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Goals

● Learn the principles of hardware and software design 
of programmable accelerators

● Learn the principles of software-hardware interaction 
between accelerators and CPUs 

● Learn the principles of accelerator-centric systems
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Administration

● Instructor: Mark Silberstein - Technion
● Email: mark@ee.technion.ac.il
● Website: https://marksilberstein.com
● Group Website: https://acsl.group
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Introduction
● Why accelerators: trends in computer 

architecture
● Amdahl's law and the case for multi-accelerator
● Taxonomy of accelerators
● GPU as an example
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Moore's law and CPU performance
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More transistors != more performance

● Dennard scaling: power density remains constant as 
we shrink transistors, but they become faster!

From: «Design of Ion-Implanted 
MOSFET’s with Very Small Physical 
Dimensions», 1974

Dynamic leakage killed Dennard scaling @ ~2006
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Transistor scaling is  much slower

9 years8 years

16x

4x
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Transistor scaling is  non-economical
● 7nm — today (difficult)

● 5nm – not yet available

● 3nm and down – not clear
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Looking far beyond CMOS

● Cryogenic computing

● Approximate/stochastic computing

● Neuromorphic computing

● Biological computing/storage

● Quantum computing

9



Mark Silberstein @ ACACES2022July 2022

Looking far beyond CMOS

From «IEEE rebooting computing»
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What to do until the next revolution?
Performance

(log)

Today Birth of 
new 
technology

New technology
matured

????

Compute
Demand 
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Accelerators
Special-purpose processing units which 
improve performance of specific workloads

workloads

Performance/
Watt

General
purpose

Accelerator
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Accelerators: co-processors
GPU as an example

● Offloading large parallel tasks for faster execution

● Local state for intermediate results

● Applications run on the host
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GPU is a co-processor

CPU GPU

Memory Memory
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GPU is a co-processor

CPU GPU

Memory Memory

Computation
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CPU GPU

Memory Memory

Computationtation

GPU is a co-processor
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CPU GPU

Memory Memory

Computationtation t a t i o n

GPU 
kernel

GPU is a co-processor
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CPU GPU

Memory Memory

Computation

GPU is a co-processor
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Bad news: Amdahl's law

● α — acceleratable part, 1-α — non-acceleratable 

● Maximum speedup = 1 / (1-α)

α

Speedup

90% acceleratable
but speedup at 

most x10
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Solution: multiple accelerators
● Broader applicability
● Accelerators for common tasks

workloads

Performance/
Watt

General
purpose

Accelerators
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Application developers 
match tasks with accelerators 

workloads

Performance/
Watt

Accelerators

Heterogeneous
Application 

General
purpose
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Additional reading
● Amdahl’s law in the  Multi-Core Era, MD Hill et al 
● Many-core vs. Many-thread machines: stay away from the valley, Z. Guz et al
● Rebooting computing: the road ahead, TM Conte
● What is the future of technology scaling, D Brooks 
● Validity of the single processor approach to achieving large scale computing 

capabilities, GM Amdahl
● Design of Ion-Implanted MOSFET’s with Very Small Physical Dimensions, R Dennard 
● A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper, M Bohr
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Survey of accelerators
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Axes of analysis

Purpose

CPU integration

Programmability
Proximity to data

Manageability
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Purposes
● I/O accelerators

− E.g., high performance NICs, storage

● Security accelerators
− E.g., IBM secure processor

● Computational accelerators
− E.g., GPUs, FPGAs, DSP

● Sensors/media/communication accelerators
− Codecs, GPS, mobile 
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CPU integration
● Discrete accelerators

− Connected to the host via internal bus
− Separate local memory 
− Examples: discrete GPUs, NICs

● Integrated accelerators
− On-die with the host CPU
− Shared physical (and sometimes virtual) memory
− Examples: integrated GPUs
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Example: discrete vs. hybrid GPUs

GPU CPU

System DRAM

Last Level $ (LLC)

Private $ Private $
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Programmability

ASIC: fixed function

FPGA:  software-defined hardware

Programmable: programmable tasks

Low

High

Low

High

Low

High Low

High

Performance Dev. 
complexity

Cost
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Example: linear algebra accelerators

● ASICs ~1000x faster/W than CPU
− Do specific tasks extremely fast
− But! takes ~$Mlns to tape out

● FPGAs ~100x faster/W 
− Non-Von-Neumann architectures

● GPUs  ~10x faster/W than CPU
− No new hardware
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Proximity to data
● Near-data accelerators: exploit high bandwidth to 

data, reduce data movements
− Processing in storage

● SSD controller: 16-core ARM processor
− Processing in memory

● Micron “automata”
− Processing in network

● Programmable Switches
● Compute accelerators: exploit special local memory 

architecture 
30
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Manageability
● By CPU 

○ Accelerators do not have privileged mode 
● GPUs

● Self-managed
○ Runs an embedded OS

● BlueField SmartNIC runs complete Linux

● Combined
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Manageability: Invocation and execution
● Inline

○ Bump-in-the-wire SmartNICs: performs processing on every 
packet without involving CPU to be invoked

● Look-aside 

○ GPU: explicitly invoked by the CPU to perform specific tasks
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Accelerators vs. ISA extension
● Coarser-grain tasks
● Asynchronous
● Large private state
● Managed by drivers
● Dynamically scheduled
● Preemptable 

● Fine-grain tasks
● Mostly synchronous
● State shared w/ CPU
● Invoked directly
● Mapped at compile-time
● Atomic (non-preemptable)
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Questions for self-study [1] 

1. Why Amdahl’s law calls for introducing more accelerators?
2. Is there any inherent tradeoff between programmability 

and performance?
3. What is the difference between inline accelerator and 

look-aside accelerator?
4. Why are look-aside accelerators usually most efficient for 

coarse-grain tasks?
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Why building systems with accelerators is hard?

● Incommensurate scaling

● Emerging complexity to lower costs

● Hidden properties

35
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Incommensurate scaling

Different components scale differently
Galileo, 1638

What would happen to a mouse if it grew to the 
size of an elephant?
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On Being the Right Size (Haldane 1928)

● Scaling mouse to size of an elephant
− Volume ~ O(n3)
− Bone strength ~ cross section ~  O(n2)
− Mouse design will collapse 

An elephant needs a different design than a mouse

Accelerating part of a system results in incommensurate scaling 
and exposes new tradeoffs that require full redesign
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Performance → complexity → 
unexpected consequences 

Want to build railway, but mountains interfere
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Cheap solution is inefficient

Simple but slow: one train at a time
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Can we make it faster?

Optimal solution is costly!
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Compromise: 
cheaper than optimal, faster than one track
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But significantly more complex

42

One hidden global requirement is introduced!
Which one?
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Engineering is the art of trade-offs

With enough money and time, you would always 
build a  special-purpose ASIC for each task

Flexibility

Performance Cost

Complexity
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How do accelerators influence 
the system design?
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Computer hardware today

CP
U

Accelerators for
crypto, media, signal processing.... 

Network I/O 
accelerator

Storage I/O
accelerator

GPU parallel
accelerator
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Computer hardware today

CP
U

Accelerators for
crypto, media, signal processing.... 

Network I/O 
accelerator

Storage I/O
accelerator

GPU parallel
accelerator

Power 
Performance

Programmability
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But the system stack stayed unchanged!

CP
U

Accelerators for
crypto, media, signal processing.... 

