Lab

Recursive Model Index (RMI)

Key
56
60
68
71
80

Value
valueO
valuel

value?2
values3

valued

@ A

Model Btree
0.15 MB 13 MB
Neural Network Inference Tree Traversal
98ns per lookup 256ns per lookup
N J
Y

2.7x lookup performance in databases

16

(*) Kraska et al,, "The Case for Learned Index Structures”. SIGMOD 2018.

RMI does not work for range matching

e RMlIrequires to learn offset for each key G

e Strawman: enumerate values in a range e J

Problem I: to estimate the maximum error it must scan all keys

Problem 2: does not work for sparse data - model gets too large - no
memory savings

Problem 3: How to handle overlaps®?

17

Accelerated Computing

Our work:
Range Query Recursive Model Index: RQ-RMI

. Learns ranges, not keys
2. Ranges may overlap

3. Supports multi-dimensional ranges

18

ACSSL

Acceler. tdeptg
System:

Assume no overlaps

Sample input domain and learn from valid inputs

X
Ronge | Value l
0-70 600
RQ-RMI
s E> model E>
80-104 125

f(;g) representation 2

A

f(z): approximation

=
=

19

ACSSL

Acceler. tdeptg
System:

Use MLP as a submodel

> flx)

X

,"/ Neurall
i Sthe 0 xr Network
, l :
! Neural Neural
: Stage | Network T Network |
R
i Neural Neural Neural
: Stqge 2 Network Network Network

Regression using a shallow
neural network 20

How to compute error bound?

M; j(x)
14
0.75 1 !
0.5 - o
0.25 ! i i <j
0+ : L | : > X
A bounded approximation error Neural networks with
Is guaranteed RelU activations are
7 piecewise linear
’f(l‘) f(:l?)‘ < € functions

For the entire input domain!

Vx

2]

Output
domain

M; j(x)
1 A This is the learned model
0.75 - V.
0.5 - |
- |
0.25 5 : :
I
0+ ! L x

Given x - find a prediction for its index.

ACSSL

Acceler. Ideptg
System:

22

Output
d:n?:in Mi’j (x)
A
1-
3
0.75 -
: :
0.5 ~ = i
1 : :
. 0.25 1 m i
oL R -

Error bound can be computed using only a few vantage points

ACSSL

eeeeeeeeee d Computing
Systems Lab

Training Range-Query RMI

e For each layer and each submodel:
e Uniformly sample an input domain of a model
e Train on the samples: wider ranges get more samples

e For leaf models: compute error using vantage points

e If error is above threshold - add more samples, retrain

e if does not work after few tries - increase the number of submodels
in the model and try again

24

Accelerated Computing

Summary: ID Range-Query RMI, no overlaps

. Enables range matching
2. Effective training technique

3. Correctness guarantees

25

Accelerated Computing

Y

Example: 2D ranges with overlaps
(2<x<4) AND (3<y<5)

Geometrical
representation

26

Y

A

Geometrical
representation

eeeeeeeeeeeeeeeeeeee

ISet
partitioning
algorithm

Idea: create multiple sets of
non-overlapping ranges, strive to cover as
many as possible with fewest sets

27

ccelerated Computing

iISet 1- rules do not
overlap on X

folelelo)

iSet
partitioning
algorithm

=

Geometrical
representation

Interval scheduling optimization algorithm 28

Accelerated Computing

iISet 1- rules do not
overlap on X

folelelo)

iSet
partitioning
algorithm

~ {oeo)

iSet 2 - rules do not
overlap on'Y

Geometrical
representation

29

Geometrical
representation

Accelerated Computing
ssssssssss

iISet 1- rules do not
overlap on X

foleloloy

iSet
partitioning
algorithm

~ {0eo)

ISet 2 - rules do not
overlap on'Y

Remainder - rules that

do not fit in any iSet "

ACSSL

eeeeeeeeee d Computing
Systems Lab

Handling Overlaps + Dimensionality:

iISet 1- rules do not
overlap on X

folelclel;

The remainder set is
handled by any

classification method { @ @ @ }

ISet 2 - rules do not
overlap on'Y

= {e]

Remainder - rules that
do not fit in any iSet

Any
Existing
Method

31

Handling Overlaps + Dimensionality:

0100
1001
10...

