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Abstract

Tiered memory systems introduce an additional memory
level with higher-than-local-DRAM access latency and re-
quire sophisticated memory management mechanisms to
achieve cost-efficiency and high performance. Recent works
focus on byte-addressable tieredmemory architectureswhich
offer better performance than pure swap-based systems. We
observe that adding disaggregation to a byte-addressable
tieredmemory architecture requires important design changes
that deviate from the common techniques that target lower-
latency non-volatile memory systems. Our comprehensive
analysis of real workloads shows that the high access la-
tency to disaggregated memory undermines the utility of
well-established memory management optimizations. Based
on these insights, we develop HotBox – a disaggregated
memory management subsystem for Linux that strives to
maximize the local memory hit rate with low memory man-
agement overhead. HotBox introduces only minor changes
to the Linux kernel while outperforming state-of-the-art
systems on memory-intensive benchmarks by up to 2.25×.

CCS Concepts: • Software and its engineering → Mem-

ory management; • Hardware → Emerging architec-

tures.
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Figure 1. Latency ranges of tiered memory technologies.

1 Introduction

Tiered, or heterogeneous, memory architectures have emerged
as a promising approach for delivering higher memory ca-
pacity at a lower cost. Such architectures extend the memory
hierarchy with an additional memory tier that has a lower
per-byte cost but also a higher access latency.

Two primary technologies are used in tiered memory sys-
tems, shown in Figure 1, which can be categorized according
to their access latency. The first, local byte-addressable non-
volatile memory (NVM), such as Intel Optane DC DIMMs, is
a new type of memory hardware that is 2×– 4× slower than
DRAM [27, 49], but cheaper by about the same factor.
The second, remote disaggregated memory, is a system

architecture that delivers high memory capacity at a rack-
or cluster-level over the network. Figure 2 shows the canon-
ical disaggregated memory architecture where applications
run on compute blades that host a small amount of local
main memory, while the bulk of their datasets reside in a
high-capacity remote memory blade accessed through a low-
latency interconnect [33]. Disaggregation brings cost savings
by reducing memory fragmentation across datacenter nodes,
which share a large memory pool.

There are two mechanisms to transparently access disag-
gregated memory: using it as a swap device with accesses at
page granularity, or via CPU load/store accesses at cache-line
granularity. A hybrid approach combines cache-line accesses
with pagemigration between remote and local memory, using
the latter as a cache. Swapping can be employed in commod-
ity systems today and has been thoroughly studied in prior
work [10, 22, 24, 42]. However, a hybrid approach has gained
increased interest [7, 15, 28, 48] with the expected emergence
of lower latency networks offering end-to-end latencies as
low as 750 nsec for optimisticmid-term estimates [2, 8, 22, 43]
(accounting for network delays in the cache-coherent fabric,
e.g., CXL [3] and Gen-Z [2], and local access in memory
blades), to 1,500 nsec with today’s interconnects [4, 13].
In this paper, we seek to optimize the performance of

disaggregated memory systems with a hybrid access mecha-
nism.
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Figure 2. Traditional vs disaggregated memory architec-
tures.

The key question shared by all tiered memory systems
is how to reduce memory costs by shifting memory usage
into the slower and cheaper tier with minimal impact to
the application performance. Most existing mechanisms for
managing byte-addressable tiered memory target the lower-
latency end of the spectrum of 200–600 nsec [7, 20, 26, 28, 48].
In this work, we ask whether the performance optimizations

suggested in prior work are also effective for byte-addressable

disaggregated memory management, under their respective
latency spectrum of 750–1500 nsec. Our analysis (§ 3) shows
that this is not the case. Our conclusions are as follows:
1. A swap-only approach under higher memory la-

tencies is inefficient. Several prior works [10, 22, 24, 42]
regard the disaggregated memory blade as a swap device,
whereby any access to data residing in the blade results in
the page being copied to local DRAM. This approach leads
to large-granularity accesses resulting in thrashing of lo-
cal memory and poor performance on workloads with poor
access locality. Our analysis shows that, for disaggregated
memory latencies, such a swap-only approach can be infe-
rior to a hybrid memory access mechanism that combines
both cache-granular and page-granular accesses, even when
using swap with an optimal offline page replacement policy.

2.Huge pages are detrimental.While prior approaches [7,
48] have advocated for using huge pages in tiered memory
systems to reduce TLB pressure and shorten page walk la-
tencies, we find that in a higher-latency regime, huge pages
often have a detrimental effect on system performance. Our
analysis shows the negative impact of a huge-page-induced
phenomenon we call hotness fragmentation. Hotness frag-
mentation of a page implies that its constituting base pages
are accessed at a different frequency (have different hotness)1.
Whenmigrated into local memory, hotness-fragmented huge
pages decrease the effective local memory capacity and, as a
result, increase the incidence of slow accesses to disaggre-
gated memory.
3. Batch-migration of pages is inefficient. Prior stud-

ies [48] argued for migrating batches of pages to amortize
system overheads. However, we find that batching decreases
both the accuracy and timeliness of migration decisions,
while at the same time does not seem to reduce the migra-
tion costs.

1Unlike the known problem of memory bloat, which stems from the internal

fragmentation of huge pages due to non-contiguous allocations, hotness

fragmentation is caused by mixed spatial access locality within a huge page.

To summarize, swapping, huge pages, and batching are
well-established solutions to improve performance in tiered
memory systems, but do so at the expense of reducing local
memory hit rate with their coarse-granular migration policy

and mechanism. This is a very profitable trade-off in existing
tiered memory systems at the extremes of the latency differ-
ences between the fast and slow memories (e.g., local DRAM
and NVM in the left half of Figure 1), but we demonstrate
that this trade-off requires a different system design point
for disaggregated memory because of its particular access
latency regime.