Network I/O 
accelerator

Storage I/O
accelerator

GPU parallel
accelerator

Power 
Performance

Programmability
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Example: image server
1. put: parse → contrast-enhance →  store 
2. get: parse → resize → store → serialize

Similar architecture 
used in Flickr

48
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Example: image server
1. put: parse → contrast-enhance →  store 
2. get: parse → resize → store → serialize

NIC

SSD

GPU

CPU

49

Heterogeneous server
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Lets use accelerators!
1. put: parse → contrast-enhance →  store 
2. get: parse → resize → store → serialize

50

NIC

SSD

GPU

CPU

Heterogeneous server
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Using accelerators – no need for CPU!
1. put: parse → contrast-enhance →  store 
2. get: parse → resize → store → serialize

SSD GPU CPU
NIC
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Closer look at get

parse req

resize img
store img

marshal resp

SSDNIC

 parse → resize → store → serialize
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send(resp)

marshal resp

But OS services run on CPUs

SSD

get: parse → resize → store → serialize

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)

53

NIC

marshal resp
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send(resp)
marshal resp

Offloading overheads dominate

SSD

get: parse → resize → store → serialize

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)

54

NIC

marshal resp
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send(resp)
marshal resp

Offloading overheads dominate

SSD

get: parse → resize → store → serialize

CPU

recv(req)

read(file,img)
parse req

resize img

write(file,img)

55

NIC

marshal resp

No sockets, isolation, 
transport layer … 

No files, 
protection...
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THE problem: OS architecture is CPU - centric 

GPU Storage

CPU

NIC
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OmniX: Accelerator-centric OS architecture

CPU

O
S

 
S

ervices 

OS

OS Services

O
S

 
S

er
vi

ce
s 

GPU Smart
Storage

SmartNIC
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● Important mechanisms of heterogeneous systems
○ Basics of the co-processor programming model
○ Virtual memory
○ Intra-node networking  (PCIe)
○ Memory models

● Accelerator-centric OS design
○ Interaction with I/O accelerators 
○ Networking and storage access from accelerators

● Future hardware, heterogeneous and disaggregated data centers

This course is about 
accelerator-centric system design
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Additional reading
● Principles of Computer System Design: An Introduction, JH Saltzer and MF 

Kaashoek
● On being the right size, JBS Haldane
● OmniX: an accelerator-centric OS for omni-programmable systems, HotOS’16, 

M. Silberstein
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Basics of co-processor 
accelerator  programming 
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General development flow 
with programmable accelerators

● Code development in higher-level language using 
hardware-specific primitives

● CPU-side “driver” development using accelerator runtime 
API

● Cross-compilation + packaging
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Example: GPUs
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GPUs in ML – 
Linear Algebra Accelerators

Compute Matrix Product
ON GPU

63

How to program a GPU
to compute this?
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Simple GPU program: 
exploiting data parallelism

● Idea:  same set of operations is applied to different 
data chunks in parallel

● Algorithmic challenge – identify data-parallel tasks

64
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● Idea:  same set of operations is applied to different 
data chunks in parallel

● Algorithmic challenge – identify data-parallel tasks 

● Implementation 
− Every thread runs the same code on different data chunks. 
− GPU concurrently runs thousands of parallel threads

65

Simple GPU program: 
exploiting data parallelism
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Vector sum C=A+B
● Sequential algorithm
For every i

C[i]=A[i]+B[i]
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Vector sum C=A+B

● Sequential algorithm
For every i

C[i]=A[i]+B[i]

● Parallel algorithm
In parallel For every i 

C[i]=A[i]+B[i]
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Implementation for a vector of length 1024

● GPU kernel (this program runs in every thread)
C[threadId]=A[threadId]+B[threadId]

Per-thread hardware-supplied ID
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● GPU kernel
C[threadId]=A[threadId]+B[threadId]

● CPU
1.Allocate arrays in GPU memory
2.Make data accessible to GPU: CPU →  GPU copy
3.Invoke GPU kernel with 1024 threads
4.Wait until complete and copy data GPU → CPU

69

Implementation for a vector of length 1024
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Complete example (sketch)
CPU:
void vector_sum(float* A, float* B, float* C, size_t n)
{

float* gA=cudaMalloc(n); cudaMemcpy(gA,A,CPU_GPU);
float* gB=cudaMalloc(n); cudaMemcpy(gB,B, CPU_GPU);
float* gC=cudaMalloc(n); 

    vector_sum_kernel<<<n>>>(gA,gB,gC);
   cudaWait();
    
    cudaMemcpy(C,gC,GPU_CPU);
}

GPU:
void vector_sum_kernel(float* gA, float* gB, float*gC)
{
     size_t me=cudaGetID();
     gC[me]=gA[me]+gB[me];
}
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Complete example (sketch)
CPU:
void vector_sum(float* A, float* B, float* C, size_t n)
{

float* gA=cudaMalloc(n); cudaMemcpy(gA,A,CPU_GPU);
float* gB=cudaMalloc(n); cudaMemcpy(gB,B, CPU_GPU);
float* gC=cudaMalloc(n); 

    vector_sum_kernel<<<n>>>(gA,gB,gC);
   cudaWait();
    
    cudaMemcpy(C,gC,GPU_CPU);
}

GPU:
void vector_sum_kernel(float* gA, float* gB, float*gC)
{
     size_t me=cudaGetID();
     gC[me]=gA[me]+gB[me];
}

71

Many hardware- 
managed lightweight 

threads



Mark Silberstein @ ACACES2022July 2022

Compilation and deployment
>nvcc main.c 

main.c

GPU binary
(platform 

independent)

CPU Binary

Deployment

G
P

U

GPU binary
(platform 
specific)

JIT

G
P

U
 ru

nt
im

e

G
P

U
 d

riv
er
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Complete example (sketch)
CPU:
void vector_sum(float* A, float* B, float* C, size_t n)
{

float* gA=cudaMalloc(n); cudaMemcpy(gA,A,CPU_GPU);
float* gB=cudaMalloc(n); cudaMemcpy(gB,B, CPU_GPU);
float* gC=cudaMalloc(n); 

    vector_sum_kernel<<<n>>>(gA,gB,gC);
   cudaWait();
    
    cudaMemcpy(C,gC,GPU_CPU);
}

GPU:
void vector_sum_kernel(float* gA, float* gB, float*gC)
{
     size_t me=cudaGetID();
     gC[me]=gA[me]+gB[me];
}

73

GPU 
integration

GPU 
programming
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Complete example (sketch)
CPU:
void vector_sum(float* A, float* B, float* C, size_t n)
{

float* gA=cudaMalloc(n); cudaMemcpy(gA,A,CPU_GPU);
float* gB=cudaMalloc(n); cudaMemcpy(gB,B, CPU_GPU);
float* gC=cudaMalloc(n); 

    vector_sum_kernel<<<n>>>(gA,gB,gC);
   cudaWait();
    
    cudaMemcpy(C,gC,GPU_CPU);
}

GPU:
void vector_sum_kernel(float* gA, float* gB, float*gC)
{
     size_t me=cudaGetID();
     gC[me]=gA[me]+gB[me];
}
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This is often 
why things 
don’t work

That’s the fun stuff
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Observations
● No operating system on GPU
● CPU manages everything via the GPU driver

○ Memory allocation, code invocation
● CPU program to manage the accelerator might get 

quite complex
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Additional reading
● CUDA Docs (docs.nvidia.com/cuda)
● GPU Programming Course (former Udacity “Intro to 

Parallel Programming)  https://classroom.udacity.com/courses/cs344

76
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Questions for self-study [2]
1. Why the current OS structure precludes efficient use of 

accelerators
2. Is the following statement correct: “GPUs cannot run an 

OS because they do not have privilege separation”
3. What is the key algorithmic challenge when 

programming a GPU
4. Why do GPUs employ Just-In-Time (JIT) compilation 

when deploying a kernel on a GPU
5. What are the typical tasks done by the CPU when a 

program is using a GPU
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Virtual memory in accelerators

78
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Agenda
● Virtual memory 101: replay from the OS course
● Multiple address spaces 
● Globally shared virtual memory
● Hardware page faults and page migration
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Virtual Memory 101
● VM abstraction 
● Pages, page tables, page cache, swapping, page 

faults, demand paging
● Page walks, MMU, TLB
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What would happen here? 
__global__ void foo(int* ptr){
   ptr++;
   *ptr=1;
}

__host__ void run_foo(){
   int h_ptr=malloc(4K); 
   int g_ptr=cudaMalloc(4K); // GPU memory

   h_ptr++; *h_ptr=0;
   g_ptr++; *g_ptr=0; 

  foo<<<>>>(h_ptr); //invoke GPU kernel
  foo<<<>>>(g_ptr); //invoke GPU kernel
}

Runs on the accelerator (GPU)

Runs on the host (CPU)
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GPU and CPU have separate address spaces

82

__global__ void foo(int* ptr){
   ptr++;
   *ptr=1;
}

__host__ void run_foo(){
   int h_ptr=malloc(4K); 
   int g_ptr=cudaMalloc(4K); // GPU memory

   h_ptr++; *h_ptr=0;
   g_ptr++; *g_ptr=0; 

  foo<<<>>>(h_ptr); //invoke GPU kernel
  foo<<<>>>(g_ptr); //invoke GPU kernel
}

Runs on the accelerator (GPU)

Runs on the host (CPU)

crash

crash
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Traditional virtual memory

CPU Memory

CPU MMU, Page table

CPU
83

CPU 
virtual

CPU
physical
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Inside accelerator virtual memory

Acc MMU, Page table

Acc memory

Accelerator
Acc 

Virtual
Acc

physical

PCIe internal bus

CPU Memory

CPU MMU, Page table

CPU
84

CPU 
virtual

CPU
physical
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Inside accelerator virtual memory

