

# A computational cache

A neural-net based algorithm for range matching with application to packet classification

Mark Silberstein EE, Teçhnion

Joint work with Alon Rashelbach and Ori Rottenstreich







Home About Us -Research Publications Teaching Undergraduate Projects -News & Events Team 💌 Welcome to the Accelerated Computing all research areas Systems Lab (ACSL)!

https://acsl.group

We work on a broad range of computer systems projects spanning hardware architecture, compilers, operating systems, security and privacy, high-speed networking.

All our software is open-source and free 💽 .

Feel passionate about building secure and fast computer systems of the future?! Check out how to apply!



#### RESEARCH





# Agenda

- Range Matching
  - Applications
  - Background: Recursive Model Index
  - RQ-RMI
- Packet classification
  - NuevoMatch
  - OVS + NuevoMatch
- Future ideas



### Range matching queries



Basic building block in a variety of systems

- virtual memory
- network switchers and routers
- file and storage systems
- sparse data structures
- DNA sequencing



# Range matching

Traditional data structures

- Regular data (pages)
  - radix trees
- Irregular data (extents)
  - interval trees
- Overlapping ranges (packet rules)
  - hierarchy of hash-tables and (similar to) interval trees



# Common problem: scaling is hard due to memory wall!

- Architectural trends
  - Fast Memory does not scale
  - Memory latency to memory remains high
  - Memory bandwidth per core remains low

#### Impedes performance of memory-intensive data structures

- Large index: spills out of cache
- Pointer-chasing: memory latency on the critical path



# Common problem: scaling is hard due to memory wall!

- Architectural trends
  - Fast Memory does not scale
  - Memory latency to memory remains high
  - Memory bandwidth per core remains low

# Impedes performance of memory-intensive data structures

- Large index: spills out of cache
- Pointer-chasing: memory latency on the critical path

However! NN inference is getting faster all the time! This talk: how to use NNs to scale range matching



# Agenda

- Background: Learned Indexes
- Motivation: why LI cannot be used as is
- Our solution: RQ-RMI
- Application: packet classification



# Recursive Model Index (RMI) (1/5)

#### sorted

| Mode |
|------|
|------|

#### keys

| Кеу | Value  |  |
|-----|--------|--|
| 56  | value0 |  |
| 60  | valuel |  |
| 68  | value2 |  |
| 71  | value3 |  |
| 80  | value4 |  |



# Recursive Model Index (RMI) (2/5)

| Кеу | Mem Offset | Value  |
|-----|------------|--------|
| 56  | 100        | value0 |
| 60  | 101        | valueì |
| 68  | 102        | value2 |
| 71  | 103        | value3 |
| 80  | 104        | value4 |
| 87  | 105        | value5 |
| 93  | 106        | value6 |
| 100 | 107        | value7 |
| 101 | 108        | value8 |
| 117 | 109        | value9 |

(\*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.



# Recursive Model Index (RMI) (3/5)



Model

 ${\mathcal X}$ 



(\*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.



# Recursive Model Index (RMI) (4/5)

| Кеу | Key Mem Offset |        |
|-----|----------------|--------|
| 60  | 101            | valueì |
| 68  | 102            | value2 |
| 71  | 103            | value3 |
| 80  | 104            | value4 |
| 87  | 105            | value5 |
| 93  | 106            | value6 |
| 100 | 107            | value7 |



(\*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.



# Recursive Model Index (RMI) (4/5)





14

# Recursive Model Index (RMI) (5/5)





(\*) Kraska et al., "The Case for Learned Index Structures". SIGMOD 2018.

rated Computing



 $\frown$ 

# Recursive Model Index (RMI)

| Кеу | Value                                |                          |                  |  |
|-----|--------------------------------------|--------------------------|------------------|--|
| 56  | value0                               |                          |                  |  |
| 60  | valueì                               |                          |                  |  |
| 68  | value2                               |                          |                  |  |
| 71  | value3                               | Model                    | Btree            |  |
| 80  | value4                               | 0.15 MB                  | 13 MB            |  |
|     |                                      | Neural Network Inference | Tree Traversal   |  |
|     |                                      | 98ns per lookup          | 256ns per lookup |  |
|     |                                      |                          |                  |  |
|     | 2.7x lookup performance in databases |                          |                  |  |



# RMI does not work for range matching

- RMI requires to learn offset for each key
- Strawman: enumerate values in a range



Problem 1: to estimate the maximum error it must scan all keys

Problem 2: does not work for sparse data - **model gets too large** - no memory savings

Problem 3: How to handle overlaps?