Based on these insights, we build HotBox, a novel mem-
ory management subsystem for the Linux kernel targeting
byte-addressable disaggregatedmemory thatmaximizes local

memory hit rate through the use of finer-grain management

mechanisms. While maximizing hit rate is a common goal
of all caching architectures, the primary challenge we cope
with in disaggregated memory systems are their non-trivial
migration and access monitoring overheads.
To this end, HotBox makes the following design choices:

(1) use a hybrid access mechanism, (2) eliminate the negative
effects of hotness fragmentation by using only base pages in
local and disaggregated memory, and (3) do not use batching
and instead migrate pages on demand, one page at a time.
HotBox takes several steps to reduce the costs of disag-

gregated memory management. It reduces the overheads of
estimating local memory page hotness by using a dynamic

page access sampling mechanism whose frequency increases
with local memory pressure. This allows HotBox to accu-
rately discriminate between pages of high hotness, leading to
better eviction decisions for the local memory, exactly when
it is particularly important for caching performance [40],
yet keeps the sampling overheads low in the common case.
To reduce sampling overheads for remote memory, HotBox
takes advantage of the hierarchical translation structures,
dismissing large memory regions where not a single page has
been accessed (i.e., a sub-tree of the page table). Finally, Hot-
Box monitors the utility of migrations, pausing migrations
when deemed unnecessary (i.e., to prevent local memory
thrashing).
We implement HotBox in Linux and evaluate it using In-

tel’s Persistent Hybrid Memory Emulation Platform (PMEP)
[19]. We compare HotBox with state-of-the-art mechanisms,
including swapping-based systems such as InfiniSwap [10,
22, 24], as well as the recent Nimble [48] system for tiered
memory, which relies on huge pages and batch migration
to amortize page management overheads. We run memory-
intensive applications including database (VoltDB), key-value
store (memcached), and graph analytics (Ligra and Graph500).
HotBox outperforms all state-of-the-art approaches, corrob-
orating the conclusions of our earlier analysis. Compared
to swapping-based systems and Nimble, HotBox achieves
speedups of up to 4.5× and 2.25× respectively.
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Figure 3. Disaggregated memory system model. CPU can
perform direct cache line access to disaggregated memory.
Hot and cold pages are migrated between the memory tiers.

2 Background

Disaggregated memory systems expose an additional mem-
ory tier into the traditional system architecture. The memory
hierarchy of such a system consists of a fast but limited-
capacity local DRAM, and a slower disaggregated memory
blade. Figure 3 illustrates a hybrid disaggregatedmemory sys-
tem in action. To attain maximum performance, frequently
accessed (hot) pages are placed in the local DRAM, while less
frequently accessed (cold) pages are placed in the disaggre-
gated memory blade and accessed at cache line granularity
over an interconnect fabric [2, 3, 16]. A page’s hotness can
change over time, and thus it is migrated between the tiers
at runtime.
Recent works on tiered memory systems [7, 26, 28, 48]

combine direct cache-line accesses to tiered memory and
page migrations to optimize performance – that is, a hy-
brid system. They rely on mechanisms that sample page
access frequency to determine hot and cold pages and mi-
grate them accordingly. Cold pages are directly accessed
from the tiered memory without migrating them first into lo-
cal DRAM. These works, however, target low-latency tiered
memory systems and are ill-suited for disaggregatedmemory
systems as we show next.

3 Analysis of existing approaches

We identify three aspects of tiered memory systems that
are essential for performance: (1) the granularity of mem-
ory accesses to remote memory (i.e., swapping vs cache line
accesses vs a hybrid), (2) the granularity of memory manage-
ment (i.e., page size), and (3) the granularity at which pages
are selected and migrated between local and remote memory.
In this section, we revisit the conclusions presented in the
recent literature concerning these three issues and show that
the reported findings are not applicable to the higher latency
of disaggregated memory systems.

Methodology.Unless stated otherwise, we use several memory-
intensive workloads, each of which has a working set size
of about 10GB, and analyze them on an evaluation platform
with configurable latency for the disaggregated memory tier
(see § 6 for details).

For brevity, we use the terms "local memory" and "remote
memory" to refer to the local DRAM and disaggregated mem-
ories shown in Figure 3, respectively. In a tiered memory

LLC Cache 6 MB, 8-way, 64 B cache block, latency: 30 cycles

Local Mem. 1 GB, 4 KB page size, latency: 210 cycles

Remote Mem. Unlimited size, 4 KB page size

Table 1. Disaggregated memory simulator parameters.

system without disaggregation, we use the term "remote
memory" to refer to the slower memory tier (e.g., NVM).

3.1 Granularity of memory accesses:

cache line vs. swap

Prior works on transparent support for tiered memory archi-
tectures define the system as following one of three models:

Swap: Remote memory is used as a swap device [9, 10, 22,
24, 42].
Cache-line access: Data in remote memory is accessed di-
rectly using regular cache-line accesses [37].
Hybrid: A combination of the prior two models, as shown
in Figure 3, that allows both direct access to remote memory
at cache line granularity and page migration to local memory
for performance optimizations [7, 15, 20, 28, 48].

Even though these approaches have been investigated in-
dependently in prior works, it remains unclear whether one
model is superior to the others under disaggregated mem-
ory latencies. In this subsection, we confirm that the hybrid
model is indeed essential for achieving high performance
under these latencies: neither the swap nor cache-line ac-
cess model in isolation is superior to the other one across all
workloads.

We first consider the swap and cache line access mod-
els and show two applications where each model results
in strictly poorer performance than the other. To do so,
we compare regular cache line accesses against the opti-

mal swap model using Belady’s offline page replacement
algorithm [12].

Analysis. We compare the models’ average memory access
time (AMAT) using a simulator. The simulator processes an
application trace and computes AMAT for a specific cache
size, for local memory and remote memory configurations.
We collect traces, using PIN [34], of two graph process-

ing applications: BFS (large working set, mostly random ac-
cesses) and Page Rank (PR) (small working set) implemented
in Ligra [44]. We choose the simulation parameters (Table 1)
to match the scaled-down characteristics of a real system
that we use for evaluation.
Figure 4 shows the AMAT slowdown of the two models

over a configuration with only local memory (our ideal tar-
get), using various remote memory latencies (a lower slow-
down implies better performance); note that we simulated
both the optimal offline swap policy (based on Belady) as well
as an online swap policy (similar to the one in Linux). The
key result is that none of the access models outperforms the
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Figure 4. AMAT slowdown over all-local execution for dif-
ferent access models. No single model suits all configurations.
Size of local memory: 20% of the working set.

others in all the scenarios, depending on both the application
and the system configuration.

In BFS, cache line access performs best across all the evalu-
ated latencies and outperforms even the optimal swap policy.
In contrast, cache line access in PR loses its benefits at higher
latencies, becoming slower even than the sub-optimal online
swap policy.

