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Agendad

e Range Matching
o Applications
o Background: Recursive Model Index
o  RQ-RMI

e Packet classification

o NuevoMatch
o QOVS + NuevoMatch

e Futureideas



Range matching queries

Value

600

Range
85 0-70
o =

80-104

325

Basic building block in a variety of systems

virtual memory

network switchers and routers
file and storage systems
sparse data structures

DNA sequencing

325
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Range matching

Traditional data structures

e Regular data (pages)

o radix trees

e lIrregular data (extents)
o interval trees

e Overlapping ranges (packet rules)
o hierarchy of hash-tables and (similar to) interval trees



Common problem:
scaling is hard due to memory wall!

e Architectural trends

o Fast Memory does not scale
o Memory latency to memory remains high
o Memory bandwidth per core remains low

Impedes performance of
memory-intensive data structures

e Large index: spills out of cache
e Pointer-chasing: memory latency on the critical path



Common problem:
scaling is hard due to memory wall!

e Architectural trends

o Fast Memory does not scale
o Memory latency to memory remains high
o Memory bandwidth per core remains low

Impedes performance of
memory-intensive data structures

e Large index: spills out of cache
e Pointer-chasing: memory latency on the critical path

However! NN inference is getting faster all the time!
This talk: how to use NNs to scale range matching

Accelerated Computing



Accelerated Computing

Agendad

e Background: Learned Indexes
e Motivation: why LI cannot be used as is
e Our solution: RQ-RMI

e Application: packet classification



Recursive Model Index (RMI) (1/5)
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Recursive Model Index (RMI) (2/5)

Key Mem Offset = Value
] 56 100 valuel Ofiset
60 101 valuel f(x):rep.
68 102 value?
[] 7 103 value3
80 104 valued T
g7 105 valueb :> f( )
] 93 106 value6
100 107 value?/ > Key
101 108 value8
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IndevedKeys={ [0 O }

(*) Kraska et al, "The Case for Learned Index Structures”. SIGMOD 2018.



Recursive Model Index (RMI) (3/5)

v > fle)

f(z): approx.
R o
Max Approximation Error f(x)
; f(z)
[f(z) = f(z)] <e
x € Keys 4
Z
—_ > Key

Train model using

IndevedKeys={ [0 O }

(*) Kraska et al,, "The Case for Learned Index Structures”. SIGMOD 2018.
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Recursive Model Index (RMI) (4/5)

Key Mem Offset | Value
|:| 60 101 valuel
68 102 value?
71 103 value3d
D 80 104 valued
87 105 valueb
93 106 valueb
|:| 100 107 value?

(*) Kraska et al, "The Case for Learned Index Structures”. SIGMOD 2018, 12
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Recursive Model Index (RMI) (4/5)
Key Mem Offset | Value
|:| 60 101 valuel
O ror 68 102 value?
o
. € = 2 7 103 value3
>
r = 08 [] so 104 values
Approximotion> 87 105 valueb
f(;y) = 104 93 106 values
|:| 100 107 value?
13

(*) Kraska et al, "The Case for Learned Index Structures”. SIGMOD 2018,



Recursive Model Index (RMI) (5/5)

Key Mem Offset | Value
|:| 60 101 valuel
O 68 102 value?
o Error
. € = 2 7 103 value3
r = 068 < [ eo 104 valued
P
Approximation 87 105 valueb
flz) =104 03 106 valued
|:| 100 107 value?
[
O

(*) Kraska et al, "The Case for Learned Index Structures”. SIGMOD 2018.
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Recursive Model Index (RMI) (5/5)
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(*) Kraska et al,, "The Case for Learned Index Structures”. SIGMOD 2018.

Offset

A
f(x):rep.

A~

f(z): approx.

Configurable:
. Neural Network
2. B-Tree
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Recursive Model Index (RMI)

Key
56
60
68
71
80

Value
valueO
valuel

value?2
values3

valued

@ A

Model Btree
0.15 MB 13 MB
Neural Network Inference Tree Traversal
98ns per lookup 256ns per lookup
N J
Y

2.7x lookup performance in databases

16

(*) Kraska et al,, "The Case for Learned Index Structures”. SIGMOD 2018.



RMI does not work for range matching

e RMlIrequires to learn offset for each key G

e Strawman: enumerate values in a range e J

Problem I: to estimate the maximum error it must scan all keys

Problem 2: does not work for sparse data - model gets too large - no
memory savings

Problem 3: How to handle overlaps®?

