
Scaling Open vSwitch with a Computational Cache

Alon Rashelbach, Ori Rottenstreich, Mark Silberstein
Technion

Abstract
Open vSwitch (OVS) is a widely used open-source virtual
switch implementation. In this work, we seek to scale up OVS
to support hundreds of thousands of OpenFlow rules by accel-
erating the core component of its data-path - the packet clas-
sification mechanism. To do so we use NuevoMatch, a recent
algorithm that uses neural network inference to match packets,
and promises significant scalability and performance benefits.
We overcome the primary algorithmic challenge of the slow
rule update rate in the vanilla NuevoMatch, speeding it up by
over three orders of magnitude. This improvement enables
two design options to integrate NuevoMatch with OVS: (1)
using it as an extra caching layer in front of OVS’s megaflow
cache, and (2) using it to completely replace OVS’s data-
path while performing classification directly on OpenFlow
rules, and obviating control-path upcalls. Our comprehen-
sive evaluation on real-world packet traces and ClassBench
rules demonstrates the geometric mean speedups of 1.9× and
12.3× for the first and second designs, respectively, for 500K
rules, with the latter also supporting up to 60K OpenFlow rule
updates/second, by far exceeding the original OVS.

1 Introduction

Open vSwitch (OVS) [22] is one of the most popular soft-
ware switches used by cloud providers to implement software-
defined networks [1, 8, 23]. As part of its main tasks, OVS
classifies packets according to a set of match-action tuples,
i.e., OpenFlow rules dynamically installed by the network con-
troller. To achieve high throughput, OVS adopts the fast/slow
path separation principle: the majority of the packets are clas-
sified in the fast data-path, which maintains a megaflow cache
optimized for speedy matching. Upon a miss, OVS invokes
the slower upcall into a control-path, which populates the
megaflow cache with tuples called megaflows.

Unfortunately, OVS suffers from two primary scalability
issues. First, the megaflow cache becomes slower as the num-
ber of megaflows in it grows. Our experiments (§3) show that

with 500K megaflows, OVS is about an order of magnitude
slower than with 1K megaflows. Importantly, the cache might
hold a large number of megaflows even if the number of the
original OpenFlow rules is small. This is because when OVS
populates the cache, it transforms the relevant OpenFlow rules
into a set of non-overlapping megaflows [22]. As a result, the
OpenFlow rules might get fragmented; under certain common
traffic patterns, this fragmentation leads to a dramatic increase
in the number of megaflows in the cache [3, 4].

The second problem is the performance degradation that oc-
curs when new rules are inserted into OVS by a network con-
troller. We observe (§3) that the throughput might be affected
significantly even when adding only a few dozens of new
OpenFlow rules at a time. The main reason stems from the
need to enforce the non-overlapping property of megaflows,
which might cause OVS to remove existing megaflows, lead-
ing to slow path upcalls. Clearly, the problem gets worse in
systems with frequent rule updates.

In this work, we seek to overcome these OVS limitations.
Our key idea is to leverage the recently published algorithm
for packet classification, called NuevoMatch [26, 27], which
was shown to significantly outperform state-of-the-art alter-
natives when scaling to a large number of OpenFlow rules.
NuevoMatch uses shallow neural networks comprising a
Range-Query Recursive Model Index (RQ-RMI) to learn the
distribution of the rules. The rule lookup is translated into
neural-network inference that replaces the traditional index
data structure traversal. Upon an update, new rules are first
added to a slow-path remainder classifier, and the model is pe-
riodically retrained to incorporate them in the fast path. Thus,
the RQ-RMI model serves as a computational cache for the
remainder, while retraining the model is equivalent to filling
that cache. The scalability of NuevoMatch follows from its
small memory footprint and efficient use of CPU hardware,
which together enable fast execution on modern CPUs [26].

However, our initial attempts to integrate OVS and Nuevo-
Match revealed one critical limitation of the original algo-
rithm: its inability to accommodate fast updates. When rules
are modified, NuevoMatch must retrain the RQ-RMI model

from scratch on the updated rule-set, in order to reach its full
performance potential. Unfortunately, RQ-RMI training time
is too long and cannot support the required update rate, partic-
ularly with a large number of OpenFlow rules as targeted by
our work. Our analysis (§3) shows that the NuevoMatch train-
ing rate is orders of magnitude slower than the one necessary
to achieve its promised performance benefits.

We tackle this challenge by introducing NuevoMatchUP
which extends the original NuevoMatch training algorithm
and improves the training rate by over three orders of magni-
tude. Thus, it requires only a few milliseconds to train tens
of thousands of rules, and about one second for 500K rules,
thereby paving the way to the practical integration of compu-
tational cache into OVS.

We consider two design options for integrating Nuevo-
MatchUP with OVS. The first design, OVS with computa-
tional cache (OVS-CCACHE), targets the scalability of the
megaflow cache by accelerating it with NuevoMatchUP. OVS-
CCACHE achieves higher throughput than the original design,
but unfortunately inherits the low rule update performance. To
support fast updates, we introduce OVS with computational
flows (OVS-CFLOWS), which leverages the power of Nuevo-
MatchUP to efficiently match complex OpenFlow rules and
obviates the need for the megaflow cache and fast-slow path
separation of the original OVS. This change eliminates the
the key bottleneck that restricts the rule update rates in the
original OVS.

We comprehensively evaluate OVS-CCACHE and OVS-
CFLOWS using real-world CAIDA [2] and MAWI [37] traces,
and the standard ClassBench-generated rule-sets [32]. OVS-
CCACHE improves the megaflow cache performance, achiev-
ing the end-to-end geometric mean speedups of 1.5×, and
1.9× for 100K, and 500K OpenFlow rules, respectively.

OVS-CFLOWS sidesteps the control-path limitations and
is thus significantly faster, with the end-to-end geometric
mean speedups of 2.6×, 8.5×, and 12.3× for 1K, 100K, and
500K OpenFlow rules, respectively. Moreover, OVS-CFLOWS
handles more than 60K OpenFlow rule updates/second.

These results demonstrate the first practical use of RQ-RMI
models in a production packet processing system, and show
their ability to improve throughput and scalability.

2 Background

We explain the relevant details about the operation of Open
vSwitch (OVS) [22, 23], and describe the NuevoMatch algo-
rithm [26] for packet classification.

2.1 Open vSwitch
Open vSwitch (OVS) is a popular open-source virtual switch
that supports industry standard OpenFlow protocols. OVS
determines which action to apply on each packet according
to the OpenFlow rules installed by the network controller.

Packet

Data-path
Matches on
megaflows

Upcall

Flow

Control-path
Matches on

OpenFlow rules
Rule

Flow← Rule

Miss

Hit
Perform action

Packet
Metadata

Install flow
in data-path

Convert rule
to flow

Figure 1: Fast/slow path separation in OVS.

This task is known as packet classification, and has been
extensively studied [6, 10, 18, 19, 26, 28, 30, 35, 39].
Matching a rule. In its simplest form, a rule is a boolean
predicate parametrized by one or more fields in the packet
header (e.g., IP address, IP protocol). If a predicate is true
for a given packet (the rule matches), an action associated
with the rule is invoked to process the packet. An action is an
operation to apply to the packet (e.g., forward to port or drop).
A packet may match several overlapping rules, but only the
one with the highest priority is selected.
Control-/data- path. OVS is split into data- (fast) and control-
(slow) paths (Figure 1). All OpenFlow rules are installed and
maintained in the control-path. The data-path, on the other
hand, uses a megaflow cache to achieve high processing rates.

The megaflow cache holds non-overlapping rules called
megaflows, generated by the control-path from the installed
OpenFlow rules. Specifically, whenever the data-path encoun-
ters a packet that does not match any previously installed
megaflow, it performs an upcall to the control-path, which in
turn finds the relevant OpenFlow rule and converts it into a
megaflow. Future packets with the same header fields will not
require upcalls unless the megaflow is removed. OVS ensures
the correctness of the matching process with the megaflow
cache, terminating lookup after a hit in it. To achieve that,
OVS tracks all modifications to the OpenFlow rules in the
control-path. In particular, it might need to invalidate pre-
viously installed megaflows when new OpenFlow rules are
added. As we show in §3, these operations might significantly
affect OVS’s performance.

In addition to the megaflow cache, OVS often activates a
short-term exact-match cache (EMC) in front of it. The EMC
can be helpful with high-locality traffic.
Megaflow cache implementation. The megaflow cache uses
the Tuple Space Search (TSS) [30] algorithm for packet clas-
sification, as follows. Megaflows with the same mask m are
stored in the same hash table Hm, with masked flow keys as
entries. Given a packet header h, the megaflow cache iterates
over all hash tables to find an entry that matches h (i.e., the
masked header equals to the masked key). The lookup latency
increases linearly with the number of hash tables traversed.

OVS’s data-path can run either in the user-space using
DPDK [25], or as a dedicated Kernel module. In this paper
we use the DPDK version for its higher performance [34].

iSet 0

RQ-RMI
Candidate

iSet 0 Rules
hint

error

Validation

iSet 1

RQ-RMI Candidate

iSet 1 Rules

hint

error

Validation

Remainder

Packet

Selector

Figure 2: NuevoMatch algorithm [26], RQ-RMI inference
provides hints to find the matching rule (details in §2.2).

