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Stateful Packet Processing 

Programmable SwitchFixed-function Switch

Stateless processing Stateful processing
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Current Trend: In-Switch Acceleration
SilkRoad: Making Stateful Layer-4 Load Balancing 

Fast and Cheap Using Switching ASICs 
[SIGCOMM 2017]

Heavy-Hitter Detection Entirely in the Data 
Plane 

[SOSR 2017]

Offloading Real-time DDoS Attack Detection 
to Programmable Data Planes 

[IM 2019] 

Cheetah: Accelerating Database Queries with 
Switch Pruning 
[SIGMOD 2020]
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Designed for a single-switch



The Case for Many-Switch Designs

Not all information is available on all switches

Scalability AvailabilityLocality
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Example: Reactive Applications (DDoS detector)
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Forwarding 
Logic

Frequency 
estimation
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Example: Reactive Applications (DDoS detector)



Challenge: Network-Wide DDoS Detector
Controller

Mismatch between the 
control and data plane 

processing rate

An ad-hoc solution
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Our Work: Data Plane Replication

Sketches are replicated 
entirely in the data-plane with 

provable consistency 
guarantees 8

Data-plane replication opens the door  
for new in-switch application designs



Agenda

• The case for data-plane replication

• SwiSh design and challenges

• Experimental results
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SwiSh Design

SwiSh Protocol

Shared 
variable

Shared 
variable

3 different 
consistency levels for 

shared variables

Reusable APIs for 
application developersSwiSh API

One big switch
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In-Switch Replication Protocols

• Strong Read-Optimized (SRO)
• NAT

• Eventual Write-Optimized (EWO)
• Rate limiter

• Strong Delay-Writes (SDW)
• Sketch-based applications
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SDW Challenges
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• C1: What is the most suitable consistency level for replicating 
sketches?

• C2: How to deal with packet drops?



C1: Consistency vs. Performance 
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What is the right 
consistency level?

How efficient can 
the protocol be?



C1: Consistency vs. Performance

Consistency level

Weak

Updates

High bandwidth overhead

Switches have different 
views of the sketch

Inconsistent
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C1: Consistency vs. Performance

Consistency level

Strong

Chain Replication

High latency overhead

Switches cannot apply 
updates concurrently
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Solution: Strong Delayed-Writes (SDW)

Consistency level

r-relaxed strong 
linearizability

SDW protocol

Low latency
Constant #replication messages

Provable precise error 
bounds for sketches
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Provably correct



SDW Protocol

Read Update Sync
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SDW Protocol

Reads and writes 
are applied locally

Read Update Sync
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SDW Protocol

Round-based 
protocolWindow id = 0

Sync
Window id = 0

Sync
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SDW Protocol

Window id = 0

Updates

Sync
Window id = 0

Sync
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SDW Protocol

Window id = 0

Updates

ACK

Sync
Window id = 0

Sync
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C2: Dealing with Packet Drops

Window id = 0

Updates

Sync
Window id = 0

Sync
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Common solution: implementing reliable delivery over an 
unreliable network



C2: Packet Buffering is Expensive

Window id = 0

Updates

Sync
Window id = 0

Sync
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Solution: Reproducible Updates

Window id = 0

Rebuild updates from the buffer

Sync
Window id = 0

Sync
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ACK-CHECK

What if we already merged 
updates from other switches?



Solution: Reproducible Updates

Sync-Source
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Sync-Merge



SDW Protocol

Window id = 0

Once all updates and ACKs 
are received we can slide 

the window

Read Update

Sync

Window id = 1

Sync

Read Update
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Efficient Register Swapping

Sync-Merge Sync-SourceRead Update

Register Register
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In the paper…

• Theoretical proof of SDW consistency guarantees 

• Recovery protocols

• Asymmetric topologies
• Ready phase

• SDW design

• Eventual Write-Optimized (EWO)
• Eventual consistency (low read/write latency)

• Strong Read-Optimized (SRO)
• Strong consistency
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Evaluation

• Three real-world application:
• NAT

• Rate limiter

• DDoS Detector

• Microbenchmarks and scalability analysis

• Recovery time
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Evaluation
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Super-spreader Detector

Attacker

50%
50%
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#(S, dst) > 1K -> Block

Sends 10K packets with the 
same source IP to different 

destinations

We measure how many 
packets are received



Push Design

Attacker

50%
50%
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#(S, dst) > 0.5K -> Notify(S)
#Updates(S) == 2 -> Block(S)



Pull Design

Attacker

50%
50%
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#(S, dst) > 0.5K -> Store(S)

#Ocurrences(S) == 2 -> Block(S)



Data Plane-Only Design

Attacker
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50%
50%

SDW replicates the sketch



Super-spreader Detector: Results
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More sources to process

Ideal



Super-spreader Detector
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Packet drops at the 
controller

The controller blocks 
sources that won’t be 

used in the future

SDW performs ideally



Conclusions

• Data plane replication is essential for reactive in-switch applications

• SwiSh provide reusable APIs for building distributed in-switch 
applications

• SwiSh provides a provably correct SDW protocol for sketch replication

• SwiSh is practical, performant and fault tolerant

• Rethink distributed in-switch applications design

37liorz@campus.technion.ac.il

Thank you!
Questions?