Acc MMU, Page table

Acc memory

Accelerator
Acc 

Virtual
Acc

physical

PCIe internal bus

CPU Memory

CPU MMU, Page table

CPU
85

CPU
physical

Defined for GPU

Used by CPU
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VM in GPUs
● GPU address space managed by CPU driver

− cudaMemcpy/cudaMalloc operate in GPU address 
space

● CPU allocates physical memory, updates GPU page table

No virtual address space sharing between 
system processors by default
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Can accelerators access CPU memory?
(zero-copy)
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Mapping CPU memory into Acc Virtual 
address space

Acc MMU, Page table

Acc memory

CPU Memory

Accelerator Acc 
Virtual

Bus 
physical                            

PCIe
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Acc access to CPU memory

Acc MMU, Page table

Acc memory

CPU Memory

Acc 
Virtual

Acc
physical

Bus 
physical                            

CPU 
physical                            

PCIe

Accelerator
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Acc access to CPU memory

Acc MMU, Page table

Acc memory

CPU Memory

Acc 
Virtual

Acc
physical

Bus 
physical                            

CPU 
physical                            

PCIe

Accelerator

What if these pages
gets swapped out??
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GPU access to CPU memory
● cudaHostAlloc(MAPPED)

− allocates CPU memory to make it accessible to the GPU, 
and pins it in CPU virtual address space

● cudaGetDevicePointer()
− maps CPU memory into GPU address space
− retrieves the GPU address for CPU pointer allocated via 

cudaHostAlloc
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CPU access to GPU memory
● Similar techniques
● In NVIDIA parlance called “GPUDirectRDMA”
● Exposes GPU memory on PCIe (more on that soon)
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Multiple address spaces are annoying

● Wouldn't it be great:
__global__ void foo(int* ptr){
   ptr++;
   *ptr=1;
}
__host__ void run_foo(){
   int* u_ptr=unified_malloc(4K); 
   u_ptr++; *u_ptr=0;
    foo<<<>>>(u_ptr);
}

We want shared virtual memory!

93
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Shared address space vs. shared memory

● Shared memory (usually SW): access the same application 
data via potentially different pointers 
○ Two processes may share memory but map it with different virtual 

addresses
● Shared address space (usually HW): same (unique) pointer on 

different processors refers to the same memory 

Shared virtual memory = 
 Shared memory + Shared address space
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Problem: Remote access is slow!

CPU GPU

Memory Memory

100GB/s

32 GB/s 
(PCIe-4)

1000GB/s

95

30x lower 
bandwidth!
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Heterogeneous Shared Memory
● Found in modern NVIDIA discrete GPUs 
● Implements an abstraction of shared memory
● Optimizes data placement under the hood
● Key idea: move data where it is used

○ Each processor keeps the used data in its memory
○ Migrates on-demand

How to identify data to be used ?
96
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Accelerator page faults

● Found in modern NVIDIA discrete GPUs 

 

Acc 
driver

CPU-managed Page Cache

Acc PF
handler

1

CPU-managed Page Table

Acc

CPU OS

CPU
Memory

PF

2

3
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A physical page is mapped on CPU or on Acc 
but never together

Access to shared pages  between Acc and CPU

● Migrate a page to Acc mem upon Acc page fault
● Migrate a page to CPU mem upon CPU page fault
● Migration granularity: max (CPU page, Acc page)

− GPU pages are 64KB, so migration is at 64KB 
granularity
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Shared Virtual Memory with GPU PF

__host__ void run_foo(){
   int* u_ptr=unified_malloc(4K); 

   u_ptr++; *u_ptr=0;

  foo<<<>>>(u_ptr);

__global__ void foo(int* ptr){
   ptr++;
   *ptr=1;
}

Allocate virtual space in 
CPU and GPUs
CPU PF: allocate/map CPU 
physical page

GPU PF: unmap page 
from CPU, allocate 
physical memory on GPU, 
migrate page into GPU, 
map in GPU
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What is the consistency model? 
E.g., does CPU sees updates if GPU writes to a page

We will discuss memory models in detail later

● Strong consistency: single owner 
● Classical Lamport’s model

Problems?

100



Mark Silberstein @ ACACES2022July 2022

False sharing
● Acc and CPU write-share the same page, but not the data in 

the page, so there is no actual data race

● As a result:
− Page bouncing: a  page gets constantly migrated b/w GPU and CPU 

− Extremely slow

CPU GPU GPU GPU

Single Page

101



Mark Silberstein @ ACACES2022July 2022

Summary

● Acc VM similar/identical to CPU VM

● Acc VM is (usually) managed by CPU

● Slow remote access calls for Virtual Shared Memory 
abstraction, which might get costly

● False sharing is a problem due to coarse-granular 
migration 
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Additional reading
● GAIA: An OS Page Cache for Heterogeneous Systems, USENIX ATC’19, T. 

Brokhman et al.
● An asymmetric distributed shared memory model for heterogeneous 

parallel systems, ASPLOS’10, I. Gelado et al.
● Heterogeneous Memory Management (LINUX Kernel Docs)
● ActivePointers: A case for software address translation on GPUs, ISCA’16, S. 

Shachar et al
● Dragon: Breaking GPU memory capacity limits with direct NVM access, 

SC’18 P. Markthub
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Questions for self-study [3]
1. Why does CPU buffers need to pinned if mapped into accelerator’s 

memory address space
2. If an accelerator can access CPU memory, does it mean that the 

security of the system is compromised because CPU memory 
protection mechanisms are not enforced on the accelerator?

3. In a system that does not implement shared virtual memory, a GPU 
passes a GPU pointer to a CPU. Is a page fault guaranteed to occur 
on the CPU access to it? 

4. Describe a scenario in which strict consistency performance suffers 
the worst. 
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Introduction to memory models
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What do we expect to be printed here?
A program running in 2 threads 
(all shared variables initialized to 0)

Data=1;
Flag=1;

while (Flag!=1);
print Data;

Thread 1 Thread 2
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What do we expect to be printed here?
A program running in 2 threads 
(all shared variables initialized to 0)

Data=1;
Flag=1;

while (Flag!=1);
print Data;

Thread 1 Thread 2

Depends on the memory model!
E.g., both 0 and 1 would be valid on a GPU 
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Memory consistency model
● A contract between a user and a platform 
● Defines permitted reorderings of memory 

operations when accessing shared memory from 
multiple threads 
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What does it mean “being reordered”

Data=1;
Flag=1;

while (Flag!=1);
print Data;

T1: W (Data) → W(Flag)

Thread 1 Thread 2

T2: R(Flag) → R(Data)

Question: if Flag is 1, does it imply that Data is 1?

Axiom: program order (single thread) is never violated!
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What does it mean “being reordered”

Data=1;
Flag=1;

while (Flag!=1);
print Data;

T1: W (Data) → W(Flag)

Thread 1 Thread 2

T2: R(Flag) → R(Data)

Question: if Flag is 1, does it imply that Data is 1?

Only if W (Data) → W(Flag) is enforced globally 

Axiom: program order (single thread) is never violated!
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So how can we explain output 0?

Data=1;
Flag=1;

while (Flag!=1);
print Data;

T1: W (Data) → W(Flag)

Thread 1 Thread 2

T2: R(Flag) → R(Data)

So, if Flag is 1 and Data is 0, what was reordered?

For Thread 2 it looks as if W(Flag) →  W(Data) 
(i.e., these operations were reordered in other threads w.r.t. to program 
order). 

Always 
correct
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Sequential (strong) consistency: 
no permitted reorderings

Lamport, 79:

A multiprocessor is sequentially consistent if the result of any 
execution is the same as if the operations of all the processors were 
executed in some sequential order, and the operations of each 
individual processor appear in this sequence in the order specified by 
its program

Data=1;
Flag=1;

while (Flag!=1);
print Data;

Only 1 is permitted as output
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Why not sequential consistency 

● Limits hardware/software optimizations
● Poor performance

But more importantly, not always needed!

Consider how to ensure that a “store” is visible to 
all threads? 
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When the order is not important

Data=1
MoreData=2;
Flag=1;

while (Flag!=1);
print Data;
print MoreData;

Thread 1 Thread 2

Does it matter if Data propagates before MoreData?
No! as long as both propagate before Flag.
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Weak consistency

Data=1
MoreData=1;
fence
Flag=1;

while (Flag!=1);
fence
print Data;
print MoreData;

Thread 1 Thread 2

● Hardware allows all permutations across threads
● Puts the burden on a programmer
● Software adds fence where necessary
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Weak consistency

Data=1
MoreData=1;
fence
Flag=1;

while (Flag!=1);
fence
print Data;
print MoreData;

Thread 1 Thread 2

● Hardware allows all permutations across threads
● Puts the burden on a programmer
● Software adds fence where necessary

Why is this fence 
necessary?