Takeaway: Neither the cache line access nor the swap

model are superior across applications when we look at the

latency regime of disaggregated memory. Therefore, a hybrid

design is essential for dynamically determining the correct

policy (swap or cache line access) for each accessed memory

page in a disaggregated system.

The most recent state-of-the-art work that utilizes the
hybrid model transparently and without dedicated hardware
is Nimble [48]2, hence it serves as a baseline in our analysis
of current hybrid systems. Other works on disaggregated
memory systems that operate in the access latency spectrum
of 750–1500 nsec consider only the swap access model [9, 10,
22, 24, 42], which we collectively refer to as "swap" in the
rest of the paper.

3.2 Granularity of memory management:

base pages vs. huge pages

The use of huge pages (2MB) is known to lower address
translation overheads by extending the TLB reach and reduc-
ing the page walk time [30, 38, 39]. Intuitively, huge pages
are particularly appealing for systems where an additional
memory tier expands the available memory size dramatically
(i.e., as more memory can be used by applications).

However, as we show in this section, these benefits di-
minish when the remote access latency increases, and are

2Nimble was developed for tiered memory systems at a single node where

fast DRAM is augmented with slower secondary memory. However, it is

equally applicable to tiered memory systems comprised of local and remote

DRAM (i.e., disaggregated memory) as stated in the paper.

eventually outweighed by the negative effects of using large
page sizes.

3.2.1 Slow remote memory renders huge pages inef-

fective. We run five benchmarks that were shown in prior
studies to benefit from using huge pages in local memory [30,
38, 39]. To understand whether these benefits hold in a dis-
aggregated memory system, we pin the working set entirely
in remote memory and configure the system to use huge
pages. Page tables are placed in local memory for the best
performance [6, 29]. We compare huge and base page perfor-
mance under varying remote memory latencies. This setup
is aimed to highlight the performance impact of huge pages
where remote memory accesses dominate execution time.

Figure 5a shows diminishing speedups for huge pages as
the remote memory latency increases. Huge pages yield up
to a 30% speedup when used in a system with local memory
only, mainly due to reducingmemory access latency by about
70 nsec with faster page walks (recall that a page walk on x86
entails multiple references to the memory hierarchy, whose
combined latency may exceed that of fetching the data).
However, these savings become negligible when the access
latency to remote memory is up to an order of magnitude
larger than local memory latency. Then, the latency to fetch
the data from remote memory dominates end-to-end latency,
resulting in a best-case speedup of 3% when huge pages
are used (i.e., page walks are served by local memory, and
followed by a data access to remote memory).

Takeaway: The use of huge pages in remote memory results

in small or no performance benefits.

3.2.2 Hotness fragmentationmakes huge pages harm-

ful. The use of huge pages is often associated with internal
huge page fragmentation, also known as memory bloat [30,
38]. This phenomenon leads to an increase in memory usage
and results in poor memory utilization; i.e., some of the base
pages that constitute a huge page are never utilized.

When huge pages are used in a tiered memory system, we
observe poor memory utilization that cannot be explained
by memory bloat alone. Rather, we find that the spatial lo-
cality of accesses to huge pages tends to be low. When a
huge page spanning the equivalent of 512 base pages is mi-
grated into local memory, its constituent base pages are all
accessed but are not equally hot, resulting in sub-optimal
use of local memory space. We call this phenomenon hotness

fragmentation (𝐻𝐹 ).
The performance implications of𝐻𝐹 are particularly acute

when the local memory size is a fraction of the working set
size and can result in application slowdowns in a disaggre-
gated memory system. We next characterize the effects of
𝐻𝐹 using a representative workload and then provide a more
formal analysis.

Intuition: 𝐻𝐹 in memcached. We compare the performance
of the memcached-ETCworkload [21, 31] using base and huge
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(a) Benchmarks with all data placed in re-

mote memory. The speedup of huge pages

tapers off under higher latency.

(b) memcached with oracle static page place-

ment. Huge pages degrade the performance

for higher latency and smaller local memory.

(c) 𝐻𝐹 micro-benchmark with a TLB hit rate

of 100% for huge and 0% for base pages.

Figure 5. Effect of using huge pages in disaggregated memory

pages. We illustrate the impact of 𝐻𝐹 while using a static
policy that places the top hottest pages in local memory, as
identified by offline profiling. This policy yields the best-case
performance estimate, as it works better than the known
best online policy [48] for this workload.

As we reduce the fraction of the working set in local mem-
ory, the positive effect of huge pages should level off; i.e., we
already saw in Figure 5a that moving the working set to re-
mote memory results in the same performance for base and
huge pages (speedup=1). However, due to 𝐻𝐹 , huge pages
in local memory result in lower performance than base pages.
Figure 5b shows that the slowdowns are pronounced for
remote memory latencies of 750 nsec and above, the ranges
of interest for disaggregated memory systems.

Analysis. We define the measure of hotness fragmentation,

𝐻𝐹 , as 𝐻𝐹 = 1 −
𝑁ℎ𝑢𝑔𝑒

𝑁𝑏𝑎𝑠𝑒
, where 𝑁ℎ𝑢𝑔𝑒 and 𝑁𝑏𝑎𝑠𝑒 are the num-

ber of accessed base pages in local memory, under huge-
and base-page executions, respectively. Low values of 𝐻𝐹
imply that the utility of local memory for huge pages is high.
However, high 𝐻𝐹 values correspond to an access pattern
with poor spatial locality within huge pages, a pattern ac-
commodated better by using base pages.
To illustrate the performance impact of 𝐻𝐹 , we run a

micro-benchmark with a hot working set that fits entirely
in local memory when base pages are used. We use a bi-
modal, uniformly random pattern where the skew of hot
pages represents 90% of all accesses. To vary 𝐻𝐹 , we keep
the number of hot base pages constant during the experi-
ment but vary the distribution of the accesses across huge
pages. Our benchmark is designed to favor huge pages: it
ensures all memory accesses result in an LLC miss, has a
100% TLB hit rate when using huge pages, and has a 0% TLB
hit rate when using base pages.

Figure 5c shows that with disaggregated memory (remote
memory latencies exceeding 750 nsec),𝐻𝐹 makes huge pages
inferior to base pages. With 𝐻𝐹 as low as 0.2 (i.e., 80% of the

base pages constituting a huge page are hot), the 2× speedup
of huge pages disappears at remote access latency of 750 nsec.
At 1000 nsec remote access latency, the execution with huge
pages is 20% slower than with base pages.

