
Fine-tuning giant neural networks on commodity hardware
with automatic pipeline model parallelism

Saar Eliad1, Ido Hakimi1, Alon De Jager1, Mark Silberstein1,2, Assaf Schuster1

Technion - Israel Institute of Technology
1Department of Computer Science 2Department of Electrical Engineering

Abstract

Fine-tuning is an increasingly common technique that lever-
ages transfer learning to dramatically expedite the training of
huge, high-quality models. Critically, fine-tuning holds the
potential to make giant state-of-the-art models pre-trained on
high-end super-computing-grade systems readily available for
users that lack access to such costly resources. Unfortunately,
this potential is still difficult to realize because the models
often do not fit in the memory of a single commodity GPU,
making fine-tuning a challenging problem.

We present FTPipe, a system that explores a new dimen-
sion of pipeline model parallelism, making multi-GPU exe-
cution of fine-tuning tasks for giant neural networks readily
accessible on commodity hardware. A key idea is a novel
approach to model partitioning and task allocation, called
Mixed-pipe. Mixed-pipe partitions the model into arbitrary
computational blocks rather than layers, and relaxes the model
topology constraints when assigning blocks to GPUs, allow-
ing non-adjacent blocks to be executed on the same GPU.
More flexible partitioning affords a much better balance of
the compute- and memory-load on the GPUs compared to
prior works, yet does not increase the communication over-
heads. Moreover, and perhaps surprisingly, when applied for
asynchronous training, Mixed-pipe has negligible or no effect
on the end-to-end accuracy of fine-tuning tasks despite the
addition of pipeline stages.

Our extensive experiments on giant state-of-the-art NLP
models (BERT-340M, GPT2-1.5B, and T5-3B) show that FT-
Pipe achieves up to 3× speedup and state-of-the-art accuracy
when fine-tuning giant transformers with billions of parame-
ters. These models require from 12GB to 59GB of GPU mem-
ory, and FTPipe executes them on 8 commodity RTX2080-Ti
GPUs, each with 11GB memory and standard PCIe.

BERT XLNet RoBERTa GPT2 T5-3B Megatron T5-11B GPT3 Gshard
Model

107

108

109
N

um
be

r
of

 P
ar

am
et

er
s

340M 340M 355M

1.5B
3B

8.3B 11B

175B

600B

Figure 1: Model size trends. None of these models can be
trained on a single NVIDIA RTX-2080-Ti commodity GPU
due to memory requirements. Bars in red represent the models
evaluated in this paper. FTPipe automatically transforms their
sequential implementation into a multi-GPU one.

1 Introduction

Fine-tuning deep neural network (DNN) models is a tech-
nique commonly used to achieve state-of-the-art model qual-
ity on a wide range of tasks, such as question answering, text
generation, translation, and more [46, 55, 56]. In fine-tuning,
the model is not trained from scratch. Instead, a short train-
ing phase is performed on an already existing model, which
has been pre-trained on large application-related datasets to
obtain general domain knowledge [16]. By training on user-
specific datasets, fine-tuning allows accommodating new in-
puts [11, 44, 60].

Fine-tuning is becoming increasingly important as models
grow to billions of parameters. Since training such giant mod-
els from scratch is practical only on super-computer-scale

systems [48, 50, 60], a provider-scale pre-training, followed
by short fine-tuning on user data, is the key to making the
power of giant models broadly accessible [57].

Unfortunately, fine-tuning giant models on low-cost com-
modity hardware is still a significant challenge. Small mem-
ory sizes and slow inter-GPU communications are the main
characteristics that set apart commodity GPUs from high-
end devices, and they dramatically affect the training of giant
models.

Small GPU memory is the key problem. For example, about
40 GBs are needed to train T5 model with 3B parameters for
Recognizing Textual Entailment (RTE) [56] even with the
smallest batch size of 1. This is larger than the memory size
of any commodity GPU.

Existing approaches to cope with GPU memory constraints,
such as sharding/swapping [45,54], are ineffective due to slow
PCIe communications. This problem is further exacerbated
in fine-tuning tasks because the typically-small batch sizes
do not allow for overhead mitigation using communication
and computation overlapping. Therefore, using a single GPU,
or a data-parallel multi-GPU approach for fine-tuning giant
models are not viable options.

Model-parallel techniques allow fitting the model into
memories of multiple GPUs. However, for commodity GPUs,
the poor communication performance rules out the most com-
monly used Intra-Layer Model Parallelism approach, where
each DNN layer is split among multiple GPUs. High vol-
umes of all-to-all communications (AllReduce) with many
synchronization points [48, 50] perform poorly over PCIe.

Pipeline-parallel execution exploits the depth dimension
of DNN models [17, 37], distributing them across GPUs at a
coarse granularity, i.e., DNN layers. A model is partitioned
into multiple consecutive stages according to its topology.
Each stage runs on a different GPU. During training, the input
samples are streamed through the pipeline. This approach
allows training giant models on multiple GPUs without the
high communication costs of intra-layer parallelism, making
it ideally suitable for commodity hardware.

However, existing methods have some drawbacks when
applied to fine-tuning giant models.

GPipe [17] demonstrated the benefits of pipeline paral-
lelization, but has pipeline bubbles, leading to low hard-
ware utilization for small mini-batches typical for fine-tuning
tasks [55]. The bubbles are caused by GPipe’s synchronous
approach whereby the next mini-batch of samples does not
start before the previous one traverses the whole pipeline.

PipeDream [37] improved GPU utilization by introducing
asynchronous training, where the mini-batches no longer wait
for each other to complete. However, PipeDream stores multi-
ple versions of the weights in GPU memory (weight stashing)
to mitigate the effects of weight staleness [61] inherent to

asynchronous training, dramatically reducing the size of the
models that can be trained.1

Last, both GPipe and PipeDream may suffer from poor
load-balance across GPUs in DNNs with a complex topology,
such as giant encoder-decoder DNNs in Natural Language
Processing (NLP). We claim that the load-balancing problem
stems from the coarse-grain scheduling decisions dictated by
the model topology constraints, i.e., the structure of the layers
and inter-layer connectivity. Our key insight is that relaxing
these constraints when running fine-tuning tasks can mitigate
the load imbalance of prior approaches and bring significant
performance improvements, without model accuracy tax.

We introduce FTPipe, a novel memory-efficient execution
framework for pipelined fine-tuning of giant DNNs on com-
modity GPUs. Using FTPipe is easy: it automatically gen-
erates a functional performance-optimized pipeline-parallel
multi-GPU version of a given sequential model implemented
in PyTorch [39]. It enables the execution of models whose
description does not adhere to the conventional sequences of
coarse-grain layers.

FTPipe builds on two key observations:
Partitioning without DNN topology constraints. FTPipe
optimizes the load balance by relaxing the model topology
constraints when distributing it across the GPUs. Specifi-
cally, it introduces a novel mixed-pipe partitioning scheme
which permits assigning any fine-grained combination of
model operations to run on GPUs, even when the assignment
does not follow the original sequence of network-architecture
layers. This is in contrast to all prior approaches [17, 37]
that use coarse-grain partitioning, with only adjacent layers
scheduled to run together on the same GPU. The mixed-pipe
scheme exploits the advantages of a new, previously unex-
plored, point in the trade-off between inter-GPU communi-
cations and load-balancing, prioritizing the latter. It enables
efficient pipeline-parallel training of neural networks common
in NLP, including language models with shared embedding
("tied weights") [20,42] and giant Transformer-based encoder-
decoder networks [53].
Fine-tuning large models is less sensitive to staleness. FT-
Pipe fastest version employs an asynchronous training scheme
which is prone to staleness [4, 5]. However, large models
with pre-trained weights have properties that make training
less sensitive to staleness. These include smooth and slowly-
varying optimization trajectories [29], or small (and diminish-
ing) learning rates. Thus, we achieve state-of-the-art results
while avoiding costly staleness mitigation techniques.

We evaluate FTPipe on challenging fine-tuning tasks with
three modern giant NLP models: T5-3B, T5-11B, GPT2
(1.5B), and BERT (340M). These models cannot be trained
on a GPU with 11GB memory. To the best of our knowledge,
FTPipe shows the first execution of T5-3B/T5-11B models on
an asynchronous pipeline-parallel system, which have been

1PipeDream still has staleness, with parameter consistency similar to
ASGD [10], see Table 1.

particularly challenging due to the diverse computational re-
quirements of different layers.