116



Mark Silberstein @ ACACES2022July 2022

Weak consistency

Data=1
MoreData=1;
fence
Flag=1;

while (Flag!=1);
fence
print Data;
print MoreData;

Thread 1 Thread 2

● Hardware allows all permutations across threads
● Puts the burden on a programmer
● Software adds fence where necessary

No fence 
needed 
here
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Memory models and accelerators
● Architecture-dependent, usually weak

● May have different models for inter-accelerator and 
intra-accelerator (i.e, access to CPU memory)
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CUDA GPU memory models
● CUDA supports C++11 memory model with small 

changes
● We will briefly describe C++11 memory model first
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C++11 memory model: memory primitives

● Regular variables

● Atomic variables: std::atomic<T> a; 
○ Support atomic read-modify-write (RMW) operations: Compare And Swap, Exchange, 

Increment, Assignment,...
○ Usually hardware-supported only for basic types (int, char, float, double..)

● Memory fences: std::atomic_thread_fence();
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C++11 memory model: rules

1. All regular variables are weak
a. No ordering guarantees

2. Atomic variables can be configured strong
a. Ordered among themselves (by default)
b. Support atomic RMW operations
c. Used to enforce order on weak variables
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Atomic variables must be used for 
ordering weak variables
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The wild west of weak variables

something=1;
data=1;
flag=1;

if (flag==1){
  print(data); // 0,1
  print(something); // 0,1
}

int flag=0, data=0, something=0;
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Atomic variables: seq consistency  by default

data.store(1);
moredata.store(2);
flag.store(1);

atomic<int> flag, data, moredata;

if(flag.load()==1){
  printf(data.load());
  printf(moredata.load());
}

Will always print “1” → “2”
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Weak var synchronization via atomic variables:
Producer-consumer message passing

For a given atomic variable SYNC if T2 LOADS the value of SYNC STORED by T1, 
then 

All weak loads/stores prior to SYNC.STORE in T1 are complete before SYNC.STORE 
and 

All weak loads/stores following SYNC.LOAD in T2 are performed after SYNC.LOAD

if (flag.load()==1)
  print (data);
  print(moredata); 

data=1;moredata=1; // weak vars
flag.store(1);
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Atomic variables: relaxing default ordering

data.store(1,memory_order_relaxed);
moredata.store(2,memory_order_relaxed);

atomic<int> flag, data, moredata;
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The use of strong variables should be minimized to avoid unnecessary 
performance overheads
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Implementing a TAS lock?

struct mutex{

 _lock=0;

 void  lock(){

    while(TAS(&_lock,1)); 

 }

  void unlock(){

    _lock=0; 

 }

}

This is what we all learned in the OS class
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Reminder: 
TAS(var,value){
    old=var;
    var=value;
    return old;
}

Atomically
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Possible implementation

struct mutex{

 atomic<int> _lock(0);

 void  lock(){

    while(_lock.exchange(1)); //TAS 

 }

  void unlock(){

    _lock.store(0); 

 }

}
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Possible implementation

struct mutex{

 atomic<int> _lock(0);

 void  lock(){

    while(_lock.exchange(1)); 

 }

  void unlock(){

    _lock.store(0); 

 }

}

128

Does it guarantee 
mutual exclusion?

mutex.lock()
 h_a+=sh_b; 
mutex.unlock();
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while(lock.exchange(1));  
 h_a+=sh_b; 
lock.store(0);

This lock guarantees mutual exclusion
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while(lock.exchange(1));  
 h_a+=sh_b; 
lock.store(0);

T1 T2
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CUDA memory model: C++11 and extensions

#include <cuda/atomic>

This is the portable way that works on the host and on the device

CUDA introduces scopes to limit the consistency scope

Examples: 

● device: applies to threads in the same GPU
● system: applies to all threads including other processors  (CPU or GPU)

Scope is a type of  a variable: atomic<int,thread_scope_block> var;
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Consistency scope

Not in the same scope – behave like weak

GPU1 a_gpu1.store();        GPU2 

In the same scope – behave like atomics

CPU                                              GPU1 

atomic<int, memory_scope_system> data_sys, flag_sys;

atomic<int,memory_scope_device> data, flag;

data.store(2);
flag.store(1);

if (flag.load())
   print(data.load());

data_sys.store(2);
flag_sys.store(1);

if (flag_sys.load())
   print(data_sys.load());
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Synchronization over PCIe
● PCIe-3 supports producer-consumer pattern
● PCIe-3 does not support atomic operations

● These limitations will be removed in CXL/PCIe-5 (most 
likely) 

CPU and GPU updates over PCIe to the same 
atomic variable are not atomic
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Summary
● Understanding memory models is essential

○ For building synchronization between devices
○ For ensuring correct software
○ For achieving performance

● CUDA Memory model design and implementation has 
been a multi-year academic+industrial effort to achieve 
compliance with C++11

● We touched only a tip of an iceberg
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Additional readings

One of the best books I’ve read on the topic!

● Olivier Giroux on Youtube: “The one decade task: putting std::atomic in CUDA”
● C++11 memory model tutorial(s) on internet. There are many, e.g. 

https://www.modernescpp.com
● CUDA Documentation
● Watch for tutorials by Daniel Lustig (recently on RISC-V memory models)
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1. What is the main downside of stronger memory models?
2. Does programmer-added fence always introduce performance 

overheads?
3. Does memory model apply to hardware or also to a compiler?
4. Why does CUDA have scopes on atomic variables?
5. Is it possible to see output “11” on a sequentially-consistent system 

(all vars are shared and initialized to 0) when running the following: 
T1: print b; if(t2lock!=1) { a=1; }  
T2: t2lock=1; b=1; print a;

Questions for self-study [4]
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PCI Express Basics
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Perpiheral Component Interconnect 
express (PCIe)

Used to connect peripherals among themselves and to 
the main CPU
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PCIe = open standard

● By PCISIG (PCI Special Interest Group)
● ISA, PCI, PCI-X, then PCI-Express (PCIe). We’ll talk about 

PCIe only.

138



Mark Silberstein @ ACACES2022July 2022

Terminology

● Link: A path between two devices.
● Lane: A send-receive pair within a link
● Link Width: #Lanes in a link

○ x1, x2, x4, x8, x16, x32
● 4 generations so far. 5th coming soon?

○ Called “Gen x” (e.g. PCIe 2.0 = PCIe Gen 2)
● Gen 3 is currently most common
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PCIe Bandwidth

(PCI Express Technology, Mike Jackson and Ravi Budruk)
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PCIe: Just a network really
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PCIe Layers

Physical Layer

Data Link Layer

Transaction Layer

Byte encoding, Signaling

DLLP, Error correction

TLP, QoS, Flow Control, Ordering
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Topology

∙ A PCIe link is a point-to-point connection between 2 
devices.

∙ Each device is connected to one PCIe link.

∙ How can we make a device talk to all other devices in the 
system?
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(PCI Express Technology, Mike Jackson and Ravi Budruk)

upstream

downstream

Topology
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PCIe switches

● A switch is a PCIe component with multiple ports

● Allows building a tree topology where every device can 

talk to every device

● How does it know to which port to forward each 

packet? Later on this..
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PCIe topology must be a tree 
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What services do devices need?

● Device accesses host memory (DMA)

● Host accesses device memory/registers

● Interrupts – notify the host about device events

● Configuration

Transaction Layer: Application interface
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PCIe Transaction Types (TLPs)

● Read/Write (both DMA and MMIO)
● Messages (Interrupts) – also implemented as writes
● Configuration Read/Write 
● Others (legacy, extensions, we’ll ignore for now)
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Posted and Non-Posted

● Non-Posted transaction: expects a response 
(completion message)

● Posted: Fire and forget

● Are read transactions posted? 
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TLP Routing

∙ Two methods to route transactions:
− ID routing

● Target a device with its firmware assigned ID
− Address routing

● Each device gets a system-wide unique range of 
the physical memory  addresses (bus addresses). 
This is a global address space.
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Routing by bus address

GPU NICSSD

PCIe root complex

CPU

0xFFF11000 0xFFF18000 0xFFFFA000

DRAM
0x0-0xFFF00000

MMU

Write to 0xFFF18100 Read from 
0x00001100

150



Mark Silberstein @ ACACES2022July 2022

BARs – Base Address Registers

● Different devices need different amounts of memory address range. 
Or even multiple such ranges

● A device tells what size of memory range it needs via its BARs (Base 
Address Registers).

● Memory address range is reserved by the system and written 
to the BARs.