ISet Flow

A

Ve

> [RQ-RMI } >

Neural Network
Inference
on dimension D

Secondary S
[Search } E> [\/mdgnon}

A

Resolve
approximation
errors
for dimension D

Matching
Candidate

Validate all
other
Dimensions

ACSSL

Acceler. Ideptg
System:

Match /
No Match

32

ACSSL

Accelerate d Computing
Systems Lab

Putting it all together: computational cache

iCOmputotionol cache
[iset1)

0100 Nt o
o ﬁ> . Remainder | E> [Selector]

In some cases we can eliminate the

remainder search if match is found
33

Accelerated Computing

Summary so far
e RQ-RMIllearns ranges via sampling
e Offers efficient error estimation

e Deals with overlaps and multi-dimensional cases using remainder

Does it work in practice?

yes!

SIGCOMM’'20 34

ACSSL

Acceler. tdeptg
System:

A Brief about Packet Classification (1/3)

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

Incoming Packets

0
,{ 0100
. 1001
PN 0100 10...
1001
3/\\/ 10...
0100 0100
|:> |:> 1001 1001
10... 10...
% 0100
o 1001
10... 0100
O 1001
O 10...

Access Control
Quality of Service

Packet Forwarding
Firewalls

Outgoing Packets

35

ACSSL

Acceler. tdeptg
System:

A Brief about Packet Classification (2/3)

0100 0100 0100 0100 0100 0100
1001 1001 1001 1001 1001 1001
10... 10... 10... 10... 10... 10...
Incoming Packets

Src IP Dst IP

10.0.0.* 8.8.x*

10.0.20.* 8.8.77

10.0.%* 8.8.71

@ 0100
= @ O |
4:;jx 0100

Src Port
0-65535
0-65535
0-65535

0100
1001
0100 10..
1001
10...
0100
1001
10...
o Outgoing Packets
10... 0100
1001
10...

Dst Port | Action | Priority

80 Port 1 3
443 Port 2 2
0-65535 Drop]

36

A Brief about Packet Classification (3/3)

i:} 0100 0100 0100 0100 0100 0100
1 1001 1001 1001 1001 1001 1001
. 10... 10... 10... 10... 10... 10..
Incoming Packets
SrcIP Dst IP
ﬁ> 10.0]0.* 8.8
src-ip: 10.0.101
dst-ip: 8.8.71 10.0.20.* 8.8.7%
src-port: /870

@ 0100
= @ O |
4:;jx 0100

Src Port
0-65535
0-65535
0-65535

0100
1001
0100 10..
1001
10...
0100
1001
10...
1001
10... 0100
1001
10...
Dst Port Action
80 Port 1
443 Port 2
0-65535 Drop

Outgoing Packets

Priority
3
2
]

ACSSL

Acceler. tdeptg
System:

37

Hardware vs. Software

Ternary Content
Addressable
Memory (TCAM)

Various Algoritnms

P Software

Hardware =

.-
I -

High Throughput
Dedicated ASICs

O

Low Throughput
Commodity Hardware

ACSSL

Accelerated Computing
Systems Lab

38

ASSL

Acceler: dC ptg
Syt

Hardware vs. Software

Ternary Content
Addressable
Memory (TCAM)

Various Algoritnms

P Software

4}

Low Throughput
Commodity Hardware

Hardware <=

o o

High Throughput
Dedicated ASICs

89

The Problem (1/2)

10 [10 || 10 || 10
11 11 11 11
10 (|10 || 10 || 10
11 11 11 11

Let's add rules..

10
1

10
1

10 10 10 10 10 10
1 1 1 1 1 1
10 10 10 10 10 10
1 1 1 1 1 1

Virtual Switch

v
=
S

10
1

10
11

As we add more rules to virtual switches...