17



Accelerated Computing

Our work:
Range Query Recursive Model Index: RQ-RMI

. Learns ranges, not keys
2. Ranges may overlap

3. Supports multi-dimensional ranges

18
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Assume no overlaps

Sample input domain and learn from valid inputs

X
Ronge | Value l
0-70 600
RQ-RMI
s E> model E>
80-104 125

f(;g) representation 2

A

f(z): approximation

=
=

19
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Use MLP as a submodel

> flx)

X

,"/ Neurall
i Sthe 0 xr Network
, l :
! Neural Neural
: Stage | Network T Network |
R
i Neural Neural Neural
: Stqge 2 Network Network Network

Regression using a shallow
neural network 20



How to compute error bound?

M; j(x)
14
0.75 1 !
0.5 - o
0.25 ! i i <j
0+ : L | : > X
A bounded approximation error Neural networks with
Is guaranteed RelU activations are
7 piecewise linear
’f(l‘) f(:l?)‘ < € functions

For the entire input domain!

Vx

2]



Output
domain

M; j(x)
1 A This is the learned model
0.75 - V.
0.5 - |
- |
0.25 5 : :
I
0+ ! L x

Given x - find a prediction for its index.

ACSSL
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Output
d:n?:in Mi’j (x)
A
1-
3
0.75 -
: :
0.5 ~ = i
1 : :
. 0.25 1 m i
oL R -

Error bound can be computed using only a few vantage points
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Training Range-Query RMI

e For each layer and each submodel:
e Uniformly sample an input domain of a model
e Train on the samples: wider ranges get more samples

e For leaf models: compute error using vantage points

e If error is above threshold - add more samples, retrain

e if does not work after few tries - increase the number of submodels
in the model and try again

24



Accelerated Computing

Summary: ID Range-Query RMI, no overlaps

. Enables range matching
2. Effective training technique

3. Correctness guarantees

25
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Y

Example: 2D ranges with overlaps
(2<x<4) AND (3<y<5)

Geometrical
representation

26
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Geometrical
representation

eeeeeeeeeeeeeeeeeeee

ISet
partitioning
algorithm

Idea: create multiple sets of
non-overlapping ranges, strive to cover as
many as possible with fewest sets

27
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iISet 1- rules do not
overlap on X

folelelo)

iSet
partitioning
algorithm

=

Geometrical
representation

Interval scheduling optimization algorithm 28



Accelerated Computing

iISet 1- rules do not
overlap on X

folelelo)

iSet
partitioning
algorithm

~ {oeo)

iSet 2 - rules do not
overlap on'Y

Geometrical
representation

29



Geometrical
representation

Accelerated Computing
ssssssssss

iISet 1- rules do not
overlap on X

foleloloy

iSet
partitioning
algorithm

~ {0eo)

ISet 2 - rules do not
overlap on'Y

Remainder - rules that

do not fit in any iSet "
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Handling Overlaps + Dimensionality:

iISet 1- rules do not
overlap on X

folelclel;

The remainder set is
handled by any

classification method { @ @ @ }

ISet 2 - rules do not
overlap on'Y

= {e]

Remainder - rules that
do not fit in any iSet

Any
Existing
Method

31



Handling Overlaps + Dimensionality:

0100
1001
10...

ISet Flow

A

Ve

> [ RQ-RMI } >

Neural Network
Inference
on dimension D

Secondary S
[ Search } E> [\/mdgnon}

A

Resolve
approximation
errors
for dimension D

Matching
Candidate

Validate all
other
Dimensions

ACSSL

Acceler. Ideptg
System:

Match /
No Match

32
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Putting it all together: computational cache

iCOmputotionol cache
[ iset1 )

0100 Nt o
o ﬁ> . Remainder | E> [ Selector ]

In some cases we can eliminate the

remainder search if match is found
33



Accelerated Computing

Summary so far
e RQ-RMIllearns ranges via sampling
e Offers efficient error estimation

e Deals with overlaps and multi-dimensional cases using remainder

Does it work in practice?

yes!

SIGCOMM’'20 34
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A Brief about Packet Classification (1/3)

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

0100
1001
10...

Incoming Packets

0
,{ 0100
. 1001
PN 0100 10...
1001
3/\\/ 10...
0100 0100
|:> |:> 1001 1001
10... 10...
% 0100
o 1001
10... 0100
O 1001
O 10...