## Our work: Range Query Recursive Model Index: RQ-RMI

1. Learns ranges, not keys

2. Ranges may **overlap** 

3. Supports multi-dimensional ranges



#### Assume no overlaps

Sample input domain and learn from valid inputs



: approximation

(x)



#### Use MLP as a submodel



20

![](_page_20_Picture_0.jpeg)

#### How to compute error bound?

![](_page_20_Figure_2.jpeg)

A bounded approximation error Is guaranteed  $|f(x) - \hat{f}(x)| < \epsilon$ 

For the entire input domain!

 $\forall x$ 

Neural networks with **ReLU** activations are piecewise linear functions

![](_page_20_Figure_7.jpeg)

![](_page_21_Picture_0.jpeg)

# Intuition by example: M(x) learns 4 outputs

![](_page_21_Figure_2.jpeg)

Given x - find a prediction for its index.

![](_page_22_Picture_0.jpeg)

#### Observation: maximum error is in vantage points

![](_page_22_Figure_2.jpeg)

Error bound can be computed using only a few vantage points

![](_page_23_Picture_0.jpeg)

### Training Range-Query RMI

- For each layer and each submodel:
- Uniformly sample an **input domain** of a model
- Train on the samples: wider ranges get more samples

- For leaf models: compute error using *vantage* points
- If error is above threshold add more samples, retrain
- if does not work after few tries increase the number of submodels in the model and try again

![](_page_24_Picture_0.jpeg)

#### Summary: 1D Range-Query RMI, no overlaps

1. Enables range matching

2. Effective training technique

3. Correctness guarantees

![](_page_25_Picture_0.jpeg)

#### Handling Overlaps + Dimensionality

![](_page_25_Picture_2.jpeg)

Example: 2D ranges with overlaps (2<x<4) AND (3<y<5)

Geometrical representation

![](_page_26_Picture_0.jpeg)

# Handling Overlaps + Dimensionality: iSets (1/5)

![](_page_26_Figure_2.jpeg)

Geometrical representation

Idea: create multiple sets of non-overlapping ranges, strive to cover as many as possible with fewest sets

![](_page_27_Picture_0.jpeg)

# Handling Overlaps + Dimensionality: iSets (1/5)

![](_page_27_Figure_2.jpeg)

iSet 1 - rules do not overlap on X

![](_page_27_Picture_4.jpeg)

Geometrical representation

Interval scheduling optimization algorithm

![](_page_28_Picture_0.jpeg)

# Handling Overlaps + Dimensionality: iSets (1/5)

![](_page_28_Figure_2.jpeg)

Geometrical representation

![](_page_29_Picture_0.jpeg)

#### Handling Overlaps + Dimensionality: iSets

![](_page_29_Figure_2.jpeg)

![](_page_30_Picture_0.jpeg)

# Handling Overlaps + Dimensionality: iSets

![](_page_30_Figure_2.jpeg)

![](_page_30_Picture_3.jpeg)

iSet 1 - rules do not overlap on X { (4) (5) (6) (3) }

 $\left\{ \begin{array}{c} 1 & 2 & 7 \end{array} \right\}$ 

iSet 2 - rules do not overlap on Y

![](_page_30_Picture_7.jpeg)

Remainder – rules that do not fit in any iSet

![](_page_31_Picture_0.jpeg)

# Handling Overlaps + Dimensionality: iSets

![](_page_31_Figure_2.jpeg)

32

![](_page_32_Picture_0.jpeg)

# Putting it all together: computational cache

![](_page_32_Figure_2.jpeg)

In some cases we can eliminate the remainder search if match is found

![](_page_33_Picture_0.jpeg)

### Summary so far

- RQ-RMI learns ranges via sampling
- Offers efficient error estimation
- Deals with overlaps and multi-dimensional cases using remainder

#### **Does it work in practice?**

![](_page_34_Picture_0.jpeg)

# A Brief about Packet Classification (1/3)

![](_page_34_Figure_2.jpeg)

![](_page_35_Picture_0.jpeg)

# A Brief about Packet Classification (2/3)

![](_page_35_Figure_2.jpeg)

| Src IP    | Dst IP  | Src Port | Dst Port | Action | Priority |
|-----------|---------|----------|----------|--------|----------|
| 10.0.10.* | 8.8.*.* | 0-65535  | 80       | Port 1 | 3        |
| 10.0.20.* | 8.8.7.* | 0-65535  | 443      | Port 2 | 2        |
| 10.0.*.*  | 8.8.7.1 | 0-65535  | 0-65535  | Drop   | ]        |