ACSSL

Accelerated Computing
Systems Lab

40

The Problem (2/2)

10 (10 |[10 || 10
11 11 11 11
10 |10 || 10 || 10
11 11 11 11

Let's add rules..

/ Bottleneck!

I

10 10
11 11
10 10
10 0 11 1
" 1" ﬁ

Virtual Switch

10
1

v
=
S

-.we lower their throughput!

ACSSL

Accelerated Computing
Systems Lab

4]

The Problem (2/2)

Bottleneck!

Let's add rules..

-

_

Large Rule Sets
Spill Out of CPU Core Cachel!

\

J

Virtual Switch

ccelerated Comput
Systems Lab

ACSSL

Accelerated Computing
Systems Lab

Large Rule Sets Spill Out of CPU Cache (1/2)

T E \ = ~ T TTTT] T N
10 e 2 6 *L1 Size (32KB) ' L2 Size (IMB) |
g 106? % 5 - 'I""""""""Exbe'ct'ea
> 105 [32KB-L1 Cahce . = '
S eE B4 |
IS 10 § : % 3 : !]
2108 S e e [1 Actual
- = 2 1 i 1 ‘ =1
102 ~ | 2 | Ll | el L0101l | L1l
10K 100K 500K 1K 10K 100K IM
Number of Rules Number of Rules
TupleMerge:

State-of-the-art

é*g Daly et al, "TupleMerge: Fast Software Packet Processing for online Packet Classification®. TON 2019. 43

*) Taylor et al,, “Classbench: A Packet Classification Benchmark”. TON 2007.

ACSSL

Accelerated Computing
Systems Lab

Large Rule Sets Spill Out of CPU Cache (2/2)

L3 cache is
10x slower 2X
than L1 cache A

7g] = ~ T TTT1] T TTTT] N
10 e & 2 0 | L1 Size 32KB) ' L2 Size AMB) |
g 106? % 5| 'I““""“""“ExToe'ct'e
> 105 |32KB L1 Cahce - = '
=t - g A i
o 104 = ﬁ) [!
'C'/[:]‘) - 5 3 [1 N
103 g = o [1 Actual
E = 2 1 ‘ 1 ‘ |
102 ~ | M Ll | el L0010l [L1l
10K 100K 500K 1K 10K 100K IM
Number of Rules Number of Rules
TupleMerge:
State-of-the-art
44

é*g Daly et al, "TupleMerge: Fast Software Packet Processing for online Packet Classification®. TON 2019.
*) Taylor et al,, “Classbench: A Packet Classification Benchmark”. TON 2007.

Accelerated Computing

Using RQ-RMI for packet classification

Src IP DstIP | Port [iset]] [RQ-RMIT]

10010+ | 88** | 0-80 [iset2 | [RQ-RMI2 |

0020 | 887+ | 443 | [y
*

10.0.%* 8.8.71

iSet
partitioning
algorithm

ﬁ> [Selector]

[e] [RQ—RMN]

55.0.0* 3.3%* 22 [Remainder] [External]

45

ACSSL

Accelerated Computing
Systems Lab

Can We Fitin L2 Cache?

107 | Remainder 20x
= smaller than the
%“ 106 ___| original data structure
=
2 10° 5/7
Y :_%.; = RQ-RMI all fits in L1
A 104 Eé cache
103 :%
100K
‘_ 07777 CutSplit

B RQ-RMI] Remainder

E*% Li et al,, "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification”. INFOCOM 2018.

*) Liang et al., "Neural Packet Classification”. SIGCOMM 2019.
Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification”. TON 2019.
Taylor et al,, “Classbench: A Packet Classification Benchmark”. TON 2007.