Our experiments on 8 NVIDIA RTX2080 Ti GPUs demon-
strate significant performance benefits of FTPipe over GPipe,
which is the only state-of-the-art pipeline execution frame-
work that was able to train all the evaluated models on our
hardware. For example, FTPipe is from 8% to 3× faster when
fine-tuning T5-3B, with the same accuracy. Mixed-pipe gains
1.08×-2.47×, and asynchronous training an additional 1.19×-
2.98× (results vary between datasets).

Compared to PipeDream, FTPipe trains significantly larger
models and avoids partitioning solutions that do not fit in
GPU memory. Further, FTPipe outperformed PipeDream by
13% when training BERT, after augmenting PipeDream im-
plementation with checkpointing [7, 12].

Essentially, FTPipe generalizes the pipeline execution
of former approaches to dataflow-aware execution, avoid-
ing unnecessary communications and allowing more paral-
lelism. Specifically, FTPipe stages can communicate with
non-neighbors directly, without passing via adjacent stages.
Thus, data is automatically loaded exactly where needed, and
the stages can be concurrent in case the network graph al-
lows it. As a result, model parameters and their gradients can
be communicated thus making the execution of models with
shared weights possible in pipelines.

In summary, our main contributions are as follows:
FTPipe. We present FTPipe, an automatic framework that

transforms a sequential DNN implementation into a multi-
GPU pipeline-parallel one, enabling fine-tuning of giant state-
of-the-art neural networks on commodity GPUs,

Mixed-pipe. We present the fine-grain partitioning scheme
which relaxes the model topology constraints when schedul-
ing DNN computations on GPUs, thereby vastly improving
load balance across the workers without additional communi-
cation overheads,

Evaluation. We evaluate FTPipe on challenging fine-
tuning benchmarks, and giant transformers: GPT2 [43],
BERT [11], and T5-3B/11B [44], consistently outperform-
ing GPipe and PipeDream while attaining state-of-the-art
accuracy.

2 Background

Giant models. We call giant those models which do not fit
into the memory of a single accelerator during training.
Pipelined training. A pipeline is trained by computing gradi-
ents for each mini-batch, i.e., a subset of examples assigned to-
gether for gradient computations. A mini-batch can be further
sliced into smaller micro-batches to fit into workers’ memory.
Micro-batches also help parallelize the mini-batch compu-
tation. For example, in GPipe, micro-batches are streamed
through the pipeline one-by-one (Figure 2). GPipe attempts
to parallelize execution by having a micro-batch proceed to
the next pipeline stage while the next micro-batch enters the

2 1 1 0 0

2

2

1 1 0 0

1 1 0 00 1 2

0 1 2

0 1 2

s

s

sworker 0

worker 1

worker 2

time

forward
pass recomputation backward

pass
optimizer

step

Figure 2: GPipe [17] synchronous training. Each rectangle
(number is the micro-batch being processed) represents a
pipeline stage running a certain task denoted by its color,
except for the last optimizer step.

worker 0

worker 1

worker 2

time

0 1 2

0 1

0 0 0 1 1 1 2 2 2

0

0

0 2

0 3

1 1 3 2 2

1 1 4 2 2

optimizer
step

forward
pass

backward
pass

Figure 3: PipeDream [37] asynchronous training.

previous stage (aka intra-batch parallelism). However, GPipe
synchronously updates the model parameters at the end of the
mini-batch execution using the gradients accumulated from
all micro-batches, a technique called gradient accumulation.
Staleness. An asynchronous pipeline as in PipeDream [37]
(Figure 3) begins the forward pass of the next mini-batch
without waiting for the previous one to finish (aka inter-batch
parallelism). In an asynchronous pipeline, the next mini-batch
might use old parameters in its forward pass and newly up-
dated parameters on its backward pass, or old parameters in
both passes. Pipeline with more stages may have more mini-
batches executing concurrently, therefore a higher difference
between old and new parameters. This problem, known as
weight staleness (or simply staleness), was shown to introduce
significant disturbances to the training process, deteriorating
final model accuracy and, in extreme cases, even preventing
convergence altogether [9, 62]. Several methods were pro-
posed to mitigate staleness [4, 61].

3 Motivation

3.1 Importance of fine-tuning giant models

DNN models are constantly growing to achieve higher quality.
This trend is particularly pronounced in Neural Language Pro-
cessing models (Figure 1), where larger models achieve signif-
icantly better results [6, 17, 27]. However, such giant models
are increasingly hard to train without access to supercomputer-
scale resources. For example, training XLNet [60] of 340M
parameters using a data set of 158GB required 5.5 days on
512 Google TPUs [23]. Therefore, many pre-trained models
have been made publicly available to allow their use by those

who do not have access to such computing capabilities (e.g.,
NVIDIA Model catalog [1]).

From user point of view it is often desirable to further im-
prove the pre-trained model and tailor it to a user-specific
data set. The process, called fine-tuning, was shown to be
effective across a wide range of tasks [16]. Fine-tuning op-
erates on relatively small data sets and requires much less
computing power to complete, compared to training a model
from scratch.

Unfortunately, fine-tuning of giant models still require the
whole model to be resident in GPU memory, which is a chal-
lenge for commodity GPUs. Attempts to fine-tune models by
updating a subset of parameters [3, 15, 41] are not generally
applicable and their results are usually worse than fine-tuning
the entire model [44].

In summary, fine-tuning of giant models poses a challenge
that impedes their broader adoption.

3.2 I/O benefits of pipeline model parallelism

Pipeline execution has the potential to fully overlap commu-
nication and computation in each pipeline stage, thus making
the communication overhead negligible even on commodity
hardware. There are two primary reasons:
Low communication volume. First, in pipeline-parallel
training, as in any model-parallel training, GPUs communi-
cate intermediate activations and activation-gradients, which,
according to our experiments, are orders of magnitude smaller
than parameter-gradients communicated in data-parallelism,
and smaller than the number of state shards between workers.
For example, a T5-3B model partitioned into 8 stages com-
municates a total of 456.4MB for each forward and backward
pass across the whole pipeline (micro-batch size of 4, full
precision). In comparison, in a data-parallel approach, each
update requires collecting and aggregating 12GB of gradients
per worker.
Overlapping computation and communication . Pipelines
can overlap the communication with the next forward and/or
backward passes, and sometimes also with the parameter up-
date operation. This means that stages with large enough
computation-to-communication ratio (for GPipe: ≥ 0.5) can
completely overlap communication and computation. This
is indeed the case for all giant models we consider in this
work. For example, the aforementioned T5-3B achieves a per-
worker average computation-to-communication ratio of 0.96
and 0.98 for the forward and backward passes respectively,
even when communicated over PCIe.

3.3 Challenging load balance

GPipe and PipeDream obey model topology constraints when
distributing the model across GPUs. Specifically, only adja-
cent layers are scheduled to run together on the same GPU.

execution time

memory encoder encoder encoder dec dec dec

Figure 4: Partitioning unbalanced Encoder-Decoder models.
Seq-pipes can assign only adjacent layers per GPU, thus are
unable to partition the model for 3 GPUs in a balanced way
(dashed lines). In contrast, Mixed-pipe can map one encoder
and one decoder per GPU by assigning non-sequential layers
to run together on the same GPU.

Such an approach, which we call sequential pipeline, or seq-
pipe, fails to balance the DNN partitions across workers for
some models.

One specific example of practical importance is the
encoder-decoder architecture, widely used in NLP for
sequence-to-sequence tasks [8, 28, 44, 53]. Consider the T5
Text-To-Text Transformer model, which is currently the state-
of-the-art for many NLP tasks. When trained for question an-
swering, the question is fed into the encoder, and the answer
is fed into the decoder. In many cases, the answers are much
shorter than the questions (e.g., yes/no questions). Thus, such
training inputs cause a compute imbalance between encoders
and decoders, since the computations in attention layers scale
quadratically with the input sequence length. Furthermore, the
number of parameters in both layer types is equally large, so
grouping many “lightweight“ layers is not possible because it
would exceed GPU memory. Thus, partitioning such models
into a pipeline under strict model topology constraints (only
adjacent layers allocated to the same GPU) is prone to severe
compute and memory imbalance as illustrated in Figure 4.