● PCIe switches are updated to span the memory ranges of their 
devices.
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Memory Mapped IO (MMIO)
● Informally, accessing a device address range is called 

“reading/writing to a BAR”

● BAR of a device can be read from / written to by other 
device

● A CPU accesses it by mapping it into its Virtual Memory
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What is the content read/written from/to a 
device at a given address ?
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Use cases

Meaning of reads/writes to the device’s memory space is 
defined by the device.

● A write to disk drive BAR configures a certain encryption algo

● A write to a NIC’s BAR at a certain address means: send packet.

● GPU exposes part of its memory on its BAR
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Reads/writes to device addresses go to the device. 
It decides what to do with them.
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DMA

● DMA = Direct Memory Access
● Done by a DMA engine that is part of a device or a CPU. 

DMA engine must be programmed
○ Example: cudaMemcpy uses GPU’s DMA engine to write to/read from 

CPU memory. 

● The memory used by DMA must be pinned (the access 
is direct - bypasses the MMU of the remote device)

● DMA’s remote memory can be PCIe BAR of a remote 
device
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DMA vs MMIO

● DMA and MMIO are used for the same purpose
○ DMA engines perform the same PCIe reads/writes as MMIO

● However, MMIO is used via load/store instructions in 
software, while DMA is a hardware engine

● Tradeoff: DMA for large transfers, MMIO for small
○ DMA is slow to program, but does not waste CPU cycles on memory 

copies. 
○ MMIO requires no programming, but wastes CPU cycles

● MMIO - mostly for control, DMA - mostly for data
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Example MMIO: 
Peer-to-peer GPU0→ GPU1

1. GPU1 (target) exposes its global memory to MMIO via a BAR.

That is: writing to (BAR + x) writes to global GPU memory with virtual 
address x. This requires GPU1 to make its PCIe interface handle respective 
BAR accesses

2. GPU0 maps the GPU1’s BAR to its own virtual address space.
3. GPU0 writes to mapped GPU1’s BAR. 
4. PCIe switch knows how to route the writes to the GPU1’s BAR.
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DMA: Peer-to-peer GPU0→ GPU1

1. GPU1 (target) exposes its global memory to MMIO via a BAR.

2. CPU programs GPU0’s DMA to write to GPU1’s BAR, 

3. PCIe switch knows how to route the writes to the GPU1’s BAR.

Question: is there a solution to use DMA reads? 
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PCIe used to access memory! Raises issues:

● How to order transactions correctly?
● How to isolate between transactions of different applications / virtual 

machines?

Why these rules?

● Deterministic completion
○ Prevent deadlocks

● Preserve the programmer’s intentions
○ Producer consumer example 

● Maximize performance
○ Relax ordering to allow hardware optimizations

Transaction Ordering

158



Mark Silberstein @ ACACES2022July 2022

Producer/Consumer example 

NIC:
1. write data to GPU
2. write flag to memory

GPU:
3. do { read flag from mem.

} while (!flag);
access received data

CPU

NIC GPU

PCIe 
switch

Memory

2

1

3

How to make sure GPU 
reads correct data?
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PCIe ordering semantics

● We define local rules for each link and each endpoint
● Switches comply to the rules
● Global ordering behavior follows from the tree structure of the PCIe 

topology
○ Dependent transactions will flow via the same links

● The rules are complex, but the most important one: 
○ writes are not reordered
○ reads after writes are not reordered, serve as a barrier
○ reads preceeding writes must allow reordering to avoid deadlocks

The rules guarateen that the scenario works correctly
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● PCIe is a special-purpose network 
● Built to allow device configuration, discovery, data transfer, 

etc
● Supports transactions (read/write)
● Supports routing according to a globally unique bus 

addresses
● Enables peer-to-peer architecture-independent inter-device 

communication
● Serves basis for future inter-device protocols (CXL)

Summary
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Additional reading

PCI Express System Architecture, T Shanley, D Anderson, R Budruk

Understanding CXL: 
https://www.snia.org/educational-library/understanding-compute-express-link-cache-coherent-interconnect-2020
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Questions for self-study [5]
1. Why PCIe writes are faster than PCIe reads?
2. Why MMIO is considered less efficient for bulk transfers?
3. Two devices are connected via a PCIe switch, does their 

communication involve a CPU root complex?
4. Two devices perform DMAs to CPU memory. Do they intefere 

with each other?
5. A NIC wrote to a GPU BAR. Whose DMA engine was programmed 

to perform this transfer?
6. What might happen if a CPU reads a random address on the 

device’s BAR?
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Networking accelerators and accelerator networking
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Packets Processing @200GbE is Challenging 

64B Packet1518B  Packet

Packet Processing Requires Accelerator

▪ 16M packets per second

▪ 62ns/packet

▪ 298M packets per second

▪ 3.3ns/packet
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Beyond TCP

● How can we go faster than TCP?

● How can we implement a Networking Accelerator?

● What kind of new interfaces do we need to operate it?
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RDMA Protocol for Better Efficiency

RDMA
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RDMA as an Accelerator

● RDMA Service - Network Accelerator
■ Offload packet processing and network 

overheads

● Network resident Memory
■ Application accessible through RDMA 

accelerator

● Ultra-low latency

App
Container/VM

App
Container/VM

Application

Host

RDMA Enabled 
NIC

Remote Memory Access 
Service

Network

Network Resident 
Memory

Apps and 
Microservices
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Why do we study RDMA in this course?

● RDMA provides an efficient and generic application interface 
that is becoming ubiquitous in accelerated systems 
○ well beyond networking, i.e., NVMe storage

● RDMA allows direct communication among accelerators 
○We will see how it is used for GPU-GPU communication without the 
use of CPUs

● RDMA enables building networking accelerator
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Main RDMA design principles

● Get rid of mediators:  direct application access to NIC hardware

● Zero copy: application can send/receive data without 
intermediate copies 

● CPU is not involved in data path: hardware-implemented 
transport and one-sided operations

170



Mark Silberstein @ ACACES2022July 2022

Separation: data plane– control plane

● Data plane – data-related operations – on the critical path 
○ Send
○ Receive
○ RDMA
○ Completion Retrieval
○ Request event

● Control plane – configuration and setup – off the critical path
○ Resource setup 
○ Memory management
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Kernel Bypass (Data plane)

● Direct access to hardware by applications

● Hardware roles (offloaded from the OS)
○ Application interface

○ Protocol stack

○ Protection

○ Resource arbitration across apps

○ Memory management (pinning, DMA)

RDMA
Library

HW NIC Hardware

Verbs

Application

User

Kernel

RDMA 
Library

Verbs

Application

RDMA
Library

Verbs

Application
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Application Interface: Verbs

● Network operation as a job
○ Verb commands that specify “I/O jobs”

● Dedicated queues per logical connection
○ QP (Queue Pair) – send and receive queues
○ CQ (Completion Queue) – completion queue

● Asynchronous interface
○ Enables polling and interrupts/events

Send
Queue

Receive
Queue

QP CQ

…

Application

Completion
Queue

posting
WQEs 

polling
CQEs 

NIC Hardware
HW

User

Kernel
Very similar to interfaces to modern 
accelerators

Same as the interfaces to high 
performance storage
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Queue Pair (QP) – Transport Endpoint

●Send and Receive Queue
●Operations: work requests

○Send 
○Receive
○RDMA Read
○RDMA Write
○Atomic

●Asynchronous operation
●Transport implemented by the NIC

NIC Hardware

Send
Queue

Receive
Queue

QP
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Data: Memory Registration & Memory Regions

● Protection
○ Byte level range
○ Permission (R/W)

● Translation 
○ Page level

● Memory Pinning
○ On demand paging option

● Each region is associated 
with its r_key

○ We use it for securing remote 
operations on the region

NIC’s Virtual 
Memory

Memory Region
Start Address
Length
Protection

Physical 
Page

Physical 
Page
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Separation data-control plane

● Separation of Control and Data 
paths

● Data path
○ Send
○ Receive
○ RDMA
○ Completion Retrieval
○ Request event

● Control path
○ Resource setup 
○ Memory management

Device 
Driver

RDMA
Library

HW NIC Hardware

Verbs

Application

User

Kernel
RDMA
Stack

Con
tro

l

D
at

ap
at

h

Control

Data
bufferData

bufferData
buffer

Send
Queue

Receive
Queue

QP
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Transport offload – Host Channel Adapter (HCA) Model

● Asynchronous interface - Verbs
○ Application posts work requests
○ HCA processes
○ Application polls completions