46

*
*

ACSSL

Accelerated Computing
Systems Lab

Can We Fitin L2 Cache? Geomean compression
factor of 4.9x, 8x, 82x

107 § | | 1 —;
;ﬁ 106; % %]ngégthe Size
S 100 ?? % | 32kB
,Qﬁ) ;/'; % _14_ Ll Cache Size
xn 104 :/ / =
07 7
103 _é l é i

100K 500K

State of the art

7 CutSplit NeuroCut TupleM
,////A u pl - euro uS- upe erge techniques

B RQ-RMI] Remainder

E*% Li et al,, "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification”. INFOCOM 2018.

*) Liang et al., "Neural Packet Classification”. SIGCOMM 2019. 47

*) Daly et al,, "TupleMerge: Fast Software Packet Processing for online Packet Classification”. TON 2019.

Taylor et al,, “Classbench: A Packet Classification Benchmark”. TON 2007.

*

Isn’t Neural Network Inference Slow?

Use Small and Shallow
Neural Networks

Not if you..

o

Use Wide Vector
Instructions

Inference Time in Nano-Seconds
150

100 2.5X

50

0

Serial C Code SSE AVX

40-50 ns on a CPU! 48

cccccccccccccccccccc
ssssssssss

The iSet compute-vs-coverage Tradeoff

49

ASSL

Accelerated Computing
Systems Lab

The iSet compute-vs-coverage Tradeoff

1,000 100

800

co
o

600

(o))
)

T T T
|
|

Time (ns)

400 fEreesy

S
o

Coverage (%)

\¥}
)

oooooooooooooooooooooooooooooooooo
..
ooo

jan)

Number of 1Sets

Remainder ZZZZ] Secondary Search [[TTT]] Validation
[Inference —«— Coverage

50

How many iSets needed for high coverage

ISet coverage is high for large rulesets!

Ruleset 1 iSet 2 iSets 3 1Sets 4 1Sets

Size

1K 20.2+18.6 28.9+22.3 34.6+25.6 38.7+27.2
10K 45.1 £31.6 59.6 £38.9 62.6£37.1 65.1+35.7
100K 80.0+14.5 96.5+3.3 98.1 + 4.8 98.8 + 2.7
500K 84.2 +£10.5 98.8+1.5 99.4 £ 0.6 99.7 £ 0.2

183,376 57.8 91.6 96.5 98.2

51

How many iSets needed for high coverage

ISet coverage is high for large rulesets!

Ruleset
Size

1 1Set 2 1Sets 3 1Sets 4 1Sets

1K
10K
100K
500K

20.2+18.6 28.9+22.3 34.6+25.6 38.7+x27.2
45.1 £31.6 59.6+£38.9 62.6+37.1 65.1=%35.7

80.0 £14.5 (9.5+£83) 98.1+4.8 98.8+2.7

34.2+10.5 98.8+1.5 99.4 + 0.6 99.7 £ 0.2

183,376

57.8 91.6 96.5 98.2

52

ASSL

o
Accelerated Compu
Systems Lab

What About Updates? (1/2)

We easily can New rules get

remove rules INto the
from the models remainder
| RoRMModels |

We retrain the models after a certain
threshold in the number of new rules.

53

Expected performance with periodic training

! Throughput

—— Fast training

Long training

2T

37

Accelerated Computing

54

ASSL

Accelerated Computing
Systems Lab

What About Updates? (2/2)

| RoRMModels |

Training with TensorFlow takes between
10-40 min on a CPU

INn our recent work we run at 10ms-1s for
the largest datasets

55

Evaluation: see the paper

End-to-end performance

Single-core vs. multi-core settings

Small vs. large rule sets

Traffic with uniform / skewed temporal locality
Memory footprint comparison

Performance under L3 cache contention
Real-world forwarding rules

Performance analysis

iISet Coverage

Impact of the number of iSets
Partitioning effectiveness
Training time and search bounds
Performance with many fields

ACSSL

Accelerated Computing
Systems Lab

56

ASSL

Accelerated Computing
Systems Lab

Evaluation - Uniform Access

Geomean throughput
speedup of
2.4x, 2.6X, 1.6X

4 |- S00K Classifiers =
=
Eg 3
o 3
= O
o8 2
Em
(R CRN RN R RN R CRN R R
O 5 3
| 2 3 - 3 6 7 8 9 10 11 12 GM

[NuevoMatch w/ CutSplit [NuevoMatch w/ NeuroCuts [l NuevoMatch w/ TupleMerge

*) Liang et al., "Neural Packet Classification”. SIGCOMM 2019.
Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification”. TON 2019. 57
Taylor et al,, “Classbench: A Packet Classification Benchmark”. TON 2007.