Size Category SC 0 SC 1 SC 2 SC 3

Input Rules < 103 103 - 104 104-105 > 105

Neural Nets 5 21 133 265 or 521

Table 1: RQ-RMI model size (number of neural nets) for
different number of rules to index (values taken from [26]).

2.2 NuevoMatch Classification Algorithm
NuevoMatch (NM) is a new class of packet classification al-
gorithms that leverage neural nets to scale to many rules [26].

Figure 2 presents the main components of the algorithm.
NM partitions a given set of rules into several independent
subsets (iSets), such that each iSet s has a header field hs in
which its rules do not overlap. The fraction of an iSet’s rules
out of all rules is called the iSet’s coverage. In practice, two
iSets are often sufficient to cover more than 90% of the rules
for large enough rule-sets [26]. Rules that do not fit in any of
the iSets are handled by a remainder classifier, which can be
implemented by any other packet classification technique.

For each iSet s, NM trains a hierarchical model called
Range-Query Recursive Model Index (RQ-RMI) which con-
sists of multiple shallow neural-nets. RQ-RMI learns the dis-
tribution of ranges represented by the rules and outputs the
estimated index of the matching rule within an array. At the
inference time, this estimation is used as a starting index to
search for the matching rule within the array. Crucially, the
RQ-RMI training algorithm guarantees a tight bound on the
maximum error of the estimated index, which in turn bounds
the search and ensures lookup correctness. During the search,
the candidate rules are validated by matching over all fields
of the incoming packet. Finally, the highest priority rule is
selected out of all the matching rules from all the iSets and
the remainder.

The number of neural nets (NNs) in an RQ-RMI model
depends on the number of rules it indexes. The original paper
suggests four RQ-RMI size categories, reported in Table 1.
The larger the model, the longer it takes to train it. However

1K 100K 500K
101

102

103

104

Number of OpenFlow rules

A
vg

.t
im

e
pe

rp
ac

ke
t(

ns
)

Megaflow cache
Exact-match cache
Applying actions

97%

2%

1%

86%

9%

5%

5%
70%
25%

Figure 3: Breakdown of packet processing times in the data-
path for different number of OpenFlow rules.

smaller models would fail to achieve the target error bound
guarantees and would result in a slower lookup. Thus, there is
a fundamental trade-off between the lookup latency and the
training time. NuevoMatchUP changes the way RQ-RMI is
constructed to modify this trade-off, allowing a much faster
training with negligible degradation in the lookup latency.

3 Motivation

We analyze OVS’s scalability bottlenecks and highlight the
potential benefits of using faster packet classification.

For the analysis we use the same setup and workloads as de-
scribed in §7. In particular, we generate 36 ClassBench Open-
Flow rule-sets (12 application types of three size categories
each: 1K, 100K, 500K rules), and evaluate the throughput by
replaying Caida-short packet trace (100M packets).
Does OVS get slower with more rules? We compare the
throughput with 1K rules vs. the throughput with 100K and
500K rules, separately for each ClassBench application type.
We observe that the geometrical mean slowdown for 100K
and 500K rules vs. 1K rules is 5.8× and 9.1×, respectively.

Takeaway 1: OVS does not scale well to a large number of
OpenFlow rules.
Where is the bottleneck in the data-path? We analyze the
average processing time of a packet in the OVS data-path
while varying the number of OpenFlow rules across all the
rule-sets. Figure 3 shows that packets spend the majority of
time in the megaflow cache, i.e., 86% and 97% of the CPU
time on average, for 100K and 500K rules respectively.

Takeaway 2: OVS megaflow cache becomes the main data-
path performance bottleneck as the number of OpenFlow
rules increases.
Are the control-path upcalls the primary bottleneck?
Misses in the megaflow cache trigger upcalls into the control-
path. The frequency of the upcalls is hard to predict; it de-
pends on the interplay between the rule-set and the traffic
pattern [3, 4]. Unfortunately, frequent upcalls cause major
throughput drop. For example, Figure 4 shows the throughput
and the rate of deletions and upcalls, sampled every 100ms,
for a 100K rules (rule-set number 2 in §7). The higher the

0
0.4
0.8
1.2

T
hr

.

0
4
8
12

D
el

s/
s

0 5 10 15 20
0
3
6
9

Time (sec)

U
pc

ls
/s

Throughput (Mpps) Upcalls/sec (×103) Deletions/sec (×103)

Figure 4: OVS throughput is affected by control-path upcalls.

0
2
4
6

D
el

s/
s

Throughput (Mpps) Upcalls/sec (×104) Deletions/sec (×106)

6 8 10 12 14 16
0
1
2
3

Time (sec)

U
pc

ls
/s

0
1
2
3

T
hr

.

Figure 5: Insertion of new OpenFlow rules: the throughput
drops at t = 7s when 60 new OpenFlow rules are added to
500 existing ones. Note the coinciding peak in the deletion
rate from the megaflow cache and the subsequent increase in
the number of upcalls.

number of upcalls, the lower the throughput. Similarly, the
performance drop is observed due to deletions, triggered by
the periodic megaflow cache cleanup of idle flows. For other
rule-sets the behavior is similar.

Takeaway 3: frequent upcalls are detrimental to perfor-
mance.
Impact of OpenFlow rule updates. OVS might experience a
sharp drop in throughput when OpenFlow rules are modified.

To show that, we install 500 OpenFlow rules in the begin-
ning and update 60 rules at time t = 7. Figure 5 shows the
results. The moment before the update occurs, there are 144K
megaflows in the cache. We see that the update causes about
104K deletions from the megaflow cache, followed by tens
of thousands of upcalls. As a result, the throughput drops
dramatically and takes a few seconds to recover.

This graph illustrates a general problem rooted in the
megaflow algorithm. When inserting new rules that over-
lap existing ones with lower priorities, OVS must delete all
megaflows that correspond to the existing rules (§3). While
the magnitude of the throughput degradation depends on the
rules being updated, the issue is significant in particular with
high update rates.

Takeaway 4: modifying a handful of OpenFlow rules might
significantly affect the throughput because of the increase in
upcalls.

Incoming Packet

Exact Match Cache

Cache Miss

NuevoMatch: Megaflows

iSet 0 RQ-RMI

iSet 1 RQ-RMI(optional)

Cache Miss

Megaflow Cache (remainder)

Upcall
Cache Miss

(a) OVS-CCACHE with NuevoMatch accelerating the megaflow
cache.

Incoming Packet

Exact Match Cache

Cache Miss

NuevoMatch: OpenFlow Rules

iSet 0 RQ-RMI

iSet 1 RQ-RMI(optional)

Cache Miss

TupleMerge Classifier (remainder)

Control-Path

Constant
Updates

Network
Controller

OpenFlow

(b) OVS-CFLOWS with NuevoMatch performing OpenFlow rule classi-
fication in the data-path.

Figure 6: Design options for integrating NuevoMatch with
OVS. See §8 for the discussion why to choose one over the
other.

4 Design Options and Challenges

Our analysis indicates two primary reasons for the OVS per-
formance degradation: (a) poor scalability of the megaflow
cache; (b) frequent upcalls to the control-path. In the follow-
ing we consider two designs to solve these issues.

4.1 OVS with Computational Cache
To tackle the first issue, the most natural solution is to re-
place the megaflow cache with a more scalable NuevoMatch.
This approach is appealing because it fits well in the existing
OVS design. Here, NuevoMatch uses the megaflow cache
as a remainder, and can be seen as an additional layer of
caching for megaflows. We call this approach an OVS with a
computational cache (OVS-CCACHE).

Figure 6a shows the proposed OVS-CCACHE design, depict-

Num.
of OF
rules

Upcalls
per sec

Num. of
Megaflows

in cache

Training
time est.

Coverage
degrad.

est.

1K 128 6.5K 30s 3.8%
100K 6.7K 102K 270s 7%
500K 6.4K 90K 250s 8%

Table 2: Characterization of rule update rate requirements in
the megaflow cache. NuevoMatch training should be at least
100× faster to be applicable to the megaflow cache.

ing only the data-path. The control-path is unmodified. Incom-
ing packets are first matched against the exact-match cache.
A miss is then forwarded to the computational cache provided
by NuevoMatch RQ-RMI models. The original megaflow
cache serves the lookups which did not match in RQ-RMI.
If missed again, the packet continues with the original OVS
upcall mechanism.

When new megaflows are added to the data-path, they
are first inserted into the original megaflow cache. The RQ-
RMI model is periodically re-trained in a separate thread by
pulling the added megaflows from the megaflow cache. When
the training finishes, the old RQ-RMI models are replaced
with the newly trained ones that already incorporate the new
megaflows, and the megaflow cache is emptied.

Unfortunately, this solution inherits the performance lim-
itations of the upcall mechanism, and thus would not scale
well in case of frequent upcalls.

4.2 OVS with Computational Flows
To solve the issue of slow upcalls, one option is to apply
NuevoMatch to the control-path classifier to speed up the
handling of upcalls. Unfortunately, control-path tasks go well
beyond OpenFlow rule matching, and it is unclear how to
use NuevoMatch in this context. Specifically, the control-path
effectively implements the algorithm for tracking and gen-
erating non-overlapping megaflows. This is the core of the
control-path and it is tightly coupled with the rule match-
ing logic. Thus, NuevoMatch is not suitable for control-path
acceleration.