𝐻𝐹 in applications. We now measure 𝐻𝐹 in four real ap-
plications: memcached-ETC and
Graph500 (where huge pages are advantageous), and Ligra-
BFS and Ligra-PR, which are not sensitive to page size.

We consider two memory placement policies: offline static
(top hot pages pinned in local memory) and online dynamic
(which migrates pages using Nimble [48]). To compute 𝐻𝐹 ,
we periodically (every 1 sec) sample and count all the base-
page access bits and compute the average over the execution.

The center and bottom rows of Figure 6 show the 𝐻𝐹 sta-
tistics for each application, for different sizes of local memory.
The top row shows the fraction of base pages accessed in
local memory for each policy and page size.

We make several observations. First, as expected, smaller
local memory consistently results in higher values of 𝐻𝐹 ,
for example when 20% of the working set is in local memory,
memcached-ETC experiences 0.2 and 0.5 𝐻𝐹 with static and
dynamic policies, respectively. In other words, local memory
utilization is effectively halved with huge pages under a dy-
namic policy as compared to the utilization with base pages.
These results help explain the performance of memcached-
ETC in Figure 5b. Second, the dynamic migration policy in
the state-of-the-art system [48] causes significant 𝐻𝐹 . Fi-
nally, the memory bloat caused by huge pages (blue area in
the graph) is relatively small as compared to the 𝐻𝐹 . The
results of this experiment indicate that 𝐻𝐹 indeed occurs in
real applications, and is correlated to their performance in
disaggregated memory systems.

Thermostat [7] considered a related question of the corre-
lation between the huge page’s hotness and the number of
accesses to base pages in a huge page. They conclude that the
spatial frequency of accesses within a huge page is poorly
correlated with its true access rate. Their data supports our
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Figure 6. Local memory hit rate (top) and 𝐻𝐹 (center, bottom) vs. fraction of the working set in local memory.

observation that 𝐻𝐹 is a real problem in huge-memory man-
agement, but they draw a different conclusion than us that
serves their objective: motivating the use of huge pages with
low-latency remote memory, where the adverse effects of
𝐻𝐹 is less pronounced.

Takeaway: The use of huge pages in disaggregated memory

systems decreases the effective local memory capacity due to

𝐻𝐹 . Thus, using them for managing disaggregated memory is

detrimental for performance.

3.3 Granularity of page migration:

on-demand vs. batch migrations

Disaggregated memory systems require swift identification
and migration of hot pages; when a remote page has been
classified as hot, promptly migrating it into local memory re-
duces the number of high-latency remote memory accesses.
Prior work argued that batch migration, i.e., grouping mul-
tiple pages to perform their migration together, is essential
for achieving high migration performance [48]. This is in
contrast to on-demand page migration such as used in swap-
based tiered memory systems [10, 22, 24], which migrate a
page in response to a page fault, one page at a time. How-
ever, batch migration implies that pages are migrated ahead
of time, in anticipation that they will be consequently ac-
cessed after the pages have become resident in local memory.
In other words, pages are prefetched from remote memory
according to the same pages’ prior access statistics.
Due to this behavior, batch migration might result in im-

precise migration decisions (evicting hotter local memory
pages), whereas on-demand page-by-page migration is more
conservative and costly. This presents a non-trivial trade-off
betweenmigration performance andmigration accuracy, and
prior work argued for optimizing the former at the expense
of the latter.

We analyze the costs and benefits of the migration granu-
larity trade-off:

Do batch migrations amortize costs? Prior work [48] ob-
served that migrating a single page via the built-in Linux

Figure 7. Execution time breakdown of migrating a batch
with a single 4 KB page to another NUMA node, using the
existing move_pages system call.

system call move_pages is slow, and propose using batch-
ing to amortize such costs. We show that batching is not a
prerequisite for high migration performance.
We start by profiling move_pages. As can be seen in Fig-

ure 7, 86% (26 𝜇sec) of the time is indeed spent on amorti-

zable operations – “batch syscall” and “CPU LRU drain” –
performed once per system call regardless of the number of
pages that are migrated. But a closer examination reveals
that such operations are unnecessary, as explained next.

Before a page can bemigrated, it must be removed from the
LRU list of its NUMA node, and Linux keeps a small per-core
software cache of recent LRU list entries to reduce contention
accessing the global LRU lists. The system call move_pages
is designed to "drain" (i.e., flush) all per-core LRU list caches
to their corresponding global LRU list before migrating any
page. This operation is expensive and is conducted via inter-
processor interrupts (IPIs) to all cores in the system.

However, we argue that draining is not essential, as pages
in LRU caches can temporarily be considered non-migratable.
The LRU caches are only 16 entries, constituting only a small
fraction of the total memory and leaving many other poten-
tial candidates for migration; even a large multi-core system
would only have a few hundreds of such pages. Furthermore,
LRU caches are constantly updated, such that the desired
page may soon leave the LRU cache and its migration would
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Figure 8. Page migration rate in the on-demand migration
(aka swap) and batched migrations (aka Nimble with base
pages [48]). Local memory size is 20% of the working set.
Batching causes aggressive migrations with low good-put.

be re-enabled. In fact, the autoNUMA subsystem in Linux
already implements this optimization.

We conclude that per-page migration time can be reduced
to 4 𝜇sec (from 30 𝜇sec) that is not amortizable: the remaining
operations must be performed for every page in a batch.

Takeaway: Batching is not required for high-performance

page migration.

Do batch migrations bring the correct pages? The ef-
fectiveness, or good-put, of the batch migration is critical
in a system with limited local memory. We define good-put
as the proportion of pages that have been migrated to local
memory and accessed at least once before being evicted.

Wemeasure the good-put of fourmemory-intensive bench-
marks (see § 6 for details) on the Nimble system with batch
migrations of base pages. Figure 8 shows that Nimble’s good-
put is low in three out of the four benchmarks, i.e., 27% in
VoltDB-TPCC and about 46% in Ligra-BFS.

We also observe that the average migration rate of Nimble
is considerably higher than on-demand page migration.

Takeaway: Batch migration leads to a lower good-put and

higher migration bandwidth than on-demand migration.