Access Control
Quality of Service

Packet Forwarding
Firewalls

Outgoing Packets

35
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A Brief about Packet Classification (2/3)

0100 0100 0100 0100 0100 0100
1001 1001 1001 1001 1001 1001
10... 10... 10... 10... 10... 10...
Incoming Packets

Src IP Dst IP

10.0.0.* 8.8.x*

10.0.20.* 8.8.77

10.0.%* 8.8.71

@ 0100
= @ O |
4:;jx 0100

Src Port
0-65535
0-65535
0-65535

0100
1001
0100 10..
1001
10...
0100
1001
10...
o Outgoing Packets
10... 0100
1001
10...

Dst Port | Action | Priority

80 Port 1 3
443 Port 2 2
0-65535 Drop ]

36



A Brief about Packet Classification (3/3)

i:} 0100 0100 0100 0100 0100 0100
1 1001 1001 1001 1001 1001 1001
. 10... 10... 10... 10... 10... 10..
Incoming Packets
SrcIP Dst IP
ﬁ> 10.0]0.* 8.8
src-ip: 10.0.101
dst-ip: 8.8.71 10.0.20.* 8.8.7%
src-port: /870

@ 0100
= @ O |
4:;jx 0100

Src Port
0-65535
0-65535
0-65535

0100
1001
0100 10..
1001
10...
0100
1001
10...
1001
10... 0100
1001
10...
Dst Port Action
80 Port 1
443 Port 2
0-65535 Drop

Outgoing Packets

Priority
3
2
]

ACSSL
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Hardware vs. Software

Ternary Content
Addressable
Memory (TCAM)

Various Algoritnms

P Software

Hardware =

.-
I -

High Throughput
Dedicated ASICs

O

Low Throughput
Commodity Hardware

ACSSL

Accelerated Computing
Systems Lab
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Hardware vs. Software

Ternary Content
Addressable
Memory (TCAM)

Various Algoritnms

P Software

4}

Low Throughput
Commodity Hardware

Hardware <=

o o

High Throughput
Dedicated ASICs

89



The Problem (1/2)

10 [ 10 || 10 || 10
11 11 11 11
10 (|10 || 10 || 10
11 11 11 11

Let's add rules..

10
1

10
1

10 10 10 10 10 10
1 1 1 1 1 1
10 10 10 10 10 10
1 1 1 1 1 1

Virtual Switch

v
=
S

10
1

10
11

As we add more rules to virtual switches...

ACSSL
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Systems Lab

40



The Problem (2/2)

10 (10 |[10 || 10
11 11 11 11
10 |10 || 10 || 10
11 11 11 11

Let's add rules..

/ Bottleneck!

I

10 10
11 11
10 10
10 0 11 1
" 1" ﬁ

Virtual Switch

10
1

v
=
S

-.we lower their throughput!

ACSSL
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Systems Lab
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The Problem (2/2)

Bottleneck!

Let's add rules..

-

\_

Large Rule Sets
Spill Out of CPU Core Cachel!

\

J

Virtual Switch

ccelerated Comput
Systems Lab
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Large Rule Sets Spill Out of CPU Cache (1/2)

T E \ = ~ T TTTT] T N
10 e 2 6 *L1 Size (32KB) ' L2 Size (IMB) |
g 106? % 5 - 'I""""""""Exbe'ct'ea
> 105 [32KB-L1 Cahce . = '
S eE B4 |
IS 10 § : % 3 : ! ]
2108 S e e [ 1 Actual
- = 2 1 i 1 ‘ =1
102 ~ | 2 | Ll | el L0101l | L1l
10K 100K 500K 1K 10K 100K IM
Number of Rules Number of Rules
TupleMerge:

State-of-the-art

é*g Daly et al, "TupleMerge: Fast Software Packet Processing for online Packet Classification®. TON 2019. 43

*) Taylor et al,, “Classbench: A Packet Classification Benchmark”. TON 2007.
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Large Rule Sets Spill Out of CPU Cache (2/2)

L3 cache is
10x slower 2X
than L1 cache A

7g ] = ~ T TTT1] T TTTT] N
10 e & 2 0 | L1 Size 32KB) ' L2 Size AMB) |
g 106? % 5| 'I““""“""“ExToe'ct'e
> 105 |32KB L1 Cahce - = '
=t - g A i
o 104 = ﬁ) [ !
'C'/[:]‘) - 5 3 [ 1 N
103 g = o [ 1 Actual
E = 2 1 ‘ 1 ‘ |
102 ~ | M Ll | el L0010l [ L1l
10K 100K 500K 1K 10K 100K IM
Number of Rules Number of Rules
TupleMerge:
State-of-the-art
44

é*g Daly et al, "TupleMerge: Fast Software Packet Processing for online Packet Classification®. TON 2019.
*) Taylor et al,, “Classbench: A Packet Classification Benchmark”. TON 2007.
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Using RQ-RMI for packet classification

Src IP DstIP | Port [ iset] ] [ RQ-RMIT ]

10010+ | 88** | 0-80 [ iset2 | [ RQ-RMI2 |

0020 | 887+ | 443 | [y
*

10.0.%* 8.8.71

iSet
partitioning
algorithm

ﬁ> [ Selector ]

[ e ] [RQ—RMN]

55.0.0* 3.3%* 22 [Remainder] [ External ]

45
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Can We Fitin L2 Cache?