On the other hand, the excessive number of upcalls we
observed stems primarily from the design choice to generate
non-overlapping megaflows for the data-path. The fact that
megaflows do not overlap is an essential feature in OVS de-
sign that allows fast-path performance optimizations, but it is
also the one that deteriorates the throughput dramatically in
case of frequent upcalls [3, 4].

Therefore, our proposed solution, OVS with computational
flows (OVS-CFLOWS), leverages NuevoMatch to perform ef-
ficient packet classification directly on complex OpenFlow
rules, without resorting to non-overlapping megaflows. As a
result, we remove the megaflow cache mechanism and the

associated control-path logic, and obviate the need for upcalls.
This approach, while more intrusive than OVS-CCACHE, holds
the promise to boost OVS performance both with and without
OpenFlow rule updates. How it fairs against OVS-CCACHE is
one of the questions we answer in our evaluation.

Figure 6b shows the design of OVS-CFLOWS. While it
resembles OVS-CCACHE, the difference is that NuevoMatch
here is used to match OpenFlow rules instead of megaflows
as in OVS-CCACHE. Similarly to OVS-CCACHE, updates are
first inserted into the remainder (we use TupleMerge [6] for
its implementation), and RQ-RMI models are periodically
retrained to accommodate them.

4.3 Challenge: Slow NuevoMatch Updates
Unfortunately, in practice, NuevoMatch cannot support either
OVS-CCACHE or OVS-CFLOWS. Recall that rule modification
in the classifier requires retraining all its RQ-RMI models
from scratch with the new, modified set of rules (§2.1). There-
fore, the rule update rate is bounded by the training time of
the models, which in turn depends on the number of rules in
the classifier rather than on the number of modified rules.

In the following, we analyze the update rate requirements
for OVS-CCACHE and OVS-CFLOWS, and show that Nuevo-
Match is over two orders of magnitude slower than required.
Megaflow cache rule churn. To understand the training rate
requirements for NuevoMatch in OVS-CCACHE, we analyze
the rule churn rate in the megaflow cache. For each OpenFlow
rule size category we measure (1) the average rate of upcalls,
which is equivalent to the rate of updates in the megaflow
cache (we count insertions only, as NuevoMatch supports
deletions without retraining), and (2) the average number
of megaflows in the cache, which dictates the NuevoMatch
training time if it were used to accelerate the megaflow cache.

Table 2 shows that for larger rule-sets (100K, 500K) there
are about 6.5K upcalls per second, and the megaflow cache
holds about 100K megaflows. Thus, NuevoMatch would have
to retrain the model with 100K rules every 150 µs. This is of
course unrealistic: training a model of that size would require
about 270 seconds according to the original paper.

The solution suggested by the authors of NuevoMatch is to
accumulate the updates in the remainder and serve the queries
from it while training. Thus, the coverage of the RQ-RMI
model is lower during the training; hence, the performance
is lower because more queries are served in the remainder.
When the training is finished, the coverage improves, and a
new round of training begins right away to catch up with the
rules modified during the previous training round.

Unfortunately, this option is not practical either. If 6.7K
rules get modified each second, the expected coverage degra-
dation per second would be about 7% (see Table 2). If we accu-
mulate the updates while training for 270 seconds, the cover-
age will become practically zero, nullifying the NuevoMatch
performance benefits completely. For comparison, even to

1 8 16 24 32 40 48 56
0

2

4

6

Bucket size l

Tr
ai

ni
ng

(s
)

Training Time
Lookup Time

0

0.1

0.2

0.3

SC0 SC1 SC2

L
oo

ku
p

(µ
s)

(a)

2 6 10 14 18
0

10

20

30

40

#Samples (×103)

Tr
ai

ni
ng

(s
)

Uniform sampling
Approximate sampling

(b)

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
103

104

105

106

1K 100K 500K

Tr
ai

ni
ng

(s
)

NuevoMatch NuevoMatchUp

Rule-set
Speedup 17 18 19 20 35 18 18 18 19 19 21 37 22 34 30 30 22 35 31 18 19 35 29 29

(c)

Figure 7: (a) The effect of the bucket size l on the RQ-RMI
training and lookup times. See RQ-RMI size categories (SC)
in Table 1. (b) Training using approximate sampling is faster.
Here we train 500K rules using bucket size l = 40. (c) The
training implementation of NuevoMatchUP is 20 times more
efficient than that of NuevoMatch.

achieve the coverage of 25%, which is the cutoff suggested in
the paper for NuevoMatch to provide minimum performance
benefits, the training must complete within 4 seconds. This is
almost two orders of magnitude faster compared to 270 sec-
onds that NuevoMatch allows today. We use the same model
as the original paper to produce these estimates: E =R ·e−U/R,
where R and U are the total number of rules and the number
of updates respectively, and E is the expected number of rules
in the model left after the updates.
OVS-CFLOWS update requirements. The update rate of Open-
Flow rules varies between 400 to 338K updates per sec-
ond [12, 13]. Supporting an average rate of 100K updates
per second in NuevoMatch would require retraining every
500ms to achieve a coverage of 90% for a rule-set of 500K
OpenFlow rules. Unfortunately, the actual NuevoMatch train-
ing time for a rule-set of that size is about 600s, which is over
three orders of magnitude slower.

We conclude that NuevoMatch training algorithm is too
slow to support the update requirements of OVS in the consid-
ered designs.

5 NuevoMatchUP: Speeding-up Updates

We introduce NuevoMatchUP (NMU), a series of enhance-
ments to NuevoMatch which together significantly improve

its update rate by several orders of magnitude.
NMU introduces important changes to the RQ-RMI con-

struction and training algorithms, as well as to their implemen-
tation. First, it enables creating much smaller (thus faster-to-
train) RQ-RMI models by constructing iSets with overlapping
rules. Second, it enables major improvement in training speed
by cutting down the number of memory accesses. We now
discuss these changes in detail.

5.1 Relaxing iSet Constraints

An iSet s is a set of rules associated with a field hs for which
rules do not overlap (§2.2). We relax the no-overlap constraint,
by allowing overlap between a certain number of rules. Infor-
mally, a relaxed iSet is an iSet with up to l overlapping rules
in field hs, grouped in buckets (defined next).

We now describe the algorithm for constructing a relaxed
iSet s on a header field hs.

Lemma 1. Given an OVS classification rule r and a packet
header field h, the set of values in h that match r can be
represented by an integer range, denoted as h(r).

The correctness of the lemma directly follows from the
usage of prefix based wildcard representation in OVS.

Definition 1. A bucket is a set of up to l rules. We say that two
buckets b1 and b2 do not overlap with respect to the header
field h if for any rule r1,r2 in b1,b2 respectively, h(r1) does
not overlap h(r2).

To create buckets that do not overlap with respect to the
header field hs, we sort the rules by their ranges in hs, and iter-
ate over them allowing up to l overlapping ranges per bucket.
Whenever we encounter a rule with a range that does not over-
lap with its predecessors, we include it in a new bucket. If
buckets contain less than l rules, we merge adjacent buckets
while keeping the constraint to have at most l rules per bucket.
Next, we use RQ-RMI models to learn the distribution of the
buckets rather than the distribution of the rules [26].

Since the number of buckets is smaller by up to a factor
of l than the number of rules, RQ-RMI models in Nuevo-
MatchUP are smaller and train faster than in NuevoMatch
(see Table 1). Of course, the cost of this optimization is a
slower lookup: all the rules in the same bucket must be val-
idated via a linear scan. This trade-off, however, turned out
to be beneficial to accelerate training with a negligible slow-
down for the lookup. Figure 7a demonstrates this trade-off
using a representative rule-set (12-500K, see §7). Buckets of
sizes l = 8,48 change the RQ-RMI size category and dramati-
cally improve the model’s training performance. Other bucket
sizes (l = 16,24,32,40,48,56) do not change the RQ-RMI
size category and only add to the linear scan overhead.

5.2 Training via Approximate Sampling

In NuevoMatch, each neural net in RQ-RMI is trained using
supervised learning on a labeled dataset S that is generated
in advance. The dataset is sampled from an ordered set of
ranges, R, sorted by the ranges’ start values. An RQ-RMI
model learns the function represented by the ordered set R: it
maps an input to the index of the matching range. To learn
this function, NuevoMatch samples from it uniformly [26].
This uniform sampling is expensive, as it requires to scan all
the ranges and sample from them according to their relative
sizes in the function input domain. This sampling must be
done for each neural-network (NN) in the RQ-RMI model,
sometimes multiple times to achieve the desired accuracy.

Our goal is to modify the sampling process to reduce the
number of memory accesses from O(|R|), which can be on
the order of tens of thousands per NN, to O(|S|), which is
about several thousand per NN. Doing so is not trivial since
the training converges faster when the samples are distributed
with parameters (µ,σ) = (0,1).

We make two observations. First, it is possible to analyti-
cally estimate the expectation µ and standard deviation σ of
a uniform sampling of the NN input domain (see Appendix
A.1), and thus enable correct normalization of the samples
regardless of the way they are actually sampled. Second,
given correct normalization, sampling R in a non-uniform
way might only affect the model accuracy but not the lookup
correctness, thanks to the search in the rule array (§2.2) that
eliminates model approximation errors.