4 HotBox

Based on the insights of the analysis in § 3, we design and
implement HotBox, a novel memory management subsystem
for disaggregated memory systems with four design goals:

1. Use of base pages to manage memory: to avoid 𝐻𝐹 ,
2. On-demand hot-page migration under the hybrid access

model: for improved migration utility,
3. Adaptive memory scanning: for improved accuracy of

eviction decisions under high local memory pressure
while retaining low overheads in a common case,

4. Adaptive throttling of migration mechanisms according
to the utility of past migrations: to avoid local memory
thrashing.

The first two goals are derived from our analysis (§ 3),
which argues for finer-granularity page management (single
base page), whereas the last two aim to reduce the inherently
higher overheads of fine-granularity page management. We
explain the rationale for items 3 and 4 here and provide
technical details about the complete system in Section 5.

4.1 Achieving high accuracy of migration decisions

with low overheads

Similar to prior tiered memory proposals [7, 26, 48], HotBox
uses the access bits of pages in local and remote memory to
estimate page hotness. However, we observe that the rate
at which the access bits are scanned (i.e., scanning rate) is
a crucial parameter for correctly identifying migration can-
didates both on the remote side (to migrate in) and on the
local side (to evict out). Intuitively, a higher scanning rate
enables more accurate differentiation between frequently
accessed pages. That is, the higher the rate, the more fre-
quently a page should be accessed in order to be considered
hot. Lower scanning rates naturally result in lower accuracy
of the hotness statistics as many pages may end up being
marked hot despite a potentially large difference in their
access frequency.

While the observations above hold true both for local and
remote memory, we find that local memory is particularly
sensitive to the scanning rate since it serves as a cache for
the remote tier and the majority of the pages are accessed
relatively frequently. As a result, the ability to discriminate
between hottest and less hot pages is crucial in order to
make well-informed eviction decisions [40]. Problematically,
a high scanning rate is a costly proposition in terms of CPU
cycles, especially when utilizing base pages, as more scan-
ning operations are required to traverse a range of memory
when compared to huge pages. While potentially acceptable
if used for short intervals of time for local memory, frequent
scanning incurs unacceptably-high overheads given large
capacities of disaggregated memory.

What is needed is a mechanism that can dynamically nav-
igate the cost-accuracy curve based on workload behavior
in regard to memory pressure. To that end, HotBox employs
two independent scanners for local and remote memory that
interact via a closed feedback loop: (1) remote memory is
scanned at a fixed rate that yields low overheads, and (2)
local memory is scanned at an adaptive rate tied to the local
memory pressure. Only when a remote page is classified as
hot, it is migrated to local memory, and will subsequently
increase the local memory pressure, resulting in a higher
scanning rate. Thus HotBox ensures that the most frequently
accessed pages in local memory are correctly identified as
hot and are not evicted.

4.2 Avoiding useless migrations

Asmentioned above, scanning of access bits must necessarily
occur more frequently (thus incurring a higher overhead) to
better discern page hotness and improve the hit rate in local
memory. However, when the hot working set size is too large,
migrations stop being useful (since local and remote working
sets have similar hotness) and may cause thrashing of local
memory, hence hurting performance. To demonstrate this
effect, we measure the throughput of memcached serving a
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Figure 9. Overview of local and remote page scanning and
migration in HotBox.

random (non-skewed) set of requests [31] using the Nimble
page migration mechanism. We then run the same experi-
ment, but disable the migrations after a warmup andmeasure
the throughput again. We observe a 2.1× higher throughput
with migrations disabled. This improvement is expected as
the access pattern has no spatial locality, effectively causing
local memory thrashing and useless page migration.

To counteract such cases, we devise a simple mechanism
to evaluate the migration utility and pause migrations when
the utility is low. Specifically, we monitor the application’s
accesses to local and remote memory, which allows the mo-
mentary local memory hit rate to be estimated. If this value
remains unchanged over several measurement intervals, it
indicates that migrations are not helpful in reducing accesses
to remote memory and migration is paused. If the value devi-
ates from the average by a few percentage points, migration
is resumed. The intuition is that a change in either direction
implies a change in the application access pattern. Stopping
migrations averts the overheads of local and remote memory
scanning and page migrations in cases where the system
is in a steady-state and would otherwise continue to cycle
pages fruitlessly between the local and remote memory.

5 Implementation

Favoring on-demand page migration reduces the implemen-
tation complexity significantly, allowing us to repurpose the
existing autoNUMA and swap subsystems in Linux. HotBox-
introduces only minor modifications into the kernel (less
than 2K LOC) and yet meets our design goals.

At a high level, we use (1) the swap subsystem to track and
evict cold local pages, modified to use remote memory as the
destination for evictions and (2) the autoNUMA subsystem
to implement on-demand page migrations, modified to select
only hot pages in remote memory and trigger evictions (via
the kswapd daemon) if there is local memory pressure.

We now briefly survey the existing mechanisms in Linux
that we reuse in HotBox, and then, we highlight the modifi-
cations necessary to adjust these mechanisms to our needs.

5.1 Existing Linux Subsystems used in HotBox

Page and task balancing with autoNUMA. The autoN-
UMA subsystem co-locates processes and the pages they

use to minimize memory access latencies [18] in a NUMA
system. autoNUMA periodically unmaps a subset of pages
in a process, accesses to which triggers a page fault, which
the kernel uses to keep track of the current NUMA node of
the faulting page and process. With this information, autoN-
UMA reschedules tasks to the NUMA node where most of
its accessed pages reside, while at the same time it migrates
repeatedly accessed pages into the process’s NUMA node.