107 | Remainder 20x
= smaller than the
%“ 106 ___| original data structure
=
2 10° 5/7
Y :_%.; = RQ-RMI all fits in L1
A 104 Eé cache
103 :%
100K
‘_ 07777 CutSplit

B RQ-RMI ] Remainder

E*% Li et al,, "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification”. INFOCOM 2018.

*) Liang et al., "Neural Packet Classification”. SIGCOMM 2019.
Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification”. TON 2019.
Taylor et al,, “Classbench: A Packet Classification Benchmark”. TON 2007.

46
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Can We Fitin L2 Cache? Geomean compression
factor of 4.9x, 8x, 82x

107 § | | 1 —;
;ﬁ 106; % % ]ngégthe Size
S 100 ?? % | 32kB
,Qﬁ) ;/'; % _14_ Ll Cache Size
xn 104 :/ / =
07 7
103 _é l é i

100K 500K

State of the art

7 CutSplit NeuroCut TupleM
,////A u pl - euro uS- upe erge techniques

B RQ-RMI ] Remainder

E*% Li et al,, "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification”. INFOCOM 2018.

*) Liang et al., "Neural Packet Classification”. SIGCOMM 2019. 47

*) Daly et al,, "TupleMerge: Fast Software Packet Processing for online Packet Classification”. TON 2019.

Taylor et al,, “Classbench: A Packet Classification Benchmark”. TON 2007.
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Isn’t Neural Network Inference Slow?

Use Small and Shallow
Neural Networks

Not if you..

o

Use Wide Vector
Instructions

Inference Time in Nano-Seconds
150

100 2.5X

50

0

Serial C Code SSE AVX

40-50 ns on a CPU! 48
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The iSet compute-vs-coverage Tradeoff

49
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The iSet compute-vs-coverage Tradeoff

1,000 100

800

co
o

600

(o))
)

T T T
|
|

Time (ns)

400 fEreesy

S
o

Coverage (%)

\¥}
)

oooooooooooooooooooooooooooooooooo
........................................................
ooooooooooooooooooooooooooooooooooooooooooooooooooooooo

jan)

Number of 1Sets

Remainder ZZZZ] Secondary Search [[TTT]] Validation
[ Inference —«— Coverage

50



How many iSets needed for high coverage

ISet coverage is high for large rulesets!

Ruleset 1 iSet 2 iSets 3 1Sets 4 1Sets

Size

1K 20.2+18.6 28.9+22.3 34.6+25.6 38.7+27.2
10K 45.1 £31.6 59.6 £38.9 62.6£37.1 65.1+35.7
100K 80.0+14.5 96.5+3.3 98.1 + 4.8 98.8 + 2.7
500K 84.2 +£10.5 98.8+1.5 99.4 £ 0.6 99.7 £ 0.2

183,376 57.8 91.6 96.5 98.2

51



How many iSets needed for high coverage

ISet coverage is high for large rulesets!

Ruleset
Size

1 1Set 2 1Sets 3 1Sets 4 1Sets

1K
10K
100K
500K

20.2+18.6 28.9+22.3 34.6+25.6 38.7+x27.2
45.1 £31.6 59.6+£38.9 62.6+37.1 65.1=%35.7

80.0 £14.5 (9.5+£83) 98.1+4.8 98.8+2.7

34.2+10.5 98.8+1.5 99.4 + 0.6 99.7 £ 0.2

183,376

57.8 91.6 96.5 98.2

52
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What About Updates? (1/2)

We easily can New rules get

remove rules INto the
from the models remainder
| RoRMModels |

We retrain the models after a certain
threshold in the number of new rules.