PipeDream combines both pipeline- and data-parallelism,
potentially solving the load imbalance by running compute-
heavy stages on multiple GPUs using data parallel tech-
niques. However, the amount of additional GPUs required
may be impractical: consider the case of unbalanced encoder-
decoders as in Figure 4, with N decoders, N encoders, and a
computation-load ratio of k between encoder and decoder. A
memory limit which allows placing no more than M encoders
or decoders in the same device will imply that #GPUs= N

M ·K
additional data parallel GPUs are required. In T5-3B for exam-
ple, M≤ 12, N = 24, and K varies according to input sequence
lengths of encoder and decoder (we measured K = 5.5 for
two of our datasets where sequences where 512 and 4 respec-
tively).

In FTPipe, we overcome the limitations of existing pipeline
partitioning approaches and thus enable fast execution with
state-of-the-art accuracy for challenging fine-tuning tasks on
commodity GPUs.

4 FTPipe

Overview. FTPipe is a system for training giant models with
limited resources. It automatically transforms models which
do not fit into the memory of a single accelerator into a multi-
GPU pipelined training construction, and runs them on our
data-flow execution runtime. A computational graph of the
DNN model is decomposed into topologically sorted sub-
graphs, grouped into pipeline stages according to their graph
distance from the output (called depth). The number of stages
is determined according to the GPU assignment as discussed
in detail below. Computations are then performed according
to a work scheduler.

We now describe individual steps.
Tracing execution. Given a model and inputs, FTPipe first

identifies the directed acyclic computational data-flow graph
of the network. A computational graph representation of a
neural network is a directed graph G(V,E) where each inter-
mediate computational operation is a node v ∈ V and each
edge (u,v) = e ∈ E represents a connection according to com-
putation order which is determined by the forward pass (with
an indication of whether its also being used for the backward
pass). We refer to indivisible blocks of execution as basic
blocks. There are two granularity choices of basic blocks: full
layers (In PyTorch, a layer is a software abstraction defined
by ‘torch.nn.Module‘ class), or individual operations (default
setting). In the latter case, all operations visible in Python
are traced, without splitting compiled C++ code or CUDA
kernels.

Profiling. Each basic block is profiled to determine its
memory consumption and execution time for each of its com-
putational tasks, i.e., forward pass, recomputation (see Sec-
tion 4.3) and backward pass. Aggregation of these values
determines the block’s memory and computing requirements
used in the block-to-GPU assignment step. Tensor sizes for ac-
tivations and gradients are also recorded, and used to compute
communication times, given a bandwidth parameter.

We note that tracing and profiling pose an engineering
challenge on its own, since the models we discuss cannot run
on a single device, hence, for example, cannot be profiled nor
executed with dummy inputs to trace their execution graph.
We solve this problem by decoupling execution and swapping
layers, parameters, gradients, and activations in and out of
host memory when needed.

Model partitioning. The objective of pipeline partition-
ing is to maximize throughput under memory and resource
constraints. Maximizing throughput can also be described
as minimizing the maximal stage period Tmax among all the
pipeline stages. We define Ti for stage i as

Ti =C+max(0,Tcomm f wd −C)+max(0,Tcommbwd −C) (1)

where C = Tcompute f wd + Tcomputebwd and Tcomm f wd ,
Tcommbwd ,Tcompute f wd , Tcomputebwd are the times of com-
munication and computations for forward and backward

worker 0

worker 1

worker 2

forward
pass recomputation backward

pass

0 1 2

0 1

0 0

0 0

0 0

0 1 1 1 2 2 2

0 1 1 12

0 1 13 1 2 24

2 23 2

2

time

optimizer
step

Figure 5: FTPipe asynchronous training. FTPipe uses check-
pointing and recomputations to avoid storing multiple acti-
vations in memory. The last worker in the pipeline does not
recompute, yet has the same period, load-balanced through
profiling §4.3.

passes respectively (recomputation time is included in
Tcomputebwd).

GPU assignment. The Mixed-pipe approach significantly
inflates the search space of potential GPU allocations com-
pared to Seq-pipe, to the point that - for the giant networks
considered - an optimal, exhaustive assignment search (e.g.,
PipeDream’s) is infeasible. Thus, FTPipe’s GPU assignment
takes a practical approach, combining efficient general graph
partitioning and domain knowledge.

FTPipe employs several partitioning methods and let them
compete, eventually selecting the best result according to its fi-
nal throughput analysis via simulation. Among these schemes
are (a) Mixed-pipe partitioning which searches mixed-pipe
solutions as described in detail below, (b) PipeDream [37],
which performs exhaustive search on the space of all Seq-
pipes. (c) Acyclic [35,36] which performs a greedy search for
Seq-pipes, for which we changed the objective to optimize
pipeline throughput, and combined with memory constraints.
It is useful when an exhaustive search is too long to execute
(for a 2000 nodes graph exhaustive search on Seq-pipes takes
around 20 minutes). (d) Metis [24], a general graph parti-
tioning scheme that optimizes communications under load
balancing constraints. The output can be either a Seq-pipe
or a Mixed-pipe. It does not optimize pipeline throughput
directly.

Work scheduling. While FTPipe supports both syn-
chronous and asynchronous pipeline work schedules, full
fine-tuning acceleration benefits are obtained using an asyn-
chronous work scheduler illustrated at Figure 5. FTPipe is
a general pipelined data-flow execution. It supports concur-
rent stages, shared weights, and data staging. FTPipe’s work
scheduling uses checkpointing with careful stage profiles
(elaborated on in §4.3). In an asynchronous mode, for a stage
of depth d, FTPipe first computes d + 1 forward passes for
different micro-batches, filling the pipeline, then moves into
alternating between backward and forward passes, modifying
the model parameters after each mini-batch.

We next discuss Mixed-pipe partitioning and GPU assign-
ment in detail.

4.1 Mixed-pipe model partitioning
Seq-pipe partitioning proposed in prior works assigns only
adjacent DNN layers to every GPU in the pipeline. As a result,
such partitioning implicitly optimizes for reduced communi-
cations across GPUs, at the expense of fewer opportunities
to balance the load among them. Our intuition for Mixed-
pipe is that for giant models and commodity hardware, keep-
ing the computations balanced is sometimes more important
than reducing inter-GPU communications. Indeed, for giant
models, the overhead of pipeline data transfers is relatively
small compared to the computation load per accelerator (See
§3). We therefore posit that relaxing the DNN topology con-
straints and allowing smaller, multiple partitions per GPU may
improve load balance, while still affording communication-
computation overlap.

However, there are three main challenges in doing so: (a) it
is possible that small partitions might increase both communi-
cations and GPU invocation overheads; (b) without topology
constraints, an exhaustive search for optimal partitioning [37]
is not feasible; (c) for asynchronous pipelines, higher-depth
partitions may imply additional staleness, which may harm
model quality. The Mixed-pipe partitioning scheme addresses
these issues, and our evaluation empirically shows that the
final model quality is maintained.

For efficient partitioning that mixes blocks of operations
among the GPUs, it is imperative that changing the assign-
ment of a block from one GPU to another does not increase
communication penalty. To achieve this, notice that when the
ratio between computation and communication is sufficiently
high (see Equation 1), communication overhead is completely
mitigated in FTPipe by overlapping communication and com-
putation. Thus, to enable dynamic placement of blocks in
arbitrary GPUs, it is sufficient to ensure that the blocks have
this property, called the Communication-Computation Over-
lap (CCO). The CCO property of a block of operations is
easy to verify through profiling, taking into account both the
forward edges (activations) and backward edges (gradients).
We call a block with the CCO property a CCO block.

The Mixed-pipe partitioning algorithm receives a computa-
tional graph of a neural network, which specifies the (traced)
basic computational blocks annotated with their memory, com-
munication, and computing requirements. Then, partitioning
proceeds in three steps as follows:

4.1.1 Step 1: Coarsening: create L pipeline stages

The graph is coarsened by contracting edges and merging
their nodes to reduce its size (typically thousands of nodes)
to L non-input stages where each stage fits in GPU memory.
Throughout the process, a dynamic topological sort [40] is
maintained to ensure that edge contractions do not create
cycles.

Coarsening begins by eliminating nodes with either low
computational load or high communication load, since both

are bad candidates to become CCO blocks. First, all constants
and inputs are removed, later adding and duplicating them
if needed to spare redundant communications (typically this
process reduces the graph size by half). Second, nodes with
a weight of 0 (typically CPU operations) are eliminated by
merging them with their smallest neighbor (computation load-
wise). Third, nodes for which the communication volume is
above the 99th percentile are merged with their neighbors.