These observations allow us to accelerate the sampling
process as follows. We generate a set of 32 samples per batch,
each of the form (x,y). First, we uniformly select a range
r with index i from R. Second, we uniformly select a value
x′ ∈ r. We then generate a normalized x = x′−µ

σ
; y = i

|R| as in
the original algorithm.

In Figure 7b we train a model over a representative rule-
set (12-500K, see §7) and get 4-5.3× faster training using
approximate sampling.

5.3 Optimized Training Implementation

NuevoMatch uses a hybrid training approach that mixes
Python code, TensorFlow, and a custom native library. In
contrast, NuevoMatchUP is implemented in C++, which re-
duces its memory requirements, and takes advantage of the
CPU SIMD instructions. Figure 7c shows a 23.8× geometri-
cal mean speedup of NuevoMatchUP over NuevoMatch over
all rule-sets. In this experiment we disable all algorithmic
optimizations, highlighting the speedup due to the implemen-
tation.

5.4 Putting It All Together

Each of the described optimizations in isolation would not
suffice to achieve the target performance goals to support
the necessary update rate. However, when combined, they
allow between two to three orders of magnitude faster training
(depending on the rule-set), making NuevoMatchUP suitable
for integration with OVS.

6 Implementation

We implement OVS-CCACHE in C as an additional OVS mod-
ule, and NuevoMatchUP in C++ as an external library (lib-
nuevomatchup). We add support for OVS-CFLOWS by chang-
ing existing components in several OVS modules1.
Overview. OVS uses poll mode driver (PMD) threads for
packet processing and revalidator threads for integrity. The
flows 2 are kept in a dedicated flow-table, one per PMD thread,
that supports a single writer and multiple concurrent readers.
A PMD thread is responsible for inserting new flows into its
flow-table, while the revalidator threads remove stale ones.

We modify OVS as follows. We introduce a single trainer
thread to train all the NuevoMatchUP models used by each
PMD thread. In addition, we add manager threads, one per
PMD thread, for tracking the PMD flows, and create training
tasks to accommodate the changes.
Concurrency. We use a fine grained locking with a spinlock
per flow-table entry, and limit the number of occurrences in
which we modify the flow-table. This mechanism is essential
mostly for OVS-CCACHE, in which valid flows frequently mi-
grate between the megaflow cache and the RQ-RMI models.
Training RQ-RMI models. At any given time, there are two
instances of RQ-RMI models per manager thread: the one
that is used by an active classifier in the packet processing
pipeline, and the one being trained, referred to as a shadow
model. In each iteration, a manager thread goes over all the
flows, checks which are marked for deletion and which are
new. Next, it enqueues the request with the modified rule-
set to the trainer thread to retrain the shadow model. The
rules added during training are updated in the remainder of
the active classifier. When the training completes, the active
classifier replaces its model with the newly trained shadow
model, and the recently learned rules are removed from the
remainder. This process repeats whenever the number of flows
in the remainder is higher than 10%.
Data-path modifications. The megaflow cache constructs a
new hash table whenever it encounters a previously unseen
mask, and destroys it when it no longer holds flows.Since
in OVS-CCACHE, megaflows frequently migrate between the
megaflow cache and the RQ-RMI models, we enable the exis-

1https://github.com/acsl-technion/ovs-nuevomatchup
2In this section we use the OVS terminology and refer to match-action

rules of any kind, either megaflows or OpenFlow rules, as flows.

https://github.com/acsl-technion/ovs-nuevomatchup

Name Number of
Packets

Unique
5-Tuples

Average Delay
Between Packets (µs)

CAIDA-short 100 M 6 M 1.68 ± 69.54
Mawi 237 M 15 M 3.39 ± 9.11

CAIDA-long 401 M 23 M 1.62 ± 119.20

Table 3: Evaluated traces.

tence of empty hash tables to reduce the number of hash table
constructions and deletions to bare minimum.

6.1 Updates in OVS-CFLOWS

OVS-CFLOWS offers a new design trade-off for performing
OpenFlow rule updates. Specifically, it allows trading the
time it takes to activate the updated rules in the data-path
for higher throughput during the update. When a network
controller updates the rules, it might need to ensure that the
updates are installed and visible to the data-path. In OVS and
OVS-CCACHE, the acknowledgement to the controller is sent
when the rules are installed in the control-path. The data-path
pulls the rules on demand via upcalls.

In OVS-CFLOWS, we can implement two policies. The in-
stant update policy updates the active classifier with the new
rules immediately, pushing them into the remainder and thus
applying them to the data-path without any delay. The delayed
update policy first stores the new rules in a temporary struc-
ture not visible to the classifier, retrains the shadow model
and only then updates the data-path.

As we will see in the evaluation, when a large number
of updates is necessary, the instant update policy results in
lower throughput while the new rules are being added due to
reduced model coverage, but provides lower update latency
from the perspective of the network controller. Delayed up-
dates yield higher latency for the controller, but avoid the
throughput degradation during the update. On the other hand,
with only a handful of updated rules, the immediate update
policy achieves low latency without affecting the throughput.

7 Evaluation

We perform end-to-end experiments and provide an in-depth
analysis of the system performance using microbenchmarks.

7.1 Methodology

Setup. We use two machines connected back-to-back via
Intel X540-AT2 10Gb Ethernet NICs with DPDK-compatible
driver. All our tests stress the OVS logic thus the workload is
CPU-bound and the network is not saturated.

The system-under-test machine (SUT) runs Ubuntu 18.04,
Linux 5.4, OVS 2.13 with DPDK 19.11, on Intel Xeon Sliver

4116 CPU @ 2.1GHz with 32KB L1 cache, 1024KB L2 cache,
and 16.5MB LLC. The load-generating machine (LGEN) runs
a native DPDK application that generates packets on-the-fly
according to a predefined policy, and records the responses
from the SUT.

We configure both machines to use DPDK with four 1GB
huge pages for maximum performance. We disable hyper-
threading and set the CPU governor to maximum performance
for stable results.
Synthetic OpenFlow rules. We generate OpenFlow rules
using ClassBench [33], the standard benchmark for packet
classification [6, 18, 19, 26, 35, 39]. ClassBench creates 5-
tuple rule-sets that correspond to the distribution of three
applications: Access Control List (ACL), Firewall (FW), and
IP Chain (IPC). We generate rule-sets with 1K, 100K, and
500K rules, each size category with 12 rule-sets. We only
generate rules for either TCP, UDP, or ICMP IP protocols.
The mapping between the generated rule-sets’ names to their
numbers appears in Appendix A.3.
Traffic traces. The traces are summarized in Table 3 and
detailed below.

(1) CAIDA [2]. The real trace from the Equinix data-center
in Chicago, collected in January 2019. We use CAIDA-
short in all experiments except for the one that needs
longer trace (Figure 14) where we use CAIDA-long.

(2) MAWI [37]. The real trace from a link between Japan
and the USA, collected in April 2020.

Adjusting traces to rules. There are no published OpenFlow
rules used for processing the packets in the recorded traces.
We thus resort to the method used in prior work [26]. Specifi-
cally, we modify the packet headers in the trace to match the
evaluated ClassBench rule-sets, as follows. For each unique
5-tuple we uniformly select a rule, and modify the packet
header to match it. We also set all TCP packets to have a
SYN flag. This method preserves the temporal locality of the
original trace while consistently covering all the rules.
Packet generation policies. We use minimum-size 64-byte
packets to stress the OVS classification logic. We evaluate the
system with two load generation methods.
Constant TX rate. To ensure unbiased evaluation, we run the
experiments with a constant-rate load generator, and report
the highest rate that permits the average drop rate over the
whole trace to be below 1%. The first 5% of the packets in
each trace are used as a warmup and the associated drops
are ignored. We do this as we observe that bootstrapping the
megaflow-cache causes many packet drops. With 5% warmup
packets, we achieve consistent throughput results.
Adaptive TX rate. We use the timestamps from
CAIDA/MAWI packet traces but scale down the inter-
packet delay to replay the packets at the highest rate that
strives to maintain an average per-second packet drop rate
below 1%. To achieve that, we dynamically adjust the

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
10−2

10−1

100

101
1K 100K 500K

T
hr

.(
M

pp
s)

OVS-ORIG OVS-CCACHE OVS-CFLOWS

Rule-set
Speedups

OVS-CCACHE

OVS-CFLOWS

1.2 0.9 1.3 1.6 1.3 1.3 1.0 1.1 0.7 0.4 1.7 0.7 1.2 1.7 2.0 2.0 1.0 1.2 1.2 1.5 2.0 1.0 2.8 0.9 0.9 2.0 2.4 2.4 1.0 2.0 1.0 2.1 5.0 4.0 3.0 0.8
2.8 2.1 4.6 4.0 2.1 2.5 7.2 2.4 1.0 1.1 5.6 1.6 1.2 6.2 44 42 3.2 1.9 9.6 20 89 1.7 8.4 7.1 0.7 8.0 80 120 2.6 7.9 12 33 159 4.0 16 2.7