● Transport executed by HCA
● I/O channel exposed to the application

○ Kernel bypass
● Polling and interrupt models supported

Port

VLVLVLVL

…
Port

VLVLVLVL

…

Transport and RDMA 
Offload Engine

…

…

Application

Completion
Queue

posting
WQEs 

polling
CQEs

HCA

RDMA 
Network

RDMA 
Network

Send
Queue

Receive
Queue

QP

Send
Queue

Receive
Queue

QP
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Summary

● RDMA NICs provide full transport layer offload
● Enable zero-copy transfers thanks to direct DMA into user buffers
● Separate data and control path
● Kernel bypass
● Hardware-based protection
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Additional reading

● InfiniBand Network Architecture,T. Shanley
● https://www.rdmamojo.com
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Questions for self-study [6]
1. How does RDMA ensure that remote memory is 

securely exposed to remote party?
2. Why does HCA need to implement memory 

translation unit?
3. What are the ordering guarantees for RDMA writes 

performed on the same QP?
4. Can multiple QPs used to connect to the same 

remote host?
5. What is the role of the OS kernel?
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SmartNICs
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Architecture at high level

NIC ASIC

Traditional NICs

Fixed-function 
offloads

Host

NIC ASIC   

Smart NICs (DPUs)

Fixed-function 
offloads

Host

CPU or
programmable 

logic

User-loaded
logic

Accelerators

Driver/ network 
stack SmartNIC runtimeDriver/ network 

stack
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SmartNICs: architectural benefits
✓ Reduced PCIe load on the host

○ Ingress – packets can be  filtered out without reaching the host

✓ Optimized I/O path between the ASIC and the processing logic
○ SoC interconnect under NIC vendor’s control

✓ Air-gapped, controls all Network IO for the host
○ Host CPU may be blocked from accessing the logic running on the NIC

✓ NIC vendors can add custom accelerators to the SoC
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NVIDIA Networking DPU (Bluefield)

NIC ASIC

CPU

PCIe RC

ARM
(8 cores)

Accelerators

PCIe RC

● Dual port 25GbE
● ConnectX-5 ASIC NIC
● PCIe Gen 4.0 to ARM
● 8x 64bit ARMv8 A72
● 800 MHz
● HW-accelerated RDMA 

(RoCE and Infiniband)
● Runs Linux (BlueOS)
● 2 modes

○ Symmetric
○ ARM-controlled
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Mellanox Innova (bump-in-the-wire)

NIC ASIC

CPU

PCIe RC

FPGA

● 40GbE
● ConnectX-4 ASIC NIC
● PCIe Gen 3.0
● HW-accelerated RDMA (RoCE and 

Infiniband)
● Xilinx Kintex UltraScale XCKU060

Ethernet
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Additional reading
● The new life of SmartNICs

○ https://www.sigarch.org/the-new-life-of-smartnics
● Netronome 

○ https://www.netronome.com
● NVIDIA DOCA SDK

○ https://developer.nvidia.com/networking/doca
● Look for my short intro videos about SmartNICs as part of 

the JWinsight interviews
○ https://jw.ijiwei.com/
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Accelerator-native networking
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Traditional RDMA I/O path to accelerators

CPU ACC

NIC

PCIe RC

CPU
RAM

ACC
RAM
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Traditional RDMA I/O path to accelerators

Data

● Unnecessary PCIe load
● CPU involvement in data 

movements
○ DMA programming 

● CPU Cache pollution

CPU ACC

NIC

PCIe RC

CPU
RAM

ACC
RAM

Control
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Direct data path for RDMA to accelerators

Data

CPU ACC

NIC

PCIe RC

CPU
RAM

ACC
RAM

Control
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PCIe magic in action

Example: GPUdirectRDMA

● CPU allocates buffers in 
GPU memory

● GPU exposes these 
buffers on its PCIe BAR

CPU ACC

NIC

PCIe RC

CPU
RAM

ACC
DRAMg_buf

0
X
g
_
b
u
f
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PCIe magic in action

Example: GPUdirectRDMA

● CPU allocates buffers in 
GPU memory

● GPU exposes these 
buffers on its PCIe BAR

● CPU configures the NIC 
to  access buffers via bus 
addresses of the GPU 
PCIe BAR 

● PCIe routes data from 
the NIC based on the bus 
address

CPU ACC

NIC

PCIe RC

CPU
RAM

ACC
RAMg_buf

0
X
g
_
b
u
f

0Xg_buf

QP/CQ
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PCIe magic in action

Example: GPUdirectRDMA

● CPU allocates buffers in 
ACC memory

● ACC exposes these 
buffers on its PCIe BAR

● CPU configures the NIC 
to  access buffers via bus 
addresses of the ACC 
PCIe BAR 

● PCIe routes data from 
the NIC based on the bus 
address

● CPU receives interrupted 
when data arrives 

● PCIe guarantees that 
data in ACC arrives in full 
before CPU is notified

Completion

CPU ACC

NIC

PCIe RC

CPU
RAM

ACC
RAMg_buf

0
X
g
_
b
u
f

QP/CQ
PCIe write
0Xg_buf
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Is this enough? No!

● Accelerator cannot initiate I/O
○ Must be invoked after data arrives
○ Must terminate before sending out

● Network latency affected
● Accelerator local cache flush
● Bulk-synchronous design

CPU_rdma_read()
InvokeGPUandWait()
CPU_rdma_write()

CPU code 

194



Mark Silberstein @ ACACES2022July 2022

If only ACC were able to perform RDMA operations

● Low latency
● No CPU overheads
● No bulk-synchronous restrictions
● Easy overlap between computations and communications

ACC_rdma_read()
compute()
ACC_rdma_write()

Accelerator code
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GPUrdma: access RDMA NIC directly from GPU

CPU ACC

NIC

PCIe RC

CPU
RAM

ACC
RAM

Control

Data
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All QPs are in GPU memory 

ACC

NIC

ACC
RAM

Control

Data

Send/Recv
Queue

Comp
QueueSend/Recv

Queue
Comp
QueueSend/Recv

Queue
Comp
Queue

GPU threads

Data
buffers

NIC

Door-bell 
register

Data
buffersData

buffers

PCIe
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Results

● 50Gbps (5% lower than CPU RDMA) for 16K and up 
● 4.5x higher throughput for small transfers
● Round-trip 4.8usec latency (5x lower than with RDMA via CPU)

○ Later reduced to 2usec

● Up-to 5x faster kernel execution for synthetic cases
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Results

● 50Gbps (5% lower than CPU RDMA) for 16K and up 
● 4.5x higher throughput for small transfers
● Round-trip 4.8usec latency (5x lower than with RDMA via CPU)

○ Later reduced to 2usec

● Up-to 5x faster kernel execution for synthetic cases

Problem 1: updates to doorbell registers are blocking GPU kernels!
Problem 2: RDMA VERB creation is too costly!
Problem 3: Only works for RDMA (not for TCP)
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SmartNICs to rescue! But how?
● Goal: enable accelerator networking with minimum overheads for 

accelerators
● Can we use SmartNICs to offload I/O overheads from accelerators?

NIC ASIC

CPU

PCIe RC

ARM
(8 cores)

PCIe RC

ACC

ACC
RAM

RAM
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SmartNICs to rescue! But how?
● Goal: enable accelerator networking with minimum overheads for 

accelerators
● Can we use SmartNICs to offload I/O overheads from accelerators?

NIC ASIC

CPU

PCIe RC

ARM
(8 cores)

PCIe RC

ACC

ACC
RAM

RAM

Challenge: ARM on a SmartNIC cannot access host’s PCIe!
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Idea: Use RDMA from ARM to access Accelerator

NIC ASIC

CPU

PCIe RC

ARMPCIe RC

ACC

ACC
RAM

RAM

RDMA

Data
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ARM manages I/O queues in ACC RAM via RDMA

NIC ASIC

CPU

PCIe RC

PCIe RC

ACC

RAM

Polling 
over RDMA

Custom 
Send/Recv

Queue

Custom Comp
Queue

Custom 
doorbell
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ARM manages I/O queues in ACC RAM via RDMA

NIC ASIC

CPU

PCIe RC

PCIe RC

ACC

RAM

Polling 
over RDMA

Custom 
Send/Recv

Queue

Custom Comp
Queue

Custom 
doorbell

Problem 1: updates to doorbell registers are blocking GPU kernels!
Problem 2: RDMA VERB creation is too costly!
Problem 3: Only works for RDMA (not for TCP) 204
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Can support any network protocol

NIC ASIC

CPU

PCIe RC

PCIe RC

ACC

Custom 
Send/Recv

Queue

Custom Comp
Queue

Custom 
doorbell

Problem 1: updates to doorbell registers are blocking GPU kernels!
Problem 2: RDMA VERB creation is too costly!
Problem 3: Only works for RDMA (not for TCP)

Any 
network
protocol

Network 
processing 
and 
dispatching
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X86 CPU is idle and can be used for other applications

NIC ASIC

PCIe RC

PCIe RC

ACC

Custom 
Send/Recv

Queue

Custom Comp
Queue

Custom 
doorbell

Any 
network
protocol

Network 
processing 
and 
dispatching

CPU
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We can use the same design for more!