*

*g Li et al, "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification”. INFOCOM 2018.

*

ASSL

Accelerated Computing
Systems Lab

Evaluation - Skewed Traces

High locality speeds up the
baseline

-
w
|
|

1.5

Throughput Speedup

&
w

Zipf 80% Zipf85% Zipf90% Zipf 95%
(x=1.05) (a=1.10) (ax=1.15) (a=1.25)

EEEE NuevoMatch w/ CutSplit [NuevoMatch w/ TupleMerge

Li et al, "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification”. INFOCOM 2018.

Daly et al,, "TupleMerge: Fast Software Packet Processing for online Packet Classification”. TON 2019.

Katta et al,, “CacheFlow: Dependency-Aware Rule-Caching for Software-Defined Networks”. SOSR 2016.

Taylor et al,, “Classbench: A Packet Classification Benchmark”. TON 2007. 58
The CAIDA UCSD Anonymized Internet Traces 2019 (www.caida.org/data/passive/passive datasetxml).

* ¥ ¥ ¥ ¥

http://www.caida.org/data/passive/passive_dataset.xml

ASSL

Accelerated Computing
Systems Lab

Evaluation - Skewed Traces

I
S 25| F
i~
)
)
& 2 - 179x
= Real-world
a, 1.5 — - temporal
'§0 locality
o
—
<
=

&2
w

Zipf 80% Zipf85% Zipf90% Zipf 95% CAIDA
(x=1.05) (a=1.10) (ax=1.15) (a=1.25)

EEEE NuevoMatch w/ CutSplit [NuevoMatch w/ TupleMerge

Li et al, "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification”. INFOCOM 2018.

Daly et al,, "TupleMerge: Fast Software Packet Processing for online Packet Classification”. TON 2019.

Katta et al,, “CacheFlow: Dependency-Aware Rule-Caching for Software-Defined Networks”. SOSR 2016.

Taylor et al,, “Classbench: A Packet Classification Benchmark”. TON 2007. 59
The CAIDA UCSD Anonymized Internet Traces 2019 (www.caida.org/data/passive/passive datasetxml).

* ¥ ¥ ¥ ¥

http://www.caida.org/data/passive/passive_dataset.xml

Agendad

e A computational approach to packet classification
e Ongoing/Future work

©)
©)
©)
O

Faster training + integration with production virtual switches
Updatable models

Hardware acceleration

More applications

ASSL

Accelerated Computing
Sy sssss Lab

60

Accelerated Computing

OpenV switch integration lunder submission]

e 1000x faster training
e From 3X to 25X higher performance on real traces
e Updates: up to 50,000 rules/s

o Previous versions are slow even with a few

61

ASSL

Accelerated Computing
Systems Lab

Future work

e Updatable models
o Efficient updates without retraining

e Hardware acceleration
o Build hardware accelerator for more application domains

e More applications

Handling sparse data structures
Variable-size pages in VM
In-storage indexing for flash drives
Can we get rid of radix trees?
In-switch network functions

o O O O O O

Your application here!

62

ACSSL

Accelerated Computing
Systems Lab

Conclusions

JR—

RQ-RMI for range-value gueries

NuevoMatch: a new point in the design space of packet classification
Promising results using Open vSwitch

oW

First application: packet classification, but more to comel!

ACSL Thank You \'7 TECHNION

Israel Institute
Accelerated Computing of Technolo
Systems Lab See More On gy

https://acsl.group/publications/

Alon Rashelbach Ori Rottenstreich Mark Silberstein
alonrs@campus.technion.acil or@technion.acil mark@ee.technion.aci.l