Figure 8: OVS-CFLOWS, OVS-CCACHE and OVS-ORIG on CAIDA-short using constant TX rate. Higher is better.

sending rate once per second: we cut it to half when the drop
rate over the last second exceeds 1%, and increase by 50%
otherwise. This methods provides a conservative estimate
of expected system performance because of its simplistic
congestion control which does not aggressively ramp up the
throughput after drops.
Measurements. We measure end-to-end performance, i.e.,
receiving, processing, and sending packets back to the LGEN.
We preload all OpenFlow rules into control-path.
OVS configuration. We use the default OVS configura-
tion [22] both for the baseline and our designs: revalidator
threads support up to 200K flows, flows with no traffic are
removed after 10 seconds, and the signature-match-cache
(SMC) is disabled. The EMC insertion probability is 20%.
Connection tracking is not used. Unless stated otherwise, all
experiments use a single NUMA node with one core dedi-
cated to a PMD (poll mode driver) thread and another core
dedicated to all other threads. Thus, the baseline OVS, OVS-
CCACHE, and OVS-CFLOWS always use the same number of
CPU cores.
NuevoMatchUP configuration. We use iSets with minimum
45% coverage, and train RQ-RMI neural nets with 4K sam-
ples. Similar to [26], we repeat the training until the RQ-RMI
maximal error is lower than 128, and stop after 6 unsuccessful
ones. We set l = 40, namely, each iSet bucket has at most 40
overlapping rules. We use the same RQ-RMI size categories
as in Table 1. Due to the use of buckets, the largest size cate-
gory is never used. We keep OVS’s flow matching mechanism
that supports an arbitrary number of fields, but limit the iSet
construction mechanism to use 5-tuples.

We train RQ-RMI models based on either all megaflows
(for OVS-CCACHE) or OpenFlow rules (for OVS-CFLOWS).
The model size is determined by the NuevoMatchUP algo-
rithm to allow lowest error, fast training time and low memory
footprint.

7.2 End-to-end Performance
Figure 8 shows the throughput comparison of OVS-CFLOWS,
OVS-CCACHE and OVS-ORIG (unmodified OVS) for CAIDA-
short with constant TX rate and without updates to the Open-
Flow rule-set. The geometric mean speedups of OVS-CCACHE

8K 128K 2M
0
1
2
3
4 1-500K

T
hr

.(
M

pp
s)

8K 128K 2M

5-500K

Exact match cahce size (#entries)

OVS-ORIG OVS-CCACHE OVS-CFLOWS

8K 128K 2M

12-500K

Figure 9: The effect of the exact-match cache size on through-
put for the top three fastest rule-sets with 500K rules.

are 1.02×, 1.5×, and 1.9× for 1K, 100K, and 500K Open-
Flow rules respectively. Note that for OVS-CCACHE the com-
putational cache is constantly updated with newly installed
megaflows.

The same setup with OVS-CFLOWS yields higher speedups.
OVS-CFLOWS is 2.6×, 8.5×, and 12.3× faster than OVS-
ORIG for 1K, 100K, and 500K OpenFlow rules, respectively.
Not only is OVS-CFLOWS faster than OVS-CCACHE, but it
also maintains a relatively stable absolute throughput for
100K and 500K rules. OVS-ORIG performance varies substan-
tially across rule-sets of the same size, whereas OVS-CFLOWS
shows more homogeneous behavior. OVS-ORIG has particu-
larly low performance for larger rule-sets (e.g., 3,4 for 500K)
due to a massive number of upcalls.

The performance trends with an adaptive TX rate are con-
sistent with those obtained with the constant TX-rate (see
Figure 18a in the Appendix). The speedups are still signifi-
cant but more modest for two reasons: the adaptive TX fails
to increase the sending rate fast enough after packet drops,
which particularly affects the absolute throughput of faster
OVS-CFLOWS. At the same time, it achieves higher average
rate for lower-performant OVS-ORIG and OVS-CCACHE be-
cause it suffices to slowly increase the rate when the traffic
pattern affords that. Rule-set 9-100K and 3-500K are the best
illustrations of this effect.

Rule-set 1-500K performs differently from the rest. Here,
OVS runs faster with 100K and 500K rules than with 1K
rules. We find that this is due to the high temporal locality,
which leads to a low upcall rate (over 3× less than in other
rule-sets for 500K) and a small megaflow cache. This analysis

2 3 4 5 6 7 8 9 10
0

4

8

12

16

1.3X
1.3X 1.3X

1.3X 1.3X
1.3X 1.3X 1.3X 1.2X

4.7X
4.8X

4.9X 4.9X
4.3X 3.7X 3.1X 2.8X 2.6X

Max. throughput

Number of cores

T
hr

ou
gh

pu
t(

M
pp

s)

OVS-ORIG OVS-CCACHE OVS-CFLOWS

Figure 10: OVS throughput as a function of the number of
cores. One core is dedicated to revalidator, manager, and
trainer threads. For the rest, we allocate one PMD thread
per core. The maximum throughput is measured with only
EMC hits. The numbers refer to speedups vs. OVS-ORIG.

is corroborated by the experiments that vary the EMC size
(Figure 9). This result motivates dynamic choice between the
original and the suggested classification mechanisms as we
discuss in §8.

The same experiments on the Mawi trace yield low through-
put results for OVS-CCACHE and OVS-ORIG using constant
TX rates due to the excessive number of drops. For the dy-
namic TX rate, the geometric mean speedups are: 2.1×,
18.2×, and 18.7× for 1K, 100K, and 500K rules for OVS-
CFLOWS, and 1.02×, 1.4×, and 1.7× for 1K, 100K, and 500K
rules for OVS-CCACHE.

7.3 Sensitivity to OVS parameters

The effect of the EMC size. We take the top three rule-sets
with 500K rules that perform best for OVS-ORIG (rule-sets
1,5 and 12), and test their throughput with different Exact
Match Cache (EMC) sizes (8K (default) to 2M), see Figure 9.
The performance effect of the EMC size depends on the rule-
set. The default size (8K) works reasonably well, whereas
a too large EMC reduces throughput, likely because of the
CPU cache contention. The relative performance of different
designs, however, remains largely the same with the EMC of
up to 128K entries.
Megaflow cache size. When the OVS megaflow cache
reaches its maximum capacity it flushes all its contents. We
validated that this never occurs in our experiments. Thus, the
megaflow cache can practically grow as necessary, periodi-
cally evicting idle (for 10s) flows. This is the most favorable
configuration.
Data-path scalability. We add PMD threads and pin them
each to a separate core, while dedicating one more core for the
revalidator, manager and trainer threads. We use the CAIDA-
short trace with the constant TX setting, and report the results
of a representative rule-set with 1K rules (3-1K) in Figure 10.

1 2 3 4 5 6 7 8 9 10 11 12
10−1

100

101

102

103

1K 100K
500K

A
vg

.n
um

.o
f

H
as

h-
Ta

bl
es

OVS-ORIG OVS-CCACHE

Rule-set
Speedup 0.9 2.0 2.4 2.4 1.0 2.0 1.0 2.1 5.0 4.0 3.0 0.8

Figure 11: The average number of hash-tables in the megaflow
cache on CAIDA-short trace. Lower is better. See full chart
in the Appendix (Figure 18b).

This is the best-case scenario for OVS-ORIG because in larger
rule-sets it is much slower. We measure the upper bound of
the OVS forwarding performance by sending 100M packets
that always hit the 8K flows-large EMC (black dashed line).
For a 10Gb NIC, the performance saturates at 13.8Mpps, 93%
of the line-rate3.

Figure 10 shows that OVS-CCACHE maintains a constant
speedup of 1.3× over OVS-ORIG, even though more PMD
threads lead to higher model retraining load. This is because
the single trainer thread is fast enough to retrain models from
eight PMD threads (nine cores in total on the graph). The
additional, ninth PMD thread saturates the trainer. Without
training fast enough, the scaling is no longer linear (1.2×
speedup vs. 1.3× for fewer PMD cores). Thus, more PMD
threads would require allocating additional trainer cores to
maintain the speedup.

OVS-CFLOWS reaches the maximum throughput with five
PMD cores (six cores overall), a 4.3× speedup over OVS-
ORIG using the same number of cores. OVS-ORIG would have
required about 26 cores (linear extrapolation of the current
trend) to reach the same performance. Note that in contrast
to OVS-CCACHE, models in OVS-CFLOWS are not retrained
in the steady state between OpenFlow rule updates, thus the
throughput scales linearly with more PMD threads without
additional trainer cores.

7.4 Analysis of OVS-CCACHE

Understanding performance variability of OVS-CCACHE.
Why does OVS-CCACHE is faster than OVS-ORIG for some
rule-sets and is on-par or slower for others? The answer fol-
lows from Figure 11 which shows the average number of
megaflow cache hash-tables traversed for OVS-ORIG and OVS-
CCACHE. Recall that the classification is slower with higher
number of hash-tables [3]. The computational cache achieves
higher speedups when the number of hash-tables traversed
by OVS-ORIG is large enough to justify inference computa-
tions instead of memory lookup. As a result, the performance

314.88Mpps for 64B packets on a 10Gb NIC, considering bytes of Ether-
net preamble and 9.6ns of inter-frame gap.