![](_page_36_Picture_0.jpeg)

# A Brief about Packet Classification (3/3)

![](_page_36_Figure_2.jpeg)

![](_page_37_Picture_0.jpeg)

#### Hardware vs. Software

![](_page_37_Figure_2.jpeg)

![](_page_38_Picture_0.jpeg)

#### Hardware vs. Software

![](_page_38_Figure_2.jpeg)

![](_page_39_Picture_0.jpeg)

![](_page_39_Figure_1.jpeg)

#### As we add more rules to virtual switches...

![](_page_40_Picture_0.jpeg)

![](_page_40_Figure_1.jpeg)

Virtual Switch

...we lower their throughput!

![](_page_41_Picture_0.jpeg)

![](_page_41_Figure_1.jpeg)

Virtual Switch

...we lower their throughput!

![](_page_42_Picture_0.jpeg)

# Large Rule Sets Spill Out of CPU Cache (1/2)

![](_page_42_Figure_2.jpeg)

(\*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". *TON 2019.* (\*) Taylor et al., "Classbench: A Packet Classification Benchmark". *TON 2007.* 

![](_page_43_Picture_0.jpeg)

# Large Rule Sets Spill Out of CPU Cache (2/2)

![](_page_43_Figure_2.jpeg)

State-of-the-art

(\*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". *TON 2019.* (\*) Taylor et al., "Classbench: A Packet Classification Benchmark". *TON 2007.* 

![](_page_44_Picture_0.jpeg)

#### NuevoMatch: Using RQ-RMI for packet classification

![](_page_44_Figure_2.jpeg)

![](_page_45_Picture_0.jpeg)

#### Can We Fit in L2 Cache?

![](_page_45_Figure_2.jpeg)

(\*) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". *INFOCOM 2018.*(\*) Liang et al., "Neural Packet Classification". *SIGCOMM 2019.*(\*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". *TON 2019.*(\*) Taylor et al., "Classbench: A Packet Classification Benchmark". *TON 2007.*

![](_page_46_Picture_0.jpeg)

#### Can We Fit in L2 Cache?

Geomean compression factor of 4.9x, 8x, 82x

![](_page_46_Figure_3.jpeg)

(\*) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". *INFOCOM 2018.* (\*) Liang et al., "Neural Packet Classification". *SIGCOMM 2019.* (\*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". *TON 2019.* (\*) Taylor et al., "Classbench: A Packet Classification Benchmark". *TON 2007.*

![](_page_47_Picture_0.jpeg)

#### Isn't Neural Network Inference Slow?

![](_page_47_Figure_2.jpeg)

![](_page_48_Picture_0.jpeg)

#### The iSet compute-vs-coverage Tradeoff

![](_page_49_Picture_0.jpeg)

#### The iSet compute-vs-coverage Tradeoff

![](_page_49_Figure_2.jpeg)

![](_page_50_Picture_0.jpeg)

#### How many iSets needed for high coverage

iSet coverage is high for large rulesets!

| Ruleset<br>Size | 1 iSet          | 2 iSets         | 3 iSets         | 4 iSets         |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1K              | $20.2 \pm 18.6$ | $28.9 \pm 22.3$ | $34.6 \pm 25.6$ | $38.7 \pm 27.2$ |
| 10K             | $45.1 \pm 31.6$ | $59.6\pm38.9$   | $62.6\pm37.1$   | $65.1 \pm 35.7$ |
| 100K            | $80.0 \pm 14.5$ | $96.5 \pm 8.3$  | $98.1 \pm 4.8$  | $98.8 \pm 2.7$  |
| 500K            | $84.2 \pm 10.5$ | $98.8 \pm 1.5$  | $99.4 \pm 0.6$  | $99.7 \pm 0.2$  |
| 183,376         | 57.8            | 91.6            | 96.5            | 98.2            |

![](_page_51_Picture_0.jpeg)

#### How many iSets needed for high coverage

iSet coverage is high for large rulesets!