Page reclamation with kswapd and direct reclaim. Linux
uses a page reclamation algorithm that swaps cold pages
out from memory into a swap device. When the system
detects memory pressure during the allocation of new pages,
it wakes the kswapd daemon to free some additional pages
asynchronously. If no pages are free, the kernel uses the direct
reclaim path to free a small batch of pages synchronously.
When a new page cannot be allocated, direct reclaim is

invoked. If a page allocation request can be fulfilled, but
the resulting number of free pages in the system is lower
than a configurable threshold (i.e., when there is memory
pressure), the low watermark, the kswapd daemon is woken.
The daemon attempts to relieve memory pressure by freeing
multiple pages until a sufficient number are available, the
configurable high watermark. Both subsystems gradually in-
crease the aggressiveness of their heuristics when a sufficient
number of pages cannot be freed. For example, direct reclaim
will free dirty pages only when it is most aggressive since
they require I/O. Instead, kswapd frees a skewed amount of
file-backed and anonymous pages that change with the level
of its aggressiveness.
To estimate page utility, the page reclamation algorithm

classifies pages into two separate LRU lists (active and inac-
tive). It has two sets of lists, for file-backed and anonymous
pages, respectively. It also keeps track of two per-page bits:
accessed (in the page table), and referenced (in the kernel’s
per-page metadata). The algorithm iteratively attempts to
reclaim pages, becoming more aggressive at each iteration,
until it reaches its target. At each iteration, it moves the bot-
tom of the active LRU lists into the top of the inactive LRU
lists, until their sizes conform to a preconfigured ratio. Then,
it starts scanning the bottom of the inactive LRU lists until
it reaches its target and, for each page, checks the accessed
and referenced bits to determine whether the page is to be
reclaimed or recirculated in the LRU lists [14].
All pages eventually end up at the tail of the inactive

LRU list, giving the system an opportunity to scan them.
The reclamation algorithm thus constantly recirculates the
hottest pages and swaps the remaining pages out. In practice,
the estimated utility of a page changes according to memory
pressure. The greater the memory pressure, the faster the sys-
tem cycles through the pages it scans, effectively increasing
the average per-page scanning frequency.

Page allocation. When allocating a new page, the kernel
first attempts to use the NUMA node in which it is executing.
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If this fails, it attempts to use other NUMA nodes until it
finds a free page (or none is left in the system).

5.2 Extensions to existing Linux subsystems

We implement HotBox in Linux kernel version 4.9.99, tying
the independent production-hardened heuristics present in
Linux with new mechanisms that synergistically work to
meet our goals.
1) We expose local and remote memories as separate

NUMA nodes in the kernel.
2) We implement a new remote memory scanning algo-

rithm that performs on-demand migrations of hot pages to in-
crease migration utility. When enabled by the migration util-
ity monitor, the algorithm, shown in Figure 9, scans blocks
of remote pages periodically to check their access bits (with
a configurable batch size and period for scanning, effectively
capping the migration bandwidth).

To further reduce the scanning overheads of remote mem-
ory, we perform a hierarchical scan of the page table radix
tree and sample the accessed bits of the higher-level page
tables (PMD): if the accessed bit is 0, we skip scanning all the
entries in the underlying page table (PTE), as no page inside
the page table has been accessed [25].

Remote memory pages’ hotness is tracked with a per-page
state that is updated by the periodic scans ( 1 cold, 2 warm,
and 3 hot), and hot pages aremigrated into local memory on-
demand (after being unmapped and subsequently accessed;
if no local pages are free, the page is re-mapped).
3) We modify kswapd to evict local cold pages into re-

mote memory. When triggered, the modified kswapd refills
and scans the inactive LRU list as usual (Steps a and b ,
respectively, in Figure 9). If a cold page is found, it is evicted.

4) We modify page allocation to ensure kernel pages and
all page tables are placed in localmemory (for performance [6]),
while other pages have a “best effort” placement, as in Linux.

5)Wemodify page allocations to not trigger direct reclaim
when attempting to migrate a remote page, since an aggres-
sive direct reclaim can stall applications for long periods of
time and it is frequently better to keep the page remotely.

5.3 Monitoring migration utility

Wemonitor the migration utility by maintaining a windowed
average of the ratio between local and remote memory ac-
cesses of each task in the system (using the UOPS_LLC_-
MISS_RETIRED.{REMOTE,LOCAL}_DRAM PMU counters [25]
via the in-kernel perf_event API) and consider the system
to be in a steady state when the ratio has remained stable
across three time windows.

6 Evaluation

We aim to answer two key questions: is HotBox effective in
running applications in disaggregated memory with realistic

Processor 2× Intel E5-4620 v2 w/ PMEP microcode patch

Memory 2× 64 GB DDR3 1333 Hz

Network Intel 10-Gigabit SFI

OS Ubuntu 16.04, Linux version 4.9.99

Table 2. PMEP platform.

access latency, and how does it compare with the state-of-
the-art tiered-memory OS management systems?

6.1 Methodology

As system support for cache-line remote-memory accesses is
not commercially available as of yet, we obtained the results
in this paper using Intel’s Persistent Hybrid Memory Emu-
lation Platform (PMEP [19], Table 2), which was also used
for studying tiered memory in prior research [20]. PMEP
runs Linux, exposes a remote memory tier as a separate
NUMA node, and uses special CPU microcode to emulate
slower memory access latencies by injecting additional stalls,
thereby allowing end-to-end full-system performance mea-
surements. We verified that PMEP injects the requested la-
tencies using Intel’s MLC tool [46].
All applications run on the first NUMA node. We dis-

able HyperThreading and all unused CPUs. Local memory
is placed on the first NUMA node. To limit its size, we use a
simple balloon process that allocates and locks pages in mem-
ory. Certain workloads require a client application over the
network, in which case we use an identical PMEP machine
without HotBox connected via 10Gbps Ethernet.

6.2 System and benchmark configurations

We evaluate HotBox against four alternative approaches:

All-local: Data pages are located in local memory; no mi-
gration. This serves as an upper bound on performance.
All-remote: Data pages are located in remote memory; no
migration. This serves as a lower bound on performance.
Swap: Remote memory is handled as a swap device; pages
are paged-in and out via the Linux LRU mechanism. This
is used to illustrate the performance of systems that do not
perform direct access to remote memory (not hybrid) [10,
22, 24]. This is an optimized implementation that eliminates
a block device layer similarly to frontswap [1]. It is 1.4×
faster than Linux swap when mounted on BRD [5].
Nimble [48]: Nimble migration management is evaluated
using the same number of CPU cores as HotBox. In this
configuration, their concurrent page migration mechanism
degrades performance, and hence, we disable it. We note
that Nimble’s technique that enforces the local memory limit
does not count kernel allocations (e.g., page tables) and file-
mapped pages (e.g., code) as part of local memory consump-
tion, giving it a slight advantage over HotBox.