102 103 104 105 106
100

101

102

103

Number of Megaflows

Ti
m

e
(m

s)

SC0 SC1 SC2

Figure 12: NuevoMatchUP training time in OVS-CCACHE as a
function of number of megaflows and the model size category
(Table 1). SC0=5, SC1=21, SC2=133 neural nets.

12 13 14 15 16 17 18 19 20
0.4
0.50.5
0.6
0.7
0.8

Time (sec)

H
it-

R
at

e

No Delay 3× Delay 5× Delay

0.4
0.7
1.0
1.3
1.6

T
hr

.(
M

pp
s)

Figure 13: OVS-CCACHE throughput and computational cache
hit-rate for different training rates, while adding megaflows.
Rapid retraining is critical for high throughput.

savings from using NuevoMatchUP are higher in such cases.
Training in the data-path. In the following experiments,
we generate packets at a constant rate of 5 Mpps. This setup
saturates the OVS packet-processing pipeline and thus helps
highlight the reasons why NuevoMatchUP improves the end-
to-end performance.

We measure the actual training time for RQ-RMI models
in the data-path during the experiment. To understand the
training behavior, we measure the number of megaflows being
used and the training time. We show the training time for each
of the three used RQ-RMI size categories.

Figure 12 shows that the training time ranges from millisec-
onds for a small number of megaflows, to about one second
for 200K megaflows. For comparison, NuevoMatch reported
the training time of 270 seconds for a rule-set with 100K rules
which NuevoMatchUP can train in 500ms - 540× faster.
Hit-rate and training time. We further analyze the dynamic
throughput behavior of OVS-CCACHE when new megaflows
are installed in it by the control path.We use a single rule-set
with 100K OpenFlow rules (rule-set 9-100K), and vary the
training rate while measuring the throughput.

Figure 13 shows that when new rules are just added the

0 10 20 30 40 50 60 70 80
0

0.1
0.2
0.3
0.4

OVS-ORIG

Time (sec)

T
hr

ou
gh

pu
t

Throughput (Mpps) Upcalls/sec (×103)

0
1.5
3.0
4.5
6.0

U
pc

al
ls

/s
ec

0
0.5
1.0
1.5
2.0

T
hr

ou
gh

pu
t

0
5
10
15
20

OVS-CCACHE

U
pc

al
ls

/s
ec

0
0.5
1.0
1.5
2.0

OVS-CFLOWS

T
hr

ou
gh

pu
t

Figure 14: The throughput and number of upcalls over time.

throughput decreases initially, but then recovers. This behav-
ior is expected. The rules are first installed in the original
megaflow cache, which causes an increase in the number of
hash-tables in it and the throughput drops. Also, the hit-rate in
RQ-RMI models drops because the new rules are not yet part
of the model. However, after the RQ-RMI model is retrained
with the new rules, the hit-rate increases back, until the new
rules get installed, and so on. Observe that the throughput
is lower when the training is slower (i.e., 5× slower than
the original rate) since in such cases the system cannot keep
up with new rules. This experiment clearly demonstrates the
importance of fast training provided by NuevoMatchUP.
Updates in OVS-CCACHE. We measure OVS-CCACHE average
update rate for a different number of OpenFlow rules. We see
944, 11.6K and 11.2K updates per second, on average, for 1K,
100K and 500K rules, respectively.

Further inspection reveals that OVS-CCACHE sensitivity to
upcalls affect its update rate, similar to the effect presented
in Figures 4,5 for OVS-ORIG. Since we cannot explicitly con-
trol the upcalls, we test this by artificially delaying Nuevo-
MatchUP updates and measuring the temporal behavior of
the throughput, number of upcalls, and iSet coverage. We find
that while NuevoMatchUP accelerates the megaflow cache,
upcalls are still the dominating factor for its performance. See
Appendix A.2 for details.

7.5 Analysis of OVS-CFLOWS

No upcalls in OVS-CFLOWS.We compare the throughput of
OVS-ORIG, OVS-CCACHE and OVS-CFLOWS over time, sam-
pled every 500ms. We use the CAIDA-long trace, so that each
experiment is roughly 80 seconds long, and show the results
of a single rule-set with 100K OpenFlow rules (rule-set 9-
100K) while keeping the rules unmodified throughout the

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
0
2
4
6
8 100K 500K

Rule-set

U
pd

at
e

R
at

e
(1

04
ru

le
s/

se
c)

90% Coverage 75% Coverage

Figure 15: Max OpenFlow rule update rate of OVS-CFLOWS,
for maintaining 75% and 90% NuevoMatch coverage.

8 9 10 11 12 13 14 15
0

0.5
1.0
1.5
2.0

I+R T I+R T

Time (sec)

T
hr

ou
gh

pu
t

Throughput (Mpps) iSet Coverage

22 23 24 25 26 27 28 29
I+R T I+R T 0

25
50
75
100

C
ov

er
ag

e

/ /

/ /

0
0.5
1.0
1.5
2.0

TI I TT
hr

ou
gh

pu
t

I T I T/ /

/ /

Instant Updates

Delayed Updates

Figure 16: Update policies in OVS-CFLOWS. I: iteration time,
R: remainder time, T: training time.

experiments. Other rule-sets behave similarly.
The results in Figure 14 clearly illustrate the benefits of

OVS-CFLOWS design (top graph). OVS-ORIG (bottom) and
OVS-CCACHE (middle) suffer from significant performance
fluctuations directly correlated with the number of upcalls into
the control-path. This experiment corroborates our conclu-
sions in Section §3. OVS-CCACHE inherits these performance
problems because it simply replaces the megaflow cache with
a faster alternative, but uses the same fast-/slow- path split. It
does, however, improve the end-to-end throughput. The higher
throughput of OVS-CCACHE is the reason why its upcall rate
is proportionally higher than in OVS-ORIG.

OVS-CFLOWS avoids the use of upcall mechanism alto-
gether, achieving consistently higher throughput and good
scalability for a large number of OpenFlow rules.
OpenFlow updates in OVS-CFLOWS. We estimate the maxi-
mum OpenFlow rule update rate in OVS-CFLOWS for 100K
and 500K rule-sets, as they pose the main challenge. Unfor-
tunately, we could not measure the maximum update rate
experimentally because of the slow OVS control-path that did
not allow us to invoke updates back-to-back.

Our estimate of the update rate indicates the number of
rules that can be updated per second in order to achieve 75%
and 90% coverage by NuevoMatchUP. These are conservative

coverage values that were shown to result in small through-
put degradation in NuevoMatch. To estimate, we measure
the training time for each rule-set and compute the expected
update rate according to the formula in §4.3. The results
in Figure 15 show an average of 19K and 51K updates per
second for 90% and 75% coverage, respectively. Both size
categories achieve similar update rates since the average train-
ing time per rule is roughly the same, while the coverage
deteriorates slower with more rules. These results assume
the use of delayed updates which achieve higher throughput
during the update.
Throughput during OpenFlow rule updates. We periodi-
cally add bundles of 125K new OpenFlow rules, so the num-
ber of rules increases throughout the experiment. We use this
number of updates to make the dynamic system behavior
over time more visible. We disable the EMC so that the mea-
surements capture only NuevoMatchUP characteristics. We
start the experiment with 100K OpenFlow rules, and measure
the throughput and iSet coverage over time. We show the
results on a representative rule-set (rule-set 9-500K), but the
performance is representative of all rule-sets.

Figure 16 compares the delayed and instant update poli-
cies (§6.1). For the delayed policy, the time it takes for the
data-path to receive the recent changes includes the time to
process new rules (iterate over them) and to train, whereas
in the instant updates setting, it includes the iteration and
remainder update times. The training time depends only on
the total number of rules, i.e., 225K and 350K in the first and
second training sessions at 10 sec and 24 sec respectively. As
expected, the instant update policy causes throughput degrada-
tion because the rules are added to the remainder, and thus the
model coverage is low. Further, the accesses to the remainder
data structure must be synchronized, creating contention. In
this case, the use of delayed updates is beneficial as insertions
do not cause measurable performance drop.

However, the instant update policy works well when the
number of the inserted rules is small. An experiment using
bundles of 100, 1K, and 10K new OpenFlow rules yields a
150ms-long drop in throughput with a maximum drop of 2%,
8% and 13% for 100, 1K and 10K rules, respectively. We start
OVS with 500 OpenFlow rules and issue an update at t = 10
seconds. We use the CAIDA-short trace and the constant TX
setting with 2.5Mpps. We use the same rule-set as in Figure 16
(rule-set 9-500K); other rule-sets behave similarly. We disable
the EMC so the measurements capture only the characteristics
of NuevoMatchUP. Figure 17 reports the throughput and iSet
coverage within a three second time-frame surrounding the
update.

8 Discussion and Future Work

Combining OVS-CCACHE and OVS-CFLOWS. Our evaluation
shows that in most cases, OVS-CFLOWS is faster than both

0
1
2
3
4

I+R: 100ms
T: 71ms10K Rules

T
hr

.

0
25
50
75
100

C
ov

.

0
1
2
3
4

I+R: 50ms
T: 113ms1K Rules

T
hr

.

0
25
50
75
100

C
ov

.

9 10 11 12
0
1
2
3
4

I+R: 50ms
T: 49ms

Time (sec)

T
hr

.