We proceed with coarsening with the goal of creating L
CCO blocks, to become L pipeline stages. The algorithms
involved are very fast, hence we try several coarsening heuris-
tics, of which we describe two that gave the best results for
giant networks we evaluated.

Coarsening by type. During tracing, the type and scope
of each node are recorded according to its definition in the
DNN code. By doing so, large groups of similar nodes can be
naturally merged, following user high-level abstractions (e.g.
merging all nodes inside ‘SelfAttention‘ block of a Trans-
former [53]). This usually creates many equal-sized blocks of
similar nodes, since giant networks typically contain repeated
modules. Our experience shows that this process outputs the
best partitioning of CCO blocks (and, consequently, pipeline
stages) for giant networks.

Coarsening around centers. Adjacent CCO blocks are
further joined together (notice that this maintains their CCO
property) while obeying the memory constraint, until the
block is sufficiently large to become a pipeline stage. One
way to do this is to assign L "center blocks" and repeatedly
merge their neighbors with them (obeying the memory con-
straint) in round-robin until no non-center block is left. This
procedure may repeat several times with different choices of
centers until a good packing of stages is obtained.

Choosing L. L is chosen at a sweetspot of the tradeoff
between large L, which enables better load balancing in Step
2, and small L, which is better staleness-wise. To this end,
we try several values of L (e.g. L = 2P,3P) where P is the
number of GPUs, and take the option yielding the best pipeline
throughput (measured at step 3 below), where L does not
exceed a pre-defined upperbound which can be found through
experimentation.

4.1.2 Step 2: Load balancing

L stages are assigned to P GPUs in a way that optimizes
load-balancing while ensuring that tasks allocated to the same
GPU fit in its memory.

The assignment to GPUs can be seen as a classical multipro-
cessor scheduling problem [26]. While the original problem
does not target the pipeline execution setup, in practice, and
when communications do not add overhead (the CCO prop-
erty), the optimal multiprocessor schedule is the one with a
balanced distribution of tasks among the processors, meeting
the goal of the pipeline assignment. Therefore, we apply the
broadly used Longest-Processing Time-First heuristics: the L

CCO stages are sorted in a descending order of their compu-
tation load, and are assigned to the next least busy GPU with
enough memory to run them.

Pipeline stages inside each GPU are created according to
the topological order of the stages in the computational graph.
A simple algorithm ensures that the depth of the stages is
minimized: merge connected components inside each GPU
as long as this does not create a cycle with other components.
During execution, a stage is invoked by the GPU when its
inputs are made available by completion of execution of all
previous stages.

4.1.3 Step 3: Refinement

We perform fine-grain tuning of the load balance achieved in
Step 2. First, the L stages are un-coarsened into their basic
blocks. Then, within each pipeline stage, we greedily find
blocks which, if moved to an adjacent stage in the pipeline,
can improve the throughput, or lower communication or im-
prove load balance (given also the memory constraints).

The complexity of Mixed-pipe partitioning is dominated by
the complexity of coarsening which is O(N2d), where d is the
average node degree. Assuming we try c different coarsening
strategies (e.g., initialization of centers, different choices of
L, etc.), the overall complexity is O(cN2d).

4.2 Fine-tuning with staleness

Asynchronous pipelines allow faster execution. However,
asynchrony introduces staleness. The key problem with stale-
ness is that it can potentially harm final model quality. Note,
however, that this is analogous to large batch training [47]
which proved to be a popular and useful technique when appli-
cable. In such cases, empirical evidence of acceleration while
maintaining model quality is of practical importance even
when shown only for some specific (yet important) cases.

Some staleness mitigation techniques introduce high over-
heads. For example, weight stashing, applied in PipeDream,
causes multiple versions of model weights to be stored for
the entire course of the pipeline round-trip. This implies that
in a pipeline with K workers, the first worker stores up to
K versions of weights, which might effectively nullify the
memory benefits of model partitioning across the GPUs.

In the case of pipeline execution of fine-tuning tasks, how-
ever, we observe that staleness does not have a major deteri-
orating effect on the training quality. There could be several
reasons for this phenomenon: (a) Staleness is higher in the
initial phase of the training [18], while in fine-tuning we start
with pre-trained weights; (b) Fine-tuning usually uses lower
learning rates, hence smaller staleness gaps [4]. (c) Momen-
tum [51] exacerbates staleness, but many fine-tuning tasks do
not use momentum. Furthermore, the part of staleness caused
by momentum can be mitigated using gradient accumulation
and momentum weight prediction [13], both can be employed

Setting Loss Forward Backward

Synchronous θt θt θt

Asynchronous θt−s θt−s θt

PipeDream θt−s θt−s θt−s

FTPipe θt−s θt θt

Table 1: Parameter versions during different phases of back-
propagation, under different pipeline execution scenarios. θ j
denotes parameters after j optimization steps. A stale param-
eter with delay of s is denoted θt−s. Notice that the pass used
for loss calculation (’loss’) and the pass used to compute
activations for backpropagation (’forward pass’) induce two
separate calculations.

by FTPipe with no memory overhead and a small compu-
tational overhead (< 5%, measured on Bert and GPT2). (d)
Large models appear to have smooth and slowly varying loss
functions [29], meaning that for large models, the stale loss
can be a close-enough approximation to the actual loss. In-
deed, as can be observed in the experiments Section 5, FTPipe
achieves state-of-the-art results with an asynchronous pipeline
of up to 16 stages, while avoiding the memory overheads of
staleness mitigation implemented in prior works [37].

4.2.1 Checkpointing and recomputation

Checkpointing [7,12] is a method to reduce memory by keep-
ing only a small state (essentially, partition-border activations
and the seed of the random number generator) rather than the
whole computation graph. Checkpointing takes place during
the forward pass while computing the loss. In this work, we
experimented with checkpointing at pipeline stage borders
similar to GPipe (In principle, checkpointing can be used at
higher granularity). During the backward pass, recomputation
reconstructs the parts of the computation graph required for
backpropagation.

Checkpointing is used by FTPipe for saving memory dur-
ing training, but it also mitigates staleness in two ways: First,
during backpropagation, recomputation implies that the gradi-
ents are computed on up-to-date parameters (but using a stale
loss that was computed in a forward pass on an older set of
parameters, Table 1). Second, more computations are shifted
toward the end of the pipeline where staleness is lower as a
result of the last pipeline stage not recomputing, which makes
it possible to increase its computational load by around 33%.

4.3 Profiling

In FTPipe’s asynchronous work scheduler (Figure 5) there are
two types of stages in the pipeline: (A) the last stage, which
does not recompute (B) other stages, which do recompute.

For this reason, the execution of the last stage is faster by
approximately 33% [17]. Hence, for precisely estimating the
load, FTPipe profiles blocks both with and without recompu-
tation. When a block is assigned to the last stage, it uses its
profile without recomputations, and vice versa. However, the
partitioning itself needs to know which profile to use when
the block goes through the coarsening process, and this profile
may eventually end up being the wrong one. Thus, several it-
erations of the partitioning algorithm may be needed to ensure
that the correct profile is selected.

5 Evaluation

In this section, we evaluate the performance of FTPipe.
Summary. First, we show that FTPipe significantly improves
the existing methods for fine-tuning of giant models.

Second, we show the benefit of Mixed-pipe for both syn-
chronous and asynchronous pipelines. In both cases, despite
communicating more and assigning non-consecutive layers
of the trained model to workers, we show that Mixed-pipe
accelerates execution compared to a Seq-pipe baseline.

Third, we show the benefits of fine-tuning giant models
asynchronously, despite the fact that asynchrony introduces
staleness. We do so by comparing FTPipe asynchronous
pipeline to GPipe synchronous pipeline when both are em-
ployed to train the same model using the same partitioning.
Our results show that FTPipe asynchronous pipeline is faster
to achieve the same top-accuracy of GPipe, across different
architectures, datasets, optimizers, and model sizes. Further-
more, our results empirically prove that the additional stale-
ness generated by the increased number of pipeline stages in
Mixed-pipe does not degrade its final accuracy.
Implementation. FTPipe has two main components: (a) an
automatic neural network partitioning and assignment which
builds a data-flow, and (b) a pipelined data-flow execution
runtime that executes the partitioned model on GPUs and
automatically handles work scheduling and inter-GPU com-
munications. We use CUDA-Aware OpenMPI for inter-GPU
communications. Our implementation accepts as the input a
neural network implemented in PyTorch [39] (Python API)
and the representative training inputs for this network. A par-
titioned model is automatically generated with everything
necessary for our runtime to run it.2

5.1 Experimental setup

Hardware. We use a server with 8 RTX2080-Ti GPUs each
with 11GB memory, connected via PCIe-III, 64-bit Ubuntu
18.04 with CUDA toolkit 10.2 and cuDNN v7.6.5. We note
that RTX2080 GPUs are considered 7x more cost-effective
than V100 [14].