We evaluate Nimble with both base and huge pages and the
other approaches with base pages. In addition, we configure
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Figure 10. End-to-end speedup over all-remote execution for different workloads and local memory sizes (WSS – working set
size). Higher is better. Remote memory latency is 750 nsec. "Swap" did not finish for Graph500.

the maximum migration rate to be 2 GB/s in both Nimble
and HotBox. This value provides an empirically good perfor-
mance across all configurations for Nimble.

We run five benchmarks with a working set of 10 GB each:

Graph500: A known graph processing benchmark [35] with
two kernels: graph construction and BFS. It was used in a
prior study [48]. The access pattern is random.
Ligra-BFS: BFS on a popular Ligra graph processing frame-
work [44]. We use the included rMatGraph utility to create
a graph with 40M vertices and 400M edges with the param-
eters from Graph500 [35] (A=0.57, B=C=0.19). We exclude
graph loading time. The access pattern is random.
Ligra-PR: Page Rank (PageRankDelta) on Ligra (same in-
put as in BFS). The access pattern is initially random, but the
algorithm reduces the effective working set over iterations.
VoltDB-TPCC: TPC-C benchmark (we use 256 warehouses
and 4 sites) [17] running on VoltDB [45], an in-memory, row-
based relational database. We measure the average transac-
tion latency over 5min. The access pattern is random, but
accesses are in blocks of 8 KB (the record size); there are also
many random accesses to a small number of pages with data
structures used by the Java Virtual Machine.
memcached-ETC: An in-memory KV store [21] measured
using the Mutilate client [31] and Facebook’s ETC bench-
mark [11]. The throughput is measured after loading 30M
records and a 1min warmup. We average the throughput
over 5min. The access pattern is random with a skew; 90% of
requests account for 10% of the keys. Despite this skewness,
the distribution of the popular keys in memory is random.

All the benchmarks use four threads pinned to different
CPU cores, except for memcached, which runs in a single
thread (we do not have enough machines to saturate more).

6.3 End-to-end evaluation

We start by evaluating the end-to-end performance of Hot-
Box, compared to the state-of-the-art in tiered memory sys-
tems. We also evaluate HotBox without the adaptive throt-
tling mechanism. In this study, we model a remote memory
access latency of 750 nsec, which is optimistic for near- to
mid-term time frame; other latencies are explored below. We

evaluate the workloads with different local memory sizes
that correspond to a fraction of the working set size (WSS)
of the application; e.g., a point labeled "20% WSS" indicates a
local memory size that can fit 20% of the application’s work-
ing set. We thus focus on relative trends to decouple our
evaluation from the constraints imposed by fixed choices of
dataset and memory sizes.
Figure 10 shows that HotBox performs best on all stud-

ied configurations. The benefits of HotBox are particularly
high for Ligra-PR, memcached-ETC and VoltDB-TPCC, with
a relative speedup of up to 2.25× over the best perform-
ing state-of-the-art configuration. These workloads have a
skewed memory access pattern where HotBox can provide
more effective identification andmigration of hot pages (§ 6.5
further analyzes the effectiveness of the migration decisions).

Graph500 exemplifies our hypothesis that 𝐻𝐹 and huge
pages together lead to bad performance. This benchmark has
large huge page speedups at low memory latencies (above
1.3× in Figure 5a), but also has 𝐻𝐹 of 0.13 to 0.2 for the
20-40% WSS figures (see Figure 6). As a result, the huge
page optimizations in Nimble-huge are inefficient at higher
remote memory latencies, and the same system with base
pages, Nimble-base, performs 1.2×-1.6× better for 20%-40%
WSS (as explained in § 3).

Ligra-BFS and memcached-ETC show that HotBox’s adap-
tive mechanisms for avoiding page thrashing are also critical
for performance. HotBoxwithout adaptive throttling exhibits
noticeably lower performance compared to HotBox in these
workloads, demonstrating the adaptive throttling mecha-
nism’s benefits. We also note that Nimble-huge yields higher
performance than Nimble-base in these workloads as a result
of lower page management overheads. These are workloads
where we know the hottest pages do not fit in local memory
and, therefore, all policies but HotBox continuously thrash
the local memory with migrations.

Interestingly, VoltDB-TPCC at 40% WSS shows that Swap
outperforms Nimble by 2.3× and is almost as good as HotBox.
This benchmark has sequential accesses to 8 KB blocks, and
we believe that the read-ahead prefetcher in the Linux swap
cache is identifying this pattern and reducing on-demand
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Figure 11. Runtime breakdown of VoltDB-TPCC. Lower is
better.

page migrations. This shows prefetching policies could have
a secondary but important role, as HotBox still outperforms
all policies without using prefetching.

In summary, HotBox outperforms all other systems by chal-

lenging traditional tiered memory management designs. This
does not mean that previous memory management optimiza-
tion efforts such as prefetching are unnecessary, but rather,
as we will see next, they become secondary to local memory
hit rate in the latency ranges of disaggregated memory.

6.4 Latency sensitivity and system overheads

Here we study the balance between system overheads and
the accuracy of migration decisions on both Nimble and Hot-
Box. To this end, Figure 11 shows absolute performance num-
bers and a breakdown of the system overheads for VoltDB-
TPCC under different memory latencies. Nimble is invoked
with base pages to isolate the impact of batching (Figure 10
above already showed that huge pages rarely provide a sub-
stantial benefit, sometimes having severe negative impacts).

The breakdown shows the runtime of the user application
(“App”), the time spent scanning local and remote memory
access bits (“Scan local” and “Scan remote,” respectively),
and the time spent migrating pages (“Migration”). We chose
VoltDB-TPCC as it exhibits a random but skewed access pat-
tern where the hottest pages fit local memory at 40% WSS.
First, recall that Nimble performs aggressive migration

with relatively low good-put for this workload (§ 3, Figure 8).
The implications of this are evident here: migration over-
heads are much higher than in HotBox, and the fraction of
the application time is larger and increases with the remote
memory latency, indicating a significant amount of remote
memory accesses. This is not the case for HotBox, which has
better migration decisions (lower “App” time, in some cases
close to optimal performance). The lower “App” time also in-
dicates that with an additional dedicated core to offload both
mechanisms’ overheads (“Scan” and “Migration”), HotBox
will still exceed Nimble’s performance.

Figure 12. Runtime and migration bandwidth of Ligra-PR.
Lower is better.