Throughput (Mpps) iSet Coverage

0
25
50
75
100

100 Rules

C
ov

.
Figure 17: OVS-CFLOWS throughput and iSet coverage upon
OpenFlow rule updates using the instant update policy. I:
iteration time, R: remainder time, T: training time.

OVS-CCACHE and OVS-ORIG. However, there are cases where
it would be desirable to switch between the classification
mechanisms dynamically. The computational cache is benefi-
cial when the number of hash-tables in the megaflow cache
increases. This can be used to determine when to use it in-
stead of the megaflow cache. Similarly, when the number of
control-path upcalls increases, they become the main bottle-
neck, suggesting the use of OVS-CFLOWS.
NIC OVS offloads. OVS-CCACHE is compatible with the
OVS ecosystem, and can be used with in-NIC OVS of-
floads [20]. In particular, it may accelerate the CPU handling
of misses to the hardware OVS cache. Another question is
how to use NIC OVS offloads with OVS-CFLOWS. It was
shown that NICs become slow when the number of updates
gets higher [13]. Thus, switching to OVS-CFLOWS whenever
a high number of cache misses is detected may improve per-
formance. We leave it for future work.
In-switch applications. Our work shows a practical use of
NuevoMatchUP in packet classification. There are many sim-
ilar tasks, e.g., longest-prefix matching in switches, which
cannot scale due to small on-chip memory. We believe that
NuevoMatchUP might help scaling up these tasks by com-
pressing the indexing structure to save on-chip memory.
In-NIC NuevoMatchUP. RQ-RMI inference is a hardware-
friendly task. Enabling its execution on the emerging data-
parallel accelerators integrated with SmartNICs [21] may
improve flexibility of the restricted packet classification of-
floading logic in NICs today.
P4 OVS. The possibility to use OVS with P4 in addition to
OpenFlow was recently suggested [24]. Both the computa-
tional cache and computational flows are compatible with P4
as it uses the general structure of match-action tuples which
is the fundamental building block for NuevoMatch.

9 Related Work

Packet classification. Software algorithms for packet clas-
sification are categorized into decision-tree approaches [9,
10, 18, 19, 28, 35, 39] and hash-table approaches [6, 22, 30].
NuevoMatch [26] is a new approach that shows superior per-
formance for a larger number of rules, hence our choice to
use it in this work.
OVS performance. Previous works have highlighted the
problem of match-action fragmentation in OVS, and exploited
it for mounting denial of service attacks on OVS [3, 4]. Ours
is different: it analyses the causes of throughput degeneration
and offers a solution.
Machine-learning in the data-path. Several works apply
machine-learning models in performance-critical parts of the
design, i.e., flash devices [11], RDMA key-value stores [36],
programmable switches [38], and NICs [29]. To the best of
our knowledge, ours is the first work that applies neural nets
and integrates their training into a virtual network switch.
Trading memory accesses for computations. The pioneer-
ing work on learned indices [16] and several later works
[5, 7, 14, 15, 17, 31] have shown the performance benefits
of trading memory accesses for computations using machine-
learning models, applying them to data-bases and key-value
stores. NuevoMatch [26] extends these concepts and intro-
duces the RQ-RMI data-structure that specializes in range-
value queries. Our work improves the training technique of
NuevoMatch by several orders of magnitude, making its inte-
gration with real-world systems feasible.

10 Conclusion

OVS is a leading virtual networking infrastructure used by
many cloud systems. Our work demonstrates two designs
which improve its throughput and scalability. We adopt a re-
cent NuevoMatch algorithm for packet classification using
neural nets, and integrate it with OVS. Our modifications to
NuevoMatch make its use in OVS practical by accelerating
its training by over three orders of magnitude. We show sig-
nificant improvements in both steady-state throughput and
update rate for large rule-sets on real-world packet traces. We
believe that our work opens new opportunities to practical
applications of neural-net based data structures in production
networking systems.

11 Acknowledgements

We thank the anonymous reviewers of NSDI’22 and our shep-
herd Anuj Kalia for their helpful comments and feedback.
This work was partially supported by the Technion Hiroshi
Fujiwara Cyber Security Research Center and the Israel Na-
tional Cyber Directorate. We gratefully acknowledge support
from Israel Science Foundation (Grant 1027/18).

References

[1] The OpenStack authors. The OpenStack project.
https://docs.openstack.org/liberty/
networking-guide/scenario-classic-ovs.html,
2021.

[2] CAIDA. The CAIDA UCSD anonymized inter-
net traces. http://www.caida.org/data/passive/
passive_dataset.xml, 2019.

[3] Levente Csikor, Dinil Mon Divakaran, Min Suk Kang,
Attila Korösi, Balázs Sonkoly, Dávid Haja, Dimitrios P.
Pezaros, Stefan Schmid, and Gábor Rétvári. Tuple space
explosion: A denial-of-service attack against a software
packet classifier. In ACM CoNEXT, 2019.

[4] Levente Csikor, Vipul Ujawane, and Dinil Mon Di-
vakaran. On the feasibility and enhancement of the tuple
space explosion attack against Open vSwitch. arXiv
preprint arXiv:2011.09107, 2020.

[5] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan
Alagappan, Brian Kroth, Andrea Arpaci-Dusseau, and
Remzi Arpaci-Dusseau. From Wisckey to Bourbon: A
learned index for log-structured merge trees. In USENIX
OSDI, 2020.

[6] James Daly, Valerio Bruschi, Leonardo Linguaglossa,
Salvatore Pontarelli, Dario Rossi, Jerome Tollet, Eric
Torng, and Andrew Yourtchenko. TupleMerge: Fast
software packet processing for online packet classifica-
tion. IEEE/ACM Transactions on Networking (TON),
27(4):1417–1431, 2019.

[7] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang,
Jaeyoung Do, Yinan Li, Hantian Zhang, Badrish Chan-
dramouli, Johannes Gehrke, Donald Kossmann, David B.
Lomet, and Tim Kraska. ALEX: An updatable adaptive
learned index. In ACM SIGMOD, 2020.

[8] The Linux Foundation. Kubernetes.
https://kubernetes.io/docs/concepts/
services-networking/network-policies/,
2021.

[9] Pankaj Gupta and Nick McKeown. Packet classification
on multiple fields. In ACM SIGCOMM, 1999.

[10] Pankaj Gupta and Nick McKeown. Classifying pack-
ets with hierarchical intelligent cuttings. IEEE Micro,
20(1):34–41, 2000.

[11] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Ed-
berg Halim, Henry Hoffmann, and Haryadi S Gunawi.
Linnos: Predictability on unpredictable flash storage
with a light neural network. In USENIX OSDI, 2020.

[12] Danny Yuxing Huang, Ken Yocum, and Alex C. Sno-
eren. High-fidelity switch models for software-defined
network emulation. In ACM HotSDN, 2013.

[13] Georgios P. Katsikas, Tom Barbette, Marco Chiesa, De-
jan Kostic, and Gerald Q. Maguire Jr. What you need
to know about (smart) network interface cards. In PAM,
2021.

[14] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mi-
hail Stoian, Alfons Kemper, Tim Kraska, and Thomas
Neumann. RadixSpline: A single-pass learned index.
arXiv preprint arXiv:2004.14541, 2020.

[15] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H.
Chi, Jialin Ding, Ani Kristo, Guillaume Leclerc, Samuel
Madden, Hongzi Mao, and Vikram Nathan. SageDB: A
learned database system. In CIDR, 2019.

[16] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and
Neoklis Polyzotis. The case for learned index structures.
In ACM SIGMOD, 2018.

[17] Pengfei Li, Yu Hua, Pengfei Zuo, and Jingnan Jia. A
scalable learned index scheme in storage systems. arXiv
preprint arXiv:1905.06256, 2019.

[18] Wenjun Li, Xianfeng Li, Hui Li, and Gaogang Xie. Cut-
Split: A decision-tree combining cutting and splitting
for scalable packet classification. In IEEE INFOCOM,
2018.

[19] Eric Liang, Hang Zhu, Xin Jin, and Ion Stoica. Neural
packet classification. In ACM SIGCOMM, 2019.

[20] NVIDIA Networking (Mellanox). OVS offload us-
ing ASAP2 direct. https://docs.mellanox.com/
pages/viewpage.action?pageId=39264792, 2020.

[21] NVIDIA. NVIDIA BlueField-2x AI-Powered DPU.
https://www.nvidia.com/en-us/networking/
products/data-processing-unit/, 2021.

[22] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jack-
son, Andy Zhou, Jarno Rajahalme, Jesse Gross, Alex
Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and
Martin Casado. The design and implementation of Open
vSwitch. In USENIX NSDI, 2015.

[23] A Linux Foundation Collaborative Project. Open
vSwitch. https://www.openvswitch.org/, 2020.

[24] A Linux Foundation Collaborative Project. Open
vSwitch and OVN 2020 fall conference. https://
www.openvswitch.org/support/ovscon2020/#D4,
2021.