53



Expected performance with periodic training

! Throughput

—— Fast training

Long training

2T

37

Accelerated Computing
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What About Updates? (2/2)

| RoRMModels |

Training with TensorFlow takes between
10-40 min on a CPU

INn our recent work we run at 10ms-1s for
the largest datasets

55



Evaluation: see the paper

End-to-end performance

Single-core vs. multi-core settings

Small vs. large rule sets

Traffic with uniform / skewed temporal locality
Memory footprint comparison

Performance under L3 cache contention
Real-world forwarding rules

Performance analysis

iISet Coverage

Impact of the number of iSets
Partitioning effectiveness
Training time and search bounds
Performance with many fields

ACSSL

Accelerated Computing
Systems Lab
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Evaluation - Uniform Access

Geomean throughput
speedup of
2.4x, 2.6X, 1.6X

4 |- S00K Classifiers =
=
Eg 3
o 3
= O
o8 2
Em
(R CRN RN R RN R CRN R R
O 5 3
| 2 3 - 3 6 7 8 9 10 11 12 GM

[ NuevoMatch w/ CutSplit [ NuevoMatch w/ NeuroCuts [l NuevoMatch w/ TupleMerge

*) Liang et al., "Neural Packet Classification”. SIGCOMM 2019.
Daly et al., "TupleMerge: Fast Software Packet Processing for online Packet Classification”. TON 2019. 57
Taylor et al,, “Classbench: A Packet Classification Benchmark”. TON 2007.

*

*g Li et al, "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification”. INFOCOM 2018.
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Evaluation - Skewed Traces

High locality speeds up the
baseline

-
w
|
|

1.5

Throughput Speedup

&
w

Zipf 80%  Zipf85%  Zipf90%  Zipf 95%
(x=1.05) (a=1.10) (ax=1.15) (a=1.25)

EEEE NuevoMatch w/ CutSplit [ NuevoMatch w/ TupleMerge

Li et al, "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification”. INFOCOM 2018.

Daly et al,, "TupleMerge: Fast Software Packet Processing for online Packet Classification”. TON 2019.

Katta et al,, “CacheFlow: Dependency-Aware Rule-Caching for Software-Defined Networks”. SOSR 2016.

Taylor et al,, “Classbench: A Packet Classification Benchmark”. TON 2007. 58
The CAIDA UCSD Anonymized Internet Traces 2019 (www.caida.org/data/passive/passive datasetxml).

* ¥ ¥ ¥ ¥



http://www.caida.org/data/passive/passive_dataset.xml
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Evaluation - Skewed Traces

I
S 25| F
i~
)
)
& 2 - 179x
= Real-world
a, 1.5 — - temporal
'§0 locality
o
—
<
=

&2
w

Zipf 80%  Zipf85%  Zipf90%  Zipf 95% CAIDA
(x=1.05) (a=1.10) (ax=1.15) (a=1.25)

EEEE NuevoMatch w/ CutSplit [ NuevoMatch w/ TupleMerge

Li et al, "CutSplit: A Decision Tree Combining Cutting and Splitting for Scalable Packet Classification”. INFOCOM 2018.

Daly et al,, "TupleMerge: Fast Software Packet Processing for online Packet Classification”. TON 2019.

Katta et al,, “CacheFlow: Dependency-Aware Rule-Caching for Software-Defined Networks”. SOSR 2016.

Taylor et al,, “Classbench: A Packet Classification Benchmark”. TON 2007. 59
The CAIDA UCSD Anonymized Internet Traces 2019 (www.caida.org/data/passive/passive datasetxml).
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http://www.caida.org/data/passive/passive_dataset.xml

Agendad

e A computational approach to packet classification
e Ongoing/Future work

©)
©)
©)
O

Faster training + integration with production virtual switches
Updatable models

Hardware acceleration

More applications

ASSL

Accelerated Computing
Sy sssss Lab
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OpenV switch integration lunder submission]

e 1000x faster training
e From 3X to 25X higher performance on real traces
e Updates: up to 50,000 rules/s

o Previous versions are slow even with a few

61
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Future work

e Updatable models
o Efficient updates without retraining

e Hardware acceleration
o Build hardware accelerator for more application domains

e More applications

Handling sparse data structures
Variable-size pages in VM
In-storage indexing for flash drives
Can we get rid of radix trees?
In-switch network functions

o O O O O O

Your application here!

62
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Conclusions

JR—

RQ-RMI for range-value gueries

NuevoMatch: a new point in the design space of packet classification
Promising results using Open vSwitch

oW

First application: packet classification, but more to comel!

ACSL Thank You \'7 TECHNION

Israel Institute
Accelerated Computing of Technolo
Systems Lab See More On gy

https://acsl.group/publications/
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