2The source code of FTPipe is available at:
https://github.com/saareliad/FTPipe

Models and training methodology. We used three differ-
ent model architectures: Bert [11], GPT2 [43] and T5 [44].
These models represent the typical kinds of NLP architectures
used for fine-tuning: Bert is encoder-only, GPT2 is decoder-
only, and T5 is encoder-decoder. We took the PyTorch im-
plementations of the models and pretrained weights from
HuggingFace [57].

For each combination of (dataset, model, pipeline, partition-
ing), we chose the number of micro-batches that achieved the
best throughput while keeping the mini-batch size constant.
For example, GPipe prefers a higher number of micro-batches
for a given mini-batch size to increase its pipeline paralleliza-
tion level. In contrast, FTPipe prefers a lower number of
micro-batches as it uses inter-mini-batch parallelism.

Exact hyper parameters are reported in Appendix A.
Tasks and datasets. We use five different learning tasks

and six datasets: Natural Language Inference (NLI) using
RTE, Word Sense Disambiguation using WiC, Question an-
swering using SQuAD and MultiRC, Boolean Question An-
swering using BoolQ and Language Modeling using Wiki-
Text2 [34, 46, 55, 56].

Our choices are dictated by the following criteria. We
choose the task for a given model if that model is known
to achieve state-of-the-art results, implying that smaller mod-
els are inferior. For example, RTE, WiC, BoolQ, MultiRC
were chosen since T5 improved their accuracy considerably.
GPT2 for WikiText2 achieves state-of-the-art results. Our
fine-tuning improved the advertised results by 6.32 perplexity
points on the test set.

We fine-tuned all models and datasets, achieving accuracy
comparable to the top published results.
Baselines. Our choice of the baseline is restricted because of
the memory requirements of giant models. In particular, nei-
ther Single-GPU, data-parallellism [30] nor PipeDream [37]
without checkpointing meet these requirements. Hence, we
apply checkpointing to PipeDream. Mesh-TensorFlow model-
parallel framework [48] failed to run T5-3B, running out of
memory, even with checkpointing, FP16, and micro-batch
size of 1. This framework was originally used to run T5 on a
TPU cluster, but the commodity hardware restrictions impede
its use. In general, however, PipeDream already demonstrated
the throughput benefits of pipelined execution over the model-
parallel one, which applies to our work too.

GPipe is the only framework that successfully runs all
the evaluated models. We used synchronous execution with
GPipe to set the target accuracy in our experiments.

5.2 End-to-end evaluation

Table 2 shows that FTPipe outperforms GPipe for all the
cases in terms of time-to-top-accuracy. As expected, the main

https://github.com/saareliad/FTPipe

Table 2: Summary of the comparison of FTPipe with original GPipe Seq-pipe (synchronous pipeline, one stage per GPU) over 8
GPUs. TTA is Time to Top Accuracy. The top accuracy is according to GPipe’s best results. Speedup is a geomean of four runs
with random seeds. Mixed-pipe and Seq-pipe are denoted as “mixed” and “sequential” partitioning respectively. WSD is Word
Sense Disambiguation, NLI is Natural Language Inference, QA is Question Answering, and LM is Language Modeling.

Model Size Task Dataset Accuracy Partitioning Pipeline Speedup over GPipe Seq-pipe
Epoch time TTA

T5 3B

WSD WiC 74.92% mixed Async 2.48× 311.54×
Sync 1.19× 1.19×

NLI RTE 90.97% mixed Async 2.71× 4.1×
Sync 1.2× 1.2×

QA BoolQ 89.05% mixed Async 2.13× 2.88×
Sync 1.08× 1.08×

QA MultiRC 85.6 F1, 59.3 EM mixed Async 3.32× 3.32×
Sync 1.11× 1.11×

GPT2 1.5B LM WikiText2 12.02 perplexity sequential Async 1.6× 1.6×

Bert 340M QA Squad 93.3 F1, 87.2 EM sequential Async 2.04× 2.04×

wic rte boolq
GPipe

0

1

2

3

4

5

Ti
m

e
to

 A
cc

ur
ac

y
(H

ou
rs

)

1.
19

x

1.
20

x

1.
08

x

wic rte boolq
FTPipe

2.
47

x

1.
58

x

Seq-pipe
Mixed-pipe

Figure 6: Mixed-pipe speedup over Seq-pipe for reaching
top accuracy with T5-3B on three datasets and two pipelines:
GPipe (synchronous) and FTPipe (asynchronous).

speedup is due to faster epoch time, but it is not the only
factor.

To explain this phenomenon, Figure 7 shows an example
of FTPipe training accuracy over time for T5-3B on RTE. We
observe that both systems achieve 40% or higher accuracy
at about the same time, despite the extra epochs needed for
FTPipe. Nevertheless, FTPipe is much faster in the remaining
top 60%. The reason is FTPipe staleness, which impacts the
training process in the beginning, yet diminishes and becomes
negligible as the learning steps shorten [18].

In the following sections, we analyze the two factors
contributing to acceleration, namely Mixed-pipe and asyn-
chronous execution.

3 FTPipe required fewer epochs to achieve the top accuracy of GPipe.
The speedups vary from 3× to 40× over 4 runs with different seeds.

5.3 Effect of mixed-pipe partitioning

Figure 6 compares the contribution of our partitioning scheme
by evaluating different schemes separately for synchronous
and asynchronous pipelines for the T5 model on three dif-
ferent tasks and four datasets. Mixed-pipe runs 16 stages
(two per GPU). Seq-pipe runs eight stages. We observe that
Mixed-pipe is superior to Seq-pipe across all the experiments.
We observed that Mixed-pipe balances GPU memory occu-
pancy across GPUs for both synchronous and asynchronous
pipelines, keeping more free memory available, thus allow-
ing a bigger micro-batch size. Most importantly, Mixed-pipe
improves both synchronous and asynchronous. We note that
while the inter-GPU communication volume in Mixed-pipe is
higher than in Seq-pipe, 2.6× for MultiRC and BoolQ, 2.5×
for RTE and 3.31× for WiC, the benefits of improved load
balance outweigh the associated overheads.

The benefits and trade-offs Mixed-pipe introduces differs
for synchronous and asynchronous pipelines:

Synchronous pipeline. For the synchronous setting, using
Mixed-pipe can only improve performance and does not affect
accuracy. Figure 6 shows that Mixed-pipe improves the time-
to-accuracy of GPipe up to 1.2×.

Asynchronous pipeline. For FTPipe asynchronous
pipeline, Mixed-pipe may harm accuracy since it adds more
pipeline stages, which add staleness. However, in practice,
accuracy is not affected. Figure 6 shows that Mixed-pipe both
accelerates execution and achieves the same final accuracy
result of Seq-pipe. Figure 7 provides the explanation for this
phenomena: staleness affects mainly the beginning of the
computation, up to the point of reaching 40% of the target
accuracy. In this first part of the computation, staleness causes
Mixed-pipe to execute more epochs than Seq-pipe, yet they
both run at a similar wall-clock speed because Mixed-pipe is

0 1 2 3 4 5 6 7
Time (Hours)

86

87

88

89

90

91

92

Ac
cu

ra
cy

40%

100%

40%

100%

GPipe
FTPipe

0 10 20 30 40 50 60 70
Epochs

86

87

88

89

90

91

92

Ac
cu

ra
cy

40%

100%

40%

100%

GPipe
FTPipe

Figure 7: FTPipe acceleration over GPipe for fine-tuning T5-3B with Glue RTE dataset. FTPipe uses Mixed-pipe with 16 stages.
GPipe is a synchronous Seq-pipe with 8 stages. We denote the earliest times when at least 40% and 100% of the top accuracy is
achieved. Notice that FTPipe is much faster in achieving the last top 60%.

Memory

ut
iliz

at
io
n

Figure 8: Mixed-pipe load balancing visualization for asyn-
chronous pipelines with T5-3B model on the WiC dataset.
Each box is a GPU whose width represents memory consump-
tion and fill represents utilization. Top: Mixed-pipe. Bottom:
Seq-pipe.

much faster per epoch. In contrast, during the remaining part
of the computations from 40% to 100% of the target accuracy,
Mixed-pipe enjoys significant speedup over Seq-pipe with
negligible (if at all) effect of staleness as the learning steps
gradually shorten [18].