Accelerator-centric server design

Network
server Scheduler

Accelerator
networking 
manager

SmartNIC

ACC

ACC

ACC

ACC

PC
Ie

NIC 
ASIC

NIC ACC

ACC

RDMA

Remote Rack
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We can use the same design for more!

Accelerator-centric server design

Network
server Scheduler

Accelerator
networking 
manager

SmartNIC

ACC

ACC

ACC

ACC

PC
Ie

NIC 
ASIC

NIC ACC

ACC

RDMA

Remote Rack
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Accelerator-centric design in real life

”5“ ”4“ ”8“

Inference server: MNIST NN running on 4 
local and 8 remote GPUs Linear scaling

Projection
A single BlueField SmartNIC can manage up to 100 GPUs (UDP) and 15 GPUs 
(TCP) for MNIST inference (300 usec, small images)
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● Direct I/O from accelerators is possible
● x86 CPUs can be freed for workloads they are good at → 

general system efficiency increased
● Requires careful engineering of on-accelerator network layer 

to avoid prohibitive accelerator overheads
● SmartNICs can be used to offload I/O overheads from 

accelerators without involving the host CPU

Summary
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Additional reading

● GPUnet: Networking abstractions for GPU programs (OSDI’14)
○ sockets for GPUs

● GPUrdma: GPUside library for high performance networking (ROSS’16)
○ RDMA for GPus

● Lynx: a SmartNIC-driven accelerator-centric architecture for network servers 
(ASPLOS’20)

● NICA: An infrastructure for inline acceleration of network applications (USENIX ATC’19)
○ Inline processing framework for SmartNICs with FPGA

● FlexDriver: A network driver for your accelerator (ASPLOS’22)
○ Controlling the NIC ASIC from the accelerator to leverage NIC fixed-function offloads
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Questions for self-study [7]
1. What is the main architectural property of BlueField 

SmartNIC that makes it appropriate for intrastructure 
offloads, such as server management?

2. Why GPUrdma suffers from higher GPU overheads than 
SmartNIC-driven design?

3. How is the system design affected by the fact that the 
ARM processor on the SmartNIC has a PCI Root Complex

4. What are the key performance limitations of the 
SmartNIC-driven design?

5. Is Acc DMA used in SmartNIC-driven design?

212



Mark Silberstein @ ACACES2022July 2022

Accelerator-native storage I/O 
(we will talk about GPUs)
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What if we need to access a file from a GPU?

● Standard mode: co-processor
● CPU reads from file, copies to GPU memory

● GPU is invoked

● CPU copies from GPU memory, writes to file

What if data access pattern is input-driven?
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I/O intensive applications
Example:Image collage

Image dataset: 40 GB of data

215



Mark Silberstein @ ACACES2022July 2022

Algorithm: locality sensitive hashing

Input feature extraction

Fetch candidates from DB buckets

Search among candidates

Preprocessing: group the dataset images into “buckets” 
according to some features, place them in a DB

For every block 
in the input image
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Offloading computations to GPU

GPU

CPUCPUCPU
Application

OS

Feature 
extraction

Fetch candidates

Short list 
search
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Offloading computations to GPU

GPU

CPUCPUCPU
Application

OS

Feature extraction

Fetch candidates

Short list search

This is highly inefficient:
1. Low granularity of processing and GPU kernel invocation overheads
2. Manual data reuse management 
3. CPU-mediated data path 218
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GPUfs: accessing files from GPU programs

● API support for massive parallelism on GPUs
● Optimized for data locality and reuse
● Well-defined data consistency for shared files
● Persistence

CPUs GPU GPU GPU
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GPU execution with GPUfs

GPU

GPUfs page cache

Compute/IO overlap

Prefetching and data reuse

Single invocation
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What GPUfs can do for GPU programmers
● Simpler CPU-like development
● Dynamic working sets
● Support for large data sets
● Portability and forward compatibility
● Interoperability with legacy programs
● Coordination with peer GPUs and CPUs
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Do we need CPU in the game?
● Needed: direct data path to files from GPU (without CPU)

● We want to allow a single shared FS, therefore..
○ File system runs on the CPU OS, so need to access files via CPU to 

resolve file offsets to disk block and enforce file permissions
○ Files are shared with the CPU, so need to take care of file caching 

in the page cache

BUT!
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GPU application
using GPUfs File API

OS File System Interface

GPUfs design

GPU Memory
(Page cache)
CPU Memory

GPUfs Distributed Page Cache

Unmodified CPU 
applications

GPUfs GPU 
File I/O library

OS

CPU GPU

GPUfs hooks

P2P I/O support

P2P DMA
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GPU program using GPUfs
__shared__ float buffer[1024];

int fd=gopen(filename,O_GRDWR); 

gread(fd,offset,1024*4,buffer);

buffer[myId]=compute(buffer[myId]);// parallel compute

gwrite(fd,offset,1024*4,buffer);

gclose(fd);

This code runs
 in all GPU threads
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System-wide page cache
● Logical (user) view: cross-application page cache 

spanning all GPUs and CPUs 
● Physical (system) view: private cache per device

Unified Page Cache

GPU 1 page cache

GPU 2 page 
cache

CPU page cache

Software-managed 
consistency
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Reminder: page cache 

● Page cache is managed in memory pages
● Holds radix trees of data that belongs to a particular 

file indexed by file offset
● When accessing a file, first check in page cache

What if a file gets accessed by CPU and GPU (and also cached in both)? 
How to define memory consistency?
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Weak data consistency to minimize 
inter-processor synchronization

● Session semantics: close-to-open

write(1)

open() read(1)
CPU

GPU

close() write(2)

May not be visible to CPU

Good enough for the cases when different processors do not work on the 
same data in parallel

● Consider running a GPU-accelerated grep on your file system
● Now consider editing a file on CPU and re-running grep
● Will the result include the updated data? 
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CPU-GPU RPC for on-demand data transfers

CPU 
RPC daemon

CPU memory Write-shared
CPU memory

GPU memory

gread()

RPC queue GPU kernel

Server Client
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Integration with consistency and P2P DMA

CPU 
RPC daemon

CPU memory Write-shared
CPU memory

GPU memory

gread()

RPC queue GPU kernel

Page cache

P2P DMAHost FS

GPUfs
consistency

P2P
driver
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Some other things to make it work
● Using GPU-optimized lock-free data structures 

○ GPU memory consistency model offers many optimization 
opportunities

● P2P GPU-SSD data transfers need to guarantee 
disk-to-page cache data consistency
○ This is unrelated to GPUfs consistency

● Distributed page cache is susceptible to 
false-sharing, but can be updated concurrently
○ Requires multi-way merge 
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But not everything is great…

● High GPU cost of FS-related operations

● Memory overheads due to internal FS data structures

● Required change in GPU programming optimizations

● Required change in GPU programs to access data

End-result: impactful concept, not really used
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Can we do better?  Yes (with new hardware)!

● Reminder: memory mapped files

● First access to the mapped pointer causes page fault
● OS brings the file data into the page cache
● Maps the page cache page into the application VM

int fd=open(“file.txt”)
char* data=(char*)mmap(fd); 
data[2]=’a’; // write to file at offset 2
unmap(data);
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mmap a file into a GPU memory
● mmap is issued on a CPU before the kernel is invoked
● Accessing a file on a GPU triggers a GPU page fault
● Pros: 

○ No file system management overhead on GPU
○ No need to change GPU kernels (supports closed-source)
○ Easy to use

But what if a file is in the CPU page cache? 
GPUfs open-close memory consistency is too coarse-grain
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Idea: Page cache with release consistency

● Similar to open-close consistency model
● For Producer (P) and Consumer (C), C is guaranteed 

to observe P’s updates if
○ P updates are followed by release
○ C reads are preceeded by  acquire issued after P’s release

data=1
P

C

acquire release

acquire
data==?? data==??

data==1
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How to use this idea?
fd=open(“file”); // file at offset 0 = “a”
ptr=mmap(...size,MAP_ONGPU,fd); 
ptr[1]=1+ptr[0];
macquire(ptr, size, GPU0);
// ensure that GPU0 will see consistent data 
invoke_gpu0_kernel(ptr);
wait_for_gpu_completion();
mrelease(ptr, size,GPU0);
// notify that GPU0 does no longer touch ptr
printf(“%c\n”,ptr[2]); 
munmap(ptr); close(fd);

// GPU kernel

void kernel(char* data){
  char var=data[1];
  data[2]=var+1;

}

GPU codeCPU code

What do we expect to be printed by CPU?
What do we expect to in file at offset 2?
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What’s going on under the hood?
// GPU kernel

void kernel(char* data){
  char var=data[1];
  data[2]=var+1;

}

GPU codeCPU code

var=data[1];
//var==”b”

CPU

GPU

releaseCPU-
acquireGPU

Data is in sync

All CPU updates
are “marked”

data[2]=var+1;
//data[2]==”c”

ptr[2]==?