| Ruleset<br>Size | 1 iSet          | 2 iSets         | 3 iSets         | 4 iSets         |
|-----------------|-----------------|-----------------|-----------------|-----------------|
| 1K              | $20.2 \pm 18.6$ | $28.9 \pm 22.3$ | $34.6 \pm 25.6$ | $38.7 \pm 27.2$ |
| 10K             | $45.1\pm31.6$   | $59.6 \pm 38.9$ | $62.6\pm37.1$   | $65.1 \pm 35.7$ |
| 100K            | $80.0 \pm 14.5$ | $96.5 \pm 8.3$  | $98.1 \pm 4.8$  | $98.8 \pm 2.7$  |
| 500K            | $84.2 \pm 10.5$ | $98.8 \pm 1.5$  | $99.4 \pm 0.6$  | $99.7 \pm 0.2$  |
| 183,376         | 57.8            | 91.6            | 96.5            | 98.2            |

![](_page_52_Picture_0.jpeg)

# What About Updates? (1/2)

![](_page_52_Figure_2.jpeg)

We retrain the models after a certain threshold in the number of new rules.

![](_page_53_Picture_0.jpeg)

#### Expected performance with periodic training

![](_page_53_Figure_2.jpeg)

![](_page_54_Picture_0.jpeg)

# What About Updates? (2/2)

RQ-RMI Models

Remainder

Training with TensorFlow takes between 10-40 min on a CPU

In our recent work we run at 10ms-1s for the largest datasets

![](_page_55_Picture_0.jpeg)

# Evaluation: see the paper

End-to-end performance

- Single-core vs. multi-core settings
- Small vs. large rule sets
- Traffic with uniform / skewed temporal locality
- Memory footprint comparison
- Performance under L3 cache contention
- Real-world forwarding rules

Performance analysis

- iSet Coverage
- Impact of the number of iSets
- Partitioning effectiveness
- Training time and search bounds
- Performance with many fields

![](_page_56_Figure_0.jpeg)

(\*) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". *INFOCOM 2018*.

\*) Liang et al., "Neural Packet Classification". SIGCOMM 2019.

\*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". *TON 2019.* 

\*) Taylor et al., "Classbench: A Packet Classification Benchmark". TON 2007.

![](_page_57_Picture_0.jpeg)

#### Evaluation - Skewed Traces

![](_page_57_Figure_2.jpeg)

) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". *INFOCOM 2018.* ) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". *TON 2019.* 

Katta et al., "CacheFlow: Dependency-Aware Rule-Caching for Software-Defined Networks". SOSR 2016.

Taylor et al., "Classbench: A Packet Classification Benchmark". TON 2007.

The CAIDA UCSD Anonymized Internet Traces 2019 (www.caida.org/data/passive/passive\_dataset.xml).

![](_page_58_Picture_0.jpeg)

#### **Evaluation - Skewed Traces**

![](_page_58_Figure_2.jpeg)

\*) Li et al., "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification". INFOCOM 2018.

\*) Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification". TON 2019.

\*) Katta et al., "CacheFlow: Dependency-Aware Rule-Caching for Software-Defined Networks". SOSR 2016.

\*) Taylor et al., "Classbench: A Packet Classification Benchmark". TON 2007.

(\*) The CAIDA UCSD Anonymized Internet Traces 2019 (<u>www.caida.org/data/passive/passive\_dataset.xml</u>).

![](_page_59_Picture_0.jpeg)

# Agenda

- A computational approach to packet classification
- Ongoing/Future work
  - Faster training + integration with production virtual switches
  - Updatable models
  - Hardware acceleration
  - More applications

![](_page_60_Picture_0.jpeg)

# OpenV switch integration [under submission]

- 1000x faster training
- From 3X to 25X higher performance on real traces
- Updates: up to 50,000 rules/s
  - Previous versions are slow even with a few

![](_page_61_Picture_0.jpeg)

#### Future work

- Updatable models
  - Efficient updates without retraining
- Hardware acceleration
  - Build hardware accelerator for more application domains
- More applications
  - Handling sparse data structures
  - Variable-size pages in VM
  - In-storage indexing for flash drives
  - Can we get rid of radix trees?
  - In-switch network functions

0 ...

Your application here!

![](_page_62_Picture_0.jpeg)

#### Conclusions

- 1. RQ-RMI for range-value queries
- 2. NuevoMatch: a new point in the design space of packet classification
- 3. Promising results using Open vSwitch
- 4. First application: packet classification, but more to come!

![](_page_62_Picture_6.jpeg)

Thank You

See More On https://acsl.group/publications/

![](_page_62_Picture_9.jpeg)

Alon Rashelbach alonrs@campus.technion.ac.il Ori Rottenstreich or@technion.ac.il Mark Silberstein mark@ee.technion.ac.il