5.3.1 Load balancing analysis

In Figure 8, we present the load balancing analysis of Mixed-
pipe, using T5 as a representative example.

As illustrated in Figure 4, the T5 encoder-decoder archi-
tecture with unbalanced inputs sequences for encoder and
decoder poses a problem for Seq-pipe. In our experiments,
Seq-pipe with memory-unaware partitioning methods resulted
in out of memory run-time errors, whereas Seq-pipe with
memory-aware partitioning methods resulted in computa-

tional load imbalance. In contrast, Mixed-pipe achieves a
much better balance both for memory occupancy and compu-
tational load.

In summary, Mixed-pipe improves the performance over
Seq-pipe due to two main factors: (1) better computational
load balance and (2) better memory balance, thereby enabling
larger micro-batch size.

5.4 Effective fine-tuning with staleness
Table 3 summarises our results for three different model sizes
and five different tasks. Each task used the same model par-
titioning to train GPipe (synchronous) and FTPipe (asyn-
chronous). Note that these results differ from those in Table 2,
because here we use the Mixed-pipe partitioning scheme for
both FTPipe and GPipe.

In all experiments, FTPipe achieved the same or higher
accuracy than GPipe. We note that MultiRC, Squad and WiC
achieved slightly better results with FTPipe (85.99 F1 60.44
EM; 93.47 F1 87.38 EM; and 75.54 accuracy receptively).

5.5 FTPipe vs PipeDream
We implemented PipeDream partitioning based on their open-
source GitHub code. To focus on conceptual evaluation, the
partitioning algorithm is implemented on top of the techni-
cally superior tracing, profiling, compilation, and runtime sys-
tem of FTPipe, which can handle giant models. Furthermore,
it is necessary since only FTPipe supports sharing weights.
T5-3B: PipeDream partitioning of T5-3B for 8 GPUs required
around 20 minutes and yielded an infeasible solution with hy-
brid data- and pipeline-parallel stages, some of which do not
fit into GPU memory. In particular, lacking the way to specify
memory constraints, PipeDream ended up with more than
1.48B parameters in the last stage (a single 32GB V100 GPU
can handle only about 1.3B parameters [45]). It also produced

Table 3: FTPipe vs GPipe time-to-accuracy, using the same
Mixed-pipe partitioning. Top accuracy is set by GPipe best
results.

Dataset Model Parti Top Speedup
-tioning Accuracy Epoch TTA

wic T5-3B mixed 74.92% 2.09× 9.74×
rte T5-3B mixed 90.97% 2.25× 3.41×
boolq T5-3B mixed 89.05% 2.23× 2.67×
multirc T5-3B mixed 85.6 F1 2.98× 2.98×

59.3 EM

Wiki GPT2- seq 12.02 1.61× 1.61×
-Text2 1.5B perplexity

Squad Bert- seq 93.3 F1 2.04× 2.04×
340M 87.2 EM

an infeasible solution (OOM) when forced to create a simple
pipeline (no data-parallel stages). Note that a pipeline with
weight stashing and without gradient accumulation would not
be able to train T5-3B on 11GB GPUs, even if more GPUs
where used, as explained in §4.2.
GPT2-1.5B PipeDream failed to run GPT2-1.5B with 8
GPUs even with checkpointing.
BERT-large: When profiling with micro-batch of size 24,
and sequence length 384 (the suggested hyperparameters for
SQuAD [11]), PipeDream outputs a purely data-parallel solu-
tion (no pipeline) for 2, 4, and 8 GPUs. Such a solution does
not fit RTX2080-Ti GPUs even with batch size 1 . Only at
micro-batch size 1 PipeDream succeeded in creating a work-
ing pipeline for 2 GPUs. For fine-tuning SQuAD with 2 GPUs,
FTPipe was 12.7% faster than PipeDream in achieving the
same accuracy over 5 seeds (std was 1%), attributed to the
enhanced profiling of FTPipe.

For 4 GPUs, FTPipe was 4% faster than PipeDream
pipeline4. For 8 GPUs, both PipeDream (pipeline) and FT-
Pipe achieve comparable accuracy at comparable times, since
the advantage of FTPipe profiling diminishes as the number
of pipeline workers increases.

5.6 Layers-graph vs Operators-graph

We evaluate the contribution of fine-grain partitioning to the
end-to-end performance of T5-3B using WiC dataset.

For Mixed-pipe partitioning the operators-graph results in
epoch speedup of 2.2% for the asynchronous pipeline and
1.6% for the synchronous pipeline, compared to the cases
of partitioning the layers-graph (standard deviation less than
0.01%). This implies that the primary source of speedup for

4We noticed that PipeDream models data-parallel communication as
completely concurrent to computation, but in practice, 30% of the communi-
cations do not overlap [30]. Changing the modeling led PipeDream to output
a pipeline solution.

8 10 12 14 16 24 32 48 64
L

1.0

1.2

1.4

1.6

Sp
ee
du

p

Figure 9: Mixed-pipe performance for different values of L.

this case comes from relaxing the neural network topology
when mapping layers (or operators) to GPUs.

However, this is not always the case. We build a small
version of T5-11B, with 1 encoder layers and 1 decoder layer
(535M parameters), and compare the partitions for P = 2
GPUs, once at the granularity of whole layers, and once at
the granularity of operators. The latter achieves 45% better
min-max-stage-time objective in our simulation.

We also note that the layers-graph is not explicitly ex-
pressed in some cases, leaving the operator-granular parti-
tioning as the only option. This is the case, for example, when
importing a graph defined in ONNX [2] for further fine-tuning
before deployment, or if a programmer does not use the layer
software abstraction when defining the network (in PyTorch:
‘torch.nn.Module‘).

5.7 Mixed-pipe sensitivity to L

We explore the sensitivity of the Mixed-pipe performance to
the choice of L.

In Figure 9 we show the partitioning objective speedup for
T5-3B (BoolQ) for P = 8 GPUs when using different L for
partitioning, with FTPipe’s asynchronous scheduler (Figure 5).
We observe that that the sweetspot is at L = 16.

5.8 Mixed-pipe vs Seq-pipe for larger models
In this experiment, we partitioned the T5-11B model (BoolQ
dataset) to four 32GB V100 GPUs using both Mixed-pipe and
Seq-pipe. Mixed-pipe partitioning allowed training the model
using 7 workers. Unfortunately, Seq-pipe partitioning resulted
in an out-of-memory error. This experiment highlights the
importance of better memory balancing among the nodes to
allow fine-tuning huge models.

6 Related Work

Parallel, memory efficient methods for training giant neu-
ral networks fall into three categories: Sharded Data Paral-
lelism [45], Intra Layer Model Parallelism [48, 50], and syn-
chronous pipeline parallelism with checkpointing [17]. The
communication volumes of intra-layer model-parallelism and

shared data-parallelism cannot be overlapped entirely and are
too high for commodity interconnects. GPipe [17], similar
to sharded data-parallelism, can be made efficient and hide
synchronization overheads when using large mini-batches
with many micro-batches. However, this is not generally ap-
plicable to the batch size used with fine-tuning. Compressing
the communication of data-parallelism [32] can significantly
reduce its communication volume, making it more suitable
for commodity interconnects. For giant networks, however,
a combination with another memory reduction technique is
required.

In another line of works [18, 19, 21, 59], the backward pass
is decoupled and is performed in parallel, but the forward
pass is sequential. In Ouroboros [59], shared embedding (aka
Tied Weights [20, 42]) of small Transformers were manu-
ally placed on the same GPU. In FTPipe, shared weights can
also be placed on different GPUs, and it is done with auto-
matic partitioning and with pipelining where communication
is overlapped.

PipeDream [37] solves pipeline imbalance problems by
incorporating data-parallelism with seq-pipes, allowing a dif-
ferent number of data-parallel GPUs per pipeline stage. This
solution requires more GPUs than Mixed-pipe to balance
some architectures (see §3.3).

Our experiments with giant models show that the exhaus-
tive search of PipeDream can take a long time for large compu-
tational graphs (where FTPipe search took few seconds) and
is infeasible for Mixed-pipe. METIS [24] rapidly partitions
large computational graphs by multilevel graph partitioning.
However, it is focused on optimizing edge-cut under load bal-
ance constraints and not on the pipeline throughput. When
applied to pipelines, it sometimes unnecessarily creates addi-
tional small stages, which Mixed-pipe bounds from above by
L.