[25] The DPDK Project. DPDK - data plane development
kit. https://www.dpdk.org, 2020.

https://docs.openstack.org/liberty/networking-guide/scenario-classic-ovs.html
https://docs.openstack.org/liberty/networking-guide/scenario-classic-ovs.html
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://docs.mellanox.com/pages/viewpage.action?pageId=39264792
https://docs.mellanox.com/pages/viewpage.action?pageId=39264792
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.openvswitch.org/
https://www.openvswitch.org/support/ovscon2020/#D4
https://www.openvswitch.org/support/ovscon2020/#D4
https://www.dpdk.org

[26] Alon Rashelbach, Ori Rottenstreich, and Mark Silber-
stein. A computational approach to packet classification.
In ACM SIGCOMM, 2020.

[27] Alon Rashelbach, Ori Rottenstreich, and Mark Silber-
stein. A computational approach to packet classification.
IEEE/ACM Transactions on Networking (TON), pages
1–15, 2021.

[28] Sumeet Singh, Florin Baboescu, George Varghese, and
Jia Wang. Packet classification using multidimensional
cutting. In ACM SIGCOMM, 2003.

[29] Giuseppe Siracusano, Salvator Galea, Davide Sanvito,
Mohammad Malekzadeh, Hamed Haddadi, Gianni An-
tichi, and Roberto Bifulco. Running neural networks on
the NIC. arXiv preprint arXiv:2009.02353, 2020.

[30] Venkatachary Srinivasan, Subhash Suri, and George
Varghese. Packet classification using tuple space search.
In ACM SIGCOMM, 1999.

[31] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu,
Zhaoguo Wang, Minjie Wang, and Haibo Chen. XIndex:
A scalable learned index for multicore data storage. In
ACM PPoPP, 2020.

[32] David E Taylor. Survey and taxonomy of packet classi-
fication techniques. ACM Computing Surveys (CSUR),
37(3):238–275, 2005.

[33] David E Taylor and Jonathan S Turner. ClassBench: A
packet classification benchmark. IEEE/ACM transac-
tions on networking (TON), 15(3):499–511, 2007.

[34] William Tu, Yi-Hung Wei, Gianni Antichi, and Ben
Pfaff. Revisiting the Open vSwitch dataplane ten years
later. In ACM SIGCOMM, 2021.

[35] Balajee Vamanan, Gwendolyn Voskuilen, and T. N. Vi-
jaykumar. EffiCuts: Optimizing packet classification for
memory and throughput. In ACM SIGCOMM, 2010.

[36] Xingda Wei, Rong Chen, and Haibo Chen. Fast RDMA-
based ordered key-value store using remote learned
cache. In USENIX OSDI, 2020.

[37] WIDE MAWI WorkingGroup. Measurement and analy-
sis on the wide internet (MAWI). http://mawi.wide.
ad.jp/mawi/, 2020.

[38] Zhaoqi Xiong and Noa Zilberman. Do switches dream
of machine learning?: Toward in-network classification.
In ACM SIGCOMM HotNets Workshop, 2019.

[39] Sorrachai Yingchareonthawornchai, James Daly, Alex X
Liu, and Eric Torng. A sorted-partitioning ap-
proach to fast and scalable dynamic packet classifica-
tion. IEEE/ACM Transactions on Networking (TON),
26(4):1907–1920, 2018.

A Appendix

A.1 Approximate sampling
We show how to analytically calculate the expectation µ and
standard deviation σ of a uniform sampling of an RQ-RMI
neural-net input domain. We use the definitions and notations
from [26].

RQ-RMI models contain several stages of submodels
(neural-networks). In each stage, a single submodel is se-
lected based on the output of the previous stage [26]. Let m
be an RQ-RMI submodel.

The responsibility Rm of m is defined as the set of all values
in R that might reach m as inputs, formally I1∪ ...∪ In, where
n≥ 1 and Ii = [ai,bi] are sorted non-overlapping intervals in
R.

For 1≤ i≤ n, define ti as the sum of all weighted averages
of I j, 1 ≤ j ≤ i. For ease of notation, t0 = 0. Note that the
intervals [ti−1, ti)⊆ [0,1] do not overlap, and their location in
[0,1] is relative to the weighted average of Ii.

For all 1≤ i≤ n, define the linear function gi(z) : [0,1]→
Rm as follows:

gi(z) =
bi−ai

ti− ti−1
· (z− ti−1)+ai

In particular, gi(z) maps between the weighted average of Ii
in [0,1] to Ii = [ai,bi]. The complete mapping between [0,1]
to Rm can be described as the collection of all gi functions, or
as follows:

g(z) =
{

gi(z)
∣∣z ∈ [ti−1, ti),1≤ i≤ n

}
Given a uniform random variable z∼U [0,1], the expecta-

tion µ and variance σ2 of Rm can be described using g(z):

µ = E[g(z)] σ
2 = E[g(z)2]−E[g(z)]2

The two can be manually calculated from the equations above.

A.2 More on updates in OVS-CCACHE

We test the temporal behavior of OVS-CCACHE when fac-
ing upcalls and different update rates, similar to the analy-
sis presented for OVS-ORIG (§3). Since we cannot control
OVS-CCACHE update rate (§7), we artificially delay adjacent
NuevoMatchUP training sessions. We use the same rule-set
and trace as in Figure 4, and sample the system’s throughput,
number of upcalls, and NuevoMatchUP iSet coverage, each
100ms.

The results shown in Figure 19 emphasize the importance
of fast updates in OVS-CCACHE, as frequent upcalls cause
the iSet coverage to drop to zero after just a few seconds,
cutting the throughput by half (t = 5 sec). Note that the slow
throughput of the system causes it to effectively digest the
input at a lower rate, which in turn causes the upcall rate to
go down as a result.

http://mawi.wide.ad.jp/mawi/
http://mawi.wide.ad.jp/mawi/

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
10−2
10−1

100
101

1K 100K 500K
T

hr
.

(M
pp

s)

OVS-ORIG OVS-CCACHE OVS-CFLOWS

Rule-set
Speedups

OVS-CCACHE

OVS-CFLOWS

1.2 1.0 1.0 1.1 1.0 1.2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.1 1.1 1.1 1.4 2.2 1.2 1.4 2.3 2.2 3.5 1.0 1.0 2.2 3.2 2.2 1.0 3.5 1.2 3.5 3.2 5.1 2.2 1.0
1.4 2.1 5.3 5.8 1.7 2.2 15 1.6 2.1 3.0 4.2 1.1 1.2 15 27 30 6.2 3.7 11 44 28 9.8 17 8.0 0.9 2.2 18 11 1.6 3.6 1.2 6.9 6.9 5.1 10 0.8

(a)

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12
10−1

100
101
102 1K 100K 500K

A
vg

.#
H

as
h-

T
bl

.

OVS-ORIG OVS-CCACHE

Rule-set
Speedup 1.2 0.9 1.3 1.6 1.3 1.3 1.0 1.1 0.7 0.4 1.7 0.7 1.2 1.7 2.0 2.0 1.0 1.2 1.2 1.5 2.0 1.0 2.8 0.9 0.9 2.0 2.4 2.4 1.0 2.0 1.0 2.1 5.0 4.0 3.0 0.8

(b)

Figure 18: (a) OVS-CFLOWS, OVS-CCACHE and OVS-ORIG on CAIDA-short using adaptive TX rate. Higher is better. (b) The
average number of hash-tables in the megaflow cache on CAIDA-short trace. Lower is better. This is an extended version of
Figure 11.

0

1

2

T
hr

.
(M

pp
s)

0

10

20No Delay

U
pc

ls
/s

(×
10

3)

0
50

100

No DelayC
ov

.

0

1

2

T
hr

.
(M

pp
s)

0

10

2010 Sec Delay

U
pc

ls
/s

(×
10

3)

0
50

100 10 Sec Delay

C
ov

.

0

1

2

T
hr

.
(M

pp
s)

0

10

2015 Sec Delay

U
pc

ls
/s

(×
10

3)

0 5 10 15 20
0

50
100 15 Sec Delay

Time (sec)

C
ov

.

Throughput Upcalls/sec iSet Coverage

Figure 19: The effect of upcalls and NuevoMatchUP update
rate on OVS-CCACHE throughput.

The results also show that upcalls still dominate the
throughput as in OVS-ORIG (t = 11 sec), thus paving the
motivation for OVS-CFLOWS.

A.3 Rule-set names
Rule-set names in Figures 7c, 8, 11, 15, 18a, and 18b by order:
ACL1, ACL2, ACL3, ACL4, ACL5, FW1, FW2, FW3, FW4,

FW5, IPC1, IPC2.

	Introduction
	Background
	Open vSwitch
	NuevoMatch Classification Algorithm

	Motivation
	Design Options and Challenges
	OVS with Computational Cache
	OVS with Computational Flows
	Challenge: Slow NuevoMatch Updates

	NuevoMatchUP: Speeding-up Updates
	Relaxing iSet Constraints
	Training via Approximate Sampling
	Optimized Training Implementation
	Putting It All Together

	Implementation
	Updates in OVS-CFLOWS

	Evaluation
	Methodology
	End-to-end Performance
	Sensitivity to OVS parameters
	Analysis of OVS-CCACHE
	Analysis of OVS-CFLOWS

	Discussion and Future Work
	Related Work
	Conclusion
	Acknowledgements
	Appendix
	Approximate sampling
	More on updates in OVS-CCACHE
	Rule-set names