Furthermore, HotBox is more resource efficient: under
40% WSS, HotBox’s performance without an additional core
(including the “Scan” and “Migration” overheads) still out-
performs Nimble’s “App” time alone, assuming an additional
core is able to hide Nimble’s overheads.

HotBox increases the memory scanning rate as a function
of memory pressure, which is reflected in the “Scan local”
and “Migration” times. These times are higher for 20% than
for 40% WSS. Thus, this design enables gradual and more
accurate migration decisions, resulting in smaller “Migra-
tion” and “App” overheads due to fewer and more accurate
migrations.
To conclude, the overheads of HotBox are lower while, at

the same time, its adaptive local scanning rate design provides

better performance even at high remote memory latencies.

6.5 Effects of local memory size on migration

bandwidth

Local memory size is decisive in application performance.
Figure 12 shows the execution time and effectivemigration

bandwidth consumed by the system under different local
memory sizes. Again, Nimble is executed with base pages.
HotBox effectively executes with aggressive local memory
size reductions (e.g., 10% WSS). Starting at 40% WSS, HotBox
can effectively identify and migrate-in all hot pages. At 80%
WSS, the migration bandwidth is close to zero, similar to that
of Swap, and both are on par with the all-local execution.
This implies that the hot working set of Ligra-PR represents
approximately 80% of its full data set.
Notably, the migration bandwidth of Swap and HotBox

decreases with a larger local memory, but Nimble’s total
bandwidth increases almost 5× as compared to its values
with a small local memory. This is due to Nimble’s page-
exchange batching mechanism: Nimble’s migration batch
size is dependent on the size of the local memory; the batch
size is the maximum between the number of cold pages in
local memory and the hot pages in remote memory. As the
local memory size increases, more victim pages are gathered
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from local memory, enabling larger batches with low good-
put ratios.

In conclusion, as compared to all the other approaches, Hot-

Box is more effective at a reduced local memory size.

7 Related work

Tiered memory systems have attracted considerable research
attention, with many innovative ideas being proposed across
both hardware and software stacks [7, 9, 10, 15, 20, 24, 26,
28, 32, 36, 37, 42, 48]. Here, we review the most relevant
research work in the context of OS support for memory
disaggregation.

Swap-only access models. Gao et al. analyzed the rela-
tionship between network and application performance [22],
using a swap device implementation that injects additional
latencies. Infiniswap [24] applies a similar mechanism to uti-
lize excess memory in remote servers. LegoOS [42] proposes
a disaggregation design, where local memory acts as a coarse-
grain cache of remote memory with the help of specialized
hardware support. These and other approaches [9, 10] differ
from HotBox in that they do not support direct cache-line
access to remote memory, and hence, their migration mech-
anisms and policies differ from ours. Further, their authors
did not analyze the impact of huge pages, which is one of
our core contributions.
Leap [9] presents an efficient page prefetching from re-

mote memory in the swap model. HotBox can benefit from
such a prefetching policy: prefetching policies for the hybrid
model can gain at least the same performance benefits as
policies in the swap model (since the hybrid model includes
the swap model). Prefetching for the hybrid model presents
additional challenges, such as evaluating remote memory
access patterns under direct cache-line accesses with low
overhead, that we leave for future work.

Hybrid access models. The approach most relevant to ours
is the Nimble page management system [48], which uses
huge pages and batch migrations to accelerate page migra-
tion in a tiered memory system with 200 nsec remote mem-
ory latency. In contrast, our analysis highlights the negative
side effects of these optimizations, in particular for higher-
latency disaggregated memory, leading to different design
decisions in HotBox, which result in better performance.

Similarly, Thermostat [7] targets tiered memory with the
NVM latency range, focusing on the differentiation and place-
ment of hot and cold huge pages. We demonstrate that this
can hamper performance in a disaggregated memory setting.
HeteroOS [28] targets virtualized systems and provides

a guest-hypervisor cooperation mechanism for page place-
ment in tiered memory systems. Our use of performance
counters to reduce the migration overheads is similar to

theirs. Our huge-page analysis is complementary to Het-
eroOS, as it provides the necessary first step toward investi-
gating the performance tradeoffs of utilizing huge pages in
virtualized environments.

Non-transparent access models. Dulloor et al. [20] intro-
duced a toolset to guide application data placement on a
tiered memory system using profile data. HotBox employs
dynamic memory management with online decisions, and
hence, it is not directly comparable. Other works [41, 47]
rely on application data and require code changes to support
disaggregated memory. HotBox runs at the kernel level and
is applicable to all applications transparently.

Hardware-based disaggregated architectures. A number
of proposals considered new hardware support for disag-
gregated memory [15, 32, 37, 42]. In particular, Scale-out
NUMA [37], proposes a new hardware architecture for a
non-coherent distributed compute and memory system with
direct remote access capabilities, laying the foundations for
future byte-addressable disaggregated systems.

Huge pages. Prior studies indicate that the use of huge pages
may hinder performance in a NUMA system due to false shar-
ing of pages between NUMA nodes [23] and may occupy ad-
ditional memory resources due to memory bloat [30, 38, 39].
Our research is complementary, as we identify a new phe-
nomenon, hotness fragmentation, that affects performance
specifically in disaggregated memory systems.

8 Conclusions

Memory disaggregation offers promising operational sav-
ings in a data center to meet the ever-increasing application
memory requirements. Existing OS approaches for manag-
ing tiered memory [7, 20, 26, 28, 48] target memory latencies
lower than those offered by current and near-future disag-
gregated memory latencies [2–4, 13, 16].
In this paper we show that the existing memory man-

agement approaches are ill-suited in the latency regimes
of disaggregated memory, and introduce HotBox, a novel
memory management subsystem for the Linux kernel tar-
geting disaggregated memory. Based on a detailed analysis
of state-of-the-art work and conventional memory manage-
ment techniques, HotBox follows four design choices: to use
only base pages for migration, to increase eviction accuracy
by sampling page hotness according to memory pressure, to
migrate remote memory pages only upon access to increase
migration utility, and to throttle migration and page hotness
sampling according to the utility of past migrations. These
design choices enable HotBox to outperform state-of-the-
art systems by up to 2.5× on memory-intensive workloads.
HotBox carefully reuses and extends existing Linux kernel
subsystems, minimizing the impact on the existing kernel
code (less than 2KLOC) and simplifying its integration in
future releases.
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