Concurrently and independently of our work, Tarnawski
et al [52] considered searching for non-contiguous pipeline
solutions with Integer Programming. They did not model
communication and computation overlap and did not limit
the number of stages L, thus also ignoring staleness. They did
not find the optimal solution and stopped the search after 20
minutes for models smaller than those considered here.

Several asynchronous model parallelization methods have
been recently proposed [38, 58]. These works use Seq-pipes
and would suffer from imbalance problems solved by Mixed-
pipe. FTPipe could be used in heterogeneous systems [38],
but the large search space requires additional heuristics.
GEMS [22] improve synchronous pipelines in case multiple
replicas could fit in the accelerators. Li et al. [31] proposed
token-level parallelism which applies to causal language mod-
els (only GPT2 in our experiments), and is complementary to
FTPipe.

7 Conclusion

Fine-tuning has the potential to bring the power of huge neu-
ral networks to users who do not possess high performance
compute resources. In this paper we survey the challenges in-
troduced by this paradigm and take a big step towards solving
them by enabling fine tuning on affordable commodity hard-
ware. Our future work will show that FTPipe can scale beyond
single-machine boundaries, can achieve higher efficiency by
incorporating data-parallel components, and can bring value
to non-NLP communities. We hope that the ideas underly-
ing Mixed-pipe can apply beyond fine-tuning, to training in
general.

8 Acknowledgements

We thank our shepherd Tim Harris for the insightful comments
that helped us improve the paper. This work was supported in
part by the Israeli Ministry of Science, Technology, and Space,
the Israeli Science Foundation, and by The Hasso Plattner
Institute at the Technion.

References

[1] Nvidia ngc. https://NGC.nvidia.com.

[2] Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neu-
ral network exchange. https://github.com/onnx/
onnx, 2019.

[3] Ankur Bapna and Orhan Firat. Simple, scalable adapta-
tion for neural machine translation. In Proceedings of
the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 1538–1548, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics.

[4] Saar Barkai, Ido Hakimi, and Assaf Schuster. Gap-aware
mitigation of gradient staleness. In International Con-
ference on Learning Representations, 2020.

[5] Tal Ben-Nun and Torsten Hoefler. Demystifying parallel
and distributed deep learning: An in-depth concurrency
analysis. ACM Computing Surveys (CSUR), 52(4):1–43,
2019.

[6] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

[7] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos
Guestrin. Training deep nets with sublinear memory
cost. arXiv preprint arXiv:1604.06174, 2016.

https://NGC.nvidia.com
https://github.com/onnx/onnx
https://github.com/onnx/onnx

[8] Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using RNN encoder–decoder for statistical
machine translation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, Doha, Qatar,
October 2014. Association for Computational Linguis-
tics.

[9] Wei Dai, Yi Zhou, Nanqing Dong, Hao Zhang, and Eric
Xing. Toward understanding the impact of staleness in
distributed machine learning. In International Confer-
ence on Learning Representations, 2019.

[10] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Marc’aurelio Ranzato, An-
drew Senior, Paul Tucker, Ke Yang, et al. Large scale
distributed deep networks. In Advances in neural infor-
mation processing systems, pages 1223–1231, 2012.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Pro-
ceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapolis, Min-
nesota, June 2019. Association for Computational Lin-
guistics.

[12] Andreas Griewank and Andrea Walther. Algorithm 799:
revolve: an implementation of checkpointing for the
reverse or adjoint mode of computational differentiation.
ACM Transactions on Mathematical Software (TOMS),
26(1):19–45, 2000.

[13] Ido Hakimi, Saar Barkai, Moshe Gabel, and Assaf Schus-
ter. Taming momentum in a distributed asynchronous
environment. arXiv preprint arXiv:1907.11612, 2019.

[14] Dodi Heryadi and Scott Hampton. Characterizing per-
formance improvement of gpus. In Proceedings of the
Practice and Experience in Advanced Research Com-
puting on Rise of the Machines (learning), pages 1–5.
2019.

[15] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. Parameter-
efficient transfer learning for NLP. volume 97 of Pro-
ceedings of Machine Learning Research, pages 2790–
2799, Long Beach, California, USA, 09–15 Jun 2019.
PMLR.

[16] Jeremy Howard and Sebastian Ruder. Universal lan-
guage model fine-tuning for text classification. In Pro-
ceedings of the 56th Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers),
pages 328–339, Melbourne, Australia, July 2018. Asso-
ciation for Computational Linguistics.

[17] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan
Firat, Dehao Chen, Mia Chen, HyoukJoong Lee, Jiquan
Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient
training of giant neural networks using pipeline paral-
lelism. In Advances in Neural Information Processing
Systems, pages 103–112, 2019.

[18] Zhouyuan Huo, Bin Gu, and Heng Huang. Training
neural networks using features replay. In Advances in
Neural Information Processing Systems, pages 6659–
6668, 2018.

[19] Zhouyuan Huo, Bin Gu, qian Yang, and Heng Huang.
Decoupled parallel backpropagation with convergence
guarantee. volume 80 of Proceedings of Machine Learn-
ing Research, pages 2098–2106, Stockholmsmässan,
Stockholm Sweden, 10–15 Jul 2018. PMLR.

[20] Hakan Inan, Khashayar Khosravi, and Richard Socher.
Tying word vectors and word classifiers: A loss
framework for language modeling. arXiv preprint
arXiv:1611.01462, 2016.

[21] Max Jaderberg, Wojciech Marian Czarnecki, Simon
Osindero, Oriol Vinyals, Alex Graves, David Silver, and
Koray Kavukcuoglu. Decoupled neural interfaces using
synthetic gradients. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70,
pages 1627–1635. JMLR. org, 2017.

[22] Arpan Jain, Ammar Awan, Asmaa Aljuhani, Jahanzeb
Hashmi, Quentin Anthony, Hari Subramoni, Dha-
baleswar Panda, Raghu Machiraju, and Anil Parwani.
Gems: Gpu-enabled memory-aware model-parallelism
system for distributed dnn training. In 2020 SC20: Inter-
national Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 621–635.
IEEE Computer Society, 2020.

[23] Norman P Jouppi, Cliff Young, Nishant Patil, David Pat-
terson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates,
Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing
unit. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), pages
1–12. IEEE, 2017.

[24] George Karypis and Vipin Kumar. Multilevelk-way par-
titioning scheme for irregular graphs. Journal of Parallel
and Distributed computing, 48(1):96–129, 1998.

[25] Diederik P Kingma and Lei Ba. J. ADAM: a method
for stochastic optimization. In International Conference
on Learning Representations, 2015.

[26] Yu-Kwong Kwok and Ishfaq Ahmad. Static schedul-
ing algorithms for allocating directed task graphs to
multiprocessors. ACM Computing Surveys (CSUR),
31(4):406–471, 1999.

[27] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, De-
hao Chen, Orhan Firat, Yanping Huang, Maxim Krikun,
Noam Shazeer, and Zhifeng Chen. Gshard: Scaling gi-
ant models with conditional computation and automatic
sharding. arXiv preprint arXiv:2006.16668, 2020.

[28] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. Bart: Denois-
ing sequence-to-sequence pre-training for natural lan-
guage generation, translation, and comprehension. arXiv
preprint arXiv:1910.13461, 2019.

[29] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and
Tom Goldstein. Visualizing the loss landscape of neu-
ral nets. Advances in neural information processing
systems, 31:6389–6399, 2018.

[30] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith,
Brian Vaughan, Pritam Damania, et al. Pytorch dis-
tributed: Experiences on accelerating data parallel train-
ing. arXiv preprint arXiv:2006.15704, 2020.

[31] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang
Zhuo, Hao Zhang, Dawn Song, and Ion Stoica. Terapipe:
Token-level pipeline parallelism for training large-scale
language models. arXiv preprint arXiv:2102.07988,
2021.

[32] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill
Dally. Deep gradient compression: Reducing the com-
munication bandwidth for distributed training. In In-
ternational Conference on Learning Representations,
2018.

[33] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In International Conference on
Learning Representations, 2019.

[34] Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models. arXiv
preprint arXiv:1609.07843, 2016.

[35] Orlando Moreira, Merten Popp, and Christian Schulz.
Graph partitioning with acyclicity constraints. arXiv
preprint arXiv:1704.00705, 2017.

[36] Orlando Moreira, Merten Popp, and Christian Schulz.
Evolutionary multi-level acyclic graph partitioning. In
Proceedings of the Genetic and Evolutionary Computa-
tion Conference, pages 332–339, 2018.

[37] Deepak Narayanan, Aaron Harlap, Amar Phanishayee,
Vivek Seshadri, Nikhil R Devanur, Gregory R Ganger,
Phillip B Gibbons, and Matei Zaharia. Pipedream: gen-
eralized pipeline parallelism for dnn training. In Pro-
ceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 1–15, 2019.

[38] Jay H Park, Gyeongchan Yun, Chang M Yi, Nguyen T
Nguyen, Seungmin Lee, Jaesik Choi, Sam H Noh, and
Young-ri Choi. Hetpipe: Enabling large dnn training on
(whimpy) heterogeneous gpu clusters through integra-
tion of pipelined model parallelism and data parallelism.
arXiv preprint arXiv:2005.14038, 2020.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
Pytorch: An imperative style, high-performance deep
learning library. In Advances in neural information
processing systems, 2019.

[40] David J Pearce and Paul HJ Kelly. A dynamic topologi-
cal sort algorithm for directed acyclic graphs. Journal
of Experimental Algorithmics (JEA), 11:1–7, 2007.

[41] Matthew E. Peters, Sebastian Ruder, and Noah A. Smith.
To tune or not to tune? adapting pretrained representa-
tions to diverse tasks. In Proceedings of the 4th Work-
shop on Representation Learning for NLP (RepL4NLP-
2019), pages 7–14, Florence, Italy, August 2019. Asso-
ciation for Computational Linguistics.

[42] Ofir Press and Lior Wolf. Using the output embedding
to improve language models. In Proceedings of the 15th
Conference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Papers,
pages 157–163, Valencia, Spain, April 2017. Associa-
tion for Computational Linguistics.

[43] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. OpenAI Blog, 1(8),
2019.

[44] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. Journal
of Machine Learning Research, 21(140):1–67, 2020.

[45] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. Zero: Memory optimization towards
training a trillion parameter models. arXiv preprint
arXiv:1910.02054, 2019.

[46] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. SQuAD: 100,000+ questions for machine

comprehension of text. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language
Processing, pages 2383–2392, Austin, Texas, November
2016. Association for Computational Linguistics.

[47] Christopher J Shallue, Jaehoon Lee, Joe Antognini,
Jascha Sohl-Dickstein, Roy Frostig, and George E Dahl.
M. arXiv preprint arXiv:1811.03600, 2018.

[48] Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, et al. Mesh-tensorflow: Deep learning for super-
computers. In Advances in Neural Information Process-
ing Systems, pages 10414–10423, 2018.

[49] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive
learning rates with sublinear memory cost. volume 80
of Proceedings of Machine Learning Research, pages
4596–4604, Stockholmsmässan, Stockholm Sweden, 10–
15 Jul 2018. PMLR.

[50] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter language
models using gpu model parallelism. arXiv preprint
arXiv:1909.08053, 2019.

[51] Ilya Sutskever, James Martens, George Dahl, and Ge-
offrey Hinton. On the importance of initialization and
momentum in deep learning. In International confer-
ence on machine learning, pages 1139–1147, 2013.

[52] Jakub Tarnawski, Amar Phanishayee, Nikhil R. Devanur,
Divya Mahajan, and Fanny Nina Paravecino. Efficient
algorithms for device placement of dnn graph operators.
In Neural Information Processing Systems (NeurIPS
2020), December 2020.

[53] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Ad-
vances in neural information processing systems, pages
5998–6008, 2017.

[54] Mohamed Wahib, Haoyu Zhang, Truong Thao Nguyen,
Aleksandr Drozd, Jens Domke, Lingqi Zhang, Ryousei
Takano, and Satoshi Matsuoka. Scaling distributed deep
learning workloads beyond the memory capacity with
karma. arXiv preprint arXiv:2008.11421, 2020.

[55] Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel Bowman. Superglue: A stickier benchmark for
general-purpose language understanding systems. In
Advances in Neural Information Processing Systems,
pages 3266–3280, 2019.

[56] Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. GLUE: A
multi-task benchmark and analysis platform for natural
language understanding. In Proceedings of the 2018
EMNLP Workshop BlackboxNLP: Analyzing and Inter-
preting Neural Networks for NLP, pages 353–355, Brus-
sels, Belgium, November 2018. Association for Compu-
tational Linguistics.

[57] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and
Jamie Brew. Huggingface’s transformers: State-of-the-
art natural language processing. ArXiv, abs/1910.03771,
2019.

[58] An Xu, Zhouyuan Huo, and Heng Huang. On the ac-
celeration of deep learning model parallelism with stale-
ness. In The IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

[59] Qian Yang, Zhouyuan Huo, Wenlin Wang, and Lawrence
Carin. Ouroboros: On accelerating training of
transformer-based language models. In Advances in
Neural Information Processing Systems, pages 5520–
5530, 2019.

[60] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell,
Russ R Salakhutdinov, and Quoc V Le. Xlnet: Gener-
alized autoregressive pretraining for language under-
standing. In Advances in neural information processing
systems, pages 5753–5763, 2019.

[61] Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu.
Staleness-aware async-SGD for distributed deep learn-
ing. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, 2016.

[62] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen,
Nenghai Yu, Zhi-Ming Ma, and Tie-Yan Liu. Asyn-
chronous stochastic gradient descent with delay com-
pensation. In International Conference on Machine
Learning, pages 4120–4129. PMLR, 2017.

Table 4: Hyper-parameters we used. Accum stands for gradi-
ent accumulation steps (micro batches). Batch is mini-batch
size. Max steps are the max steps the model was trained for.

Dataset Pipeline Batch Accum Max steps

squad
ftpipe-seq 24 1 2 epochs
gpipe-seq 24 8 2 epochs

wikitext2 ftpipe/gpipe-seq 8 8 1 epoch

rte
ftpipe-seq 40 10 4200
ftpipe-mixed 40 5 4200
gpipe-seq/mixed 40 10 4200

wic
ftpipe-seq 128 4 17000
ftpipe-mixed 128 2 17000
gpipe-seq/mixed 128 8 17000

boolq
ftpipe-seq 20 10 3200
fpipe-mixed 20 5 3200
gpipe-seq/mixed 20 10 3200

multirc
ftpipe-seq 8 4 17000
fpipe-mixed 8 2 17000
gpipe-seq/mixed 8 8 17000

Appendix A Hyper-parameters

Table 4 lists the experiments’ hyper-parameters. A check-
point was saved after every epoch and for WiC every 100
steps. In the T5 and GPT2 experiments, we utilized gradient
accumulation to achieve the desired batch size.

T5 experiments used Adafactor optimizer [49] with learn-
ing rate of 0.01 and a warm-up of approximately 6% of total
fine-tuning steps.

GPT2 experiments used AdamW [33] optimizer with
weight decay of 0.01 and a learning rate of 5e-5, decreas-
ing linearly to zero. First and second moment coefficients are
0.9 and 0.999, respectively. We used a mini-batch size of 8
and max sequence length of 1024. We fine-tuned GPT2 for
one epoch since further fine-tuning caused over-fitting. Due
to large memory consumption caused by the large sequence-
length (1024), we used a batch size of 1.

BERT experiments used Adam [25] optimizer with first
and second moment coefficients of 0.9 and 0.999 receptively,
a learning rate of 3e-5 decreasing linearly to zero. We trained
for 2 epochs with mini-batch size of 24 and max sequence
length of 384. We loaded weights pre-trained with whole-
word-masking.

	Introduction
	Background
	Motivation
	Importance of fine-tuning giant models
	I/O benefits of pipeline model parallelism
	Challenging load balance

	FTPipe
	Mixed-pipe model partitioning
	Step 1: Coarsening: create L pipeline stages
	Step 2: Load balancing
	Step 3: Refinement

	Fine-tuning with staleness
	Checkpointing and recomputation

	Profiling

	Evaluation
	Experimental setup
	End-to-end evaluation
	Effect of mixed-pipe partitioning
	Load balancing analysis

	Effective fine-tuning with staleness
	FTPipe vs PipeDream
	Layers-graph vs Operators-graph
	Mixed-pipe sensitivity to L
	Mixed-pipe vs Seq-pipe for larger models

	Related Work
	Conclusion
	Acknowledgements
	Hyper-parameters