Data is in sync

fd=open(“file”); // file at offset 0 = “a”
ptr=mmap(...size,MAP_ONGPU,fd); 
ptr[1]=1+ptr[0];
macquire(ptr, size, GPU0);
// ensure that GPU0 will see consistent data 
invoke_gpu0_kernel(ptr);
wait_for_gpu_completion();
mrelease(ptr, size,GPU0);
// notify that GPU0 does no longer touch ptr
printf(“%c\n”,ptr[2]); 
munmap(ptr); close(fd);

ptr[1]=
   1+ptr[0];

CPU PF
Bring data 
from file

releaseGPU-
acquireCPU

GPU PF
Check what  to 
sync and copy

ptr[2]==”c”

CPU PF
Check what to 
sync and copy
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Summary
● File system access from accelerators is crucial for 

data-driven applications
● Distributed page cache is an essential part of the FS 

support for accelerators
○ Requires weak consistency

● FS layer implementation might be costly for accelerators, 
and not always possible to implement

● The use of page faults in accelerators can alleviate the FS 
layer overheads, but requires optimizing accelerator PF 
mechanisms
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Additional reading
● GPUfs: Integrating a File System with GPUs, ASPLOS’13, M.S. et al

First paper on FS API and Distributed Page Cache for GPUs
● ActivePointers: A Case for Software Address Translation on GPUs, ISCA’16, S 

Shachar et al
Pre-GPU Page fault support for mmap on GPUs

● SPIN: Seamless OS Integration of peer-to-peer DMA between SSDs and GPUs, 
USENIX ATC’17, S Bergman et al

● GAIA: An OS Page Cache for Heterogeneous Systems, USENIX ATC’19, T Brokhman
Shared page cache leveraging GPU page faults

● NVIDIA GPUDirectStorage
● Dragon: Breaking GPU Memory Capacity Limits with direct NVM access, SC’18, P. 

Markthub et al.
● BaM: A Case for Enabling Fine-grain High Throughput GPU-Orchestrated Access to 

Storage, Z Qureshi et al.
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Questions for self-study [8]
1. Accessing files is usually quite slow and is likely to 

become a bottleneck anyway. Why then File I/O for 
accelerators may improve efficiency?

2. What happens if a page cache exceeds its allocated 
memory, and there is a need to evict pages?

3. How crash consistency is handled?
4. What are the benefits of release consistency 

compared to open-close semantics of GPUfs?
5. Does release consistency help with false-sharing?
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Summary and Future outlook
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This is what you learned so far
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Reminder: accelerator-centric OS 
architecture (OmniX)

CPU

O
S

 
S

ervices 

OS

OS Services

O
S

 
S

er
vi

ce
s 

GPU Smart
Storage

SmartNIC
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Design principles
● Lightweight OS layer for each device 
● Direct access to storage and networking I/O from accelerators 
● Global shared namespace 

○ File names, networking address space
● Shared virtual address space

○ No cache coherence, no location transparency
● Seamless data-path optimizations
● Devices may directly invoke tasks on their peers

○ Recall accelerator-centric server design
● Host CPU used for setup, configuration and scheduling 

○ Not in data path, and even not in control path
● Relaxed data consistency where possible
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Why I/O abstractions on accelerator
● Data-driven access support
● Portability 
● System-level optimizations
● Reduced code complexity
● Unleash performance potential
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Why CPU mediation is bad?
● Higher latency
● CPU becomes the bottleneck
● Poor scalability 
● Poor performance isolation
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Main implementation ideas
● Micro-kernel OS approach on the host

○ Only necessary privileged functionality runs on the host
○ Servse as a relay to access priliveged services

● Accelerators run unprivileged libOSes  to expose services
● Reduce system software overheads for accelerators

○ Offload to I/O accelerators where possible

● Take advantage of PCIe and its unique address routing
● QP/CQ are ubiquitous and easily implementable with weak 

memory models
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How to fit what we’ve learned

CPU

O
S

 
S

ervices 

OS

OS Services

O
S

 
S

er
vi

ce
s 

GPU Smart
Storage

SmartNIC

GPUfs

Lynx
GPUrdma

Heterogeneous 
page cache,

P2P GPU-SSD
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● Not really  
● Handle exceptions, first access to resources (files, 

sockets), cleanup, any privileged operations 
● Runs the main program

CPU role
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Quite a few questions are still open…

CPU

O
S

 
S

ervices 

OS

OS Services

O
S

 
S

er
vi

ce
s 

GPU Smart
Storage

Sharing file 
system with the 
host and storage 

processors

SmartNIC
Overcoming NIC’s 
DRAM bottleneck

Server application
offloading
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Open challenges
● What is the best programming model

○ Distributed vs. centralized vs. event-driven vs. data flow?
● Efficiency

○ How to get rid of polling? How to leverage heterogeneity to 
optimize for power at the OS level?

● Multi-tenancy
○ How to schedule and enforce fair-sharing

● Security and confidentiality
○ Integrating Trusted Execution Environments on peripherals

● Incorporating new hardware
○ Persistent memory, Near-memory, In-memory, In-storage 

computing
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But wait… what about data centers?
● Majority of computing today is done in data centers
● Data center is a large-scale computer
● Is accelerator-centric design still relevant? Yes! More 

than ever
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Data Center Architecture Trends
● Resource disaggregation

● High benefits in TCO and utilization, but what about 
performance?

CPU

CPU CPU

CPU GPU

GPU GPU

GPU Accel

Accel Accel

Accel SSD

SSD SSD

SSD Mem

Mem Mem

Mem

NIC NIC NIC NIC NIC

...

Network
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Most common approach: 
transparent disaggregation

Example: two approaches to remote GPU access

GPU

GPU GPU

GPU

NIC NIC

Unmodified app
(CUDA)

CUDA remoting layer

Unmodified app
(CUDA)

Unmodified driver

NIC

PCIe remote tunnel
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But does it work in a multi-resource setting?

CPUCPU SSD

read 
input

GPU

copy and 
invoke

write 
output

Typical Inference Server
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But does it work in a multi-resource setting?

CPUCPU SSD
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But does it work in a multi-resource setting?

CPUCPU SSD

Typical Inference Server

read 
input

GPU

copy and 
invoke

write 
output

SSD

Disaggregated Server

CPU NIC
CPU NIC
CPU NIC
CPU NIC
CPU NIC

SSD

SSDNIC

NIC

NIC

GPUNIC
GPUNIC
GPUNIC
GPUNIC
GPUNIC

Server-centric design is fundamentally inefficient
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Cons of the server-centric design 
imposed by transparent disaggregation

● A centralized OS is a 
control/data bottleneck

● I/O devices and 
accelerators are slaves

● Application control and 
data planes are 
centralized

● Sounds familiar?

Needed disaggregation-native OS design
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FractOS: extending OmniX principles to 
disaggregation

SSD
CPU NIC

CPU NIC

CPU NIC
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CPU NIC
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SSDNIC
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FractOS

SmartNIC
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FractOS enables decentralized execution 
and direct data/control path among devices

SSD
CPU NIC

CPU NIC

CPU NIC

CPU NIC

CPU NIC

SSD

SSDNIC

NIC

NIC

GPUNIC

GPUNIC

GPUNIC

GPUNIC

GPUSmartNIC

FractOS

SmartNIC

FractOS

SmartNIC

FractOS

CPU asks SSD 
to invoke GPU 
on its data
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FractOS vs. OmniX
● Avoid CPU in data/control path
● Devices as first-class citizens
● Direct interaction among devices
● Transparent data-path optimizations
● Decentralized capability management
● Decentralized task graph execution
● Unified software/hardware interfaces

OmniX
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Additional reading
● Slashing the disaggregation tax in heterogeneous data centers with 

FractOS, EuroSys 2022, L Vilanova et al

● LegoOS: A Disseminated, Distributed OS for Hardware Resource 
Disaggregation, OSDI’18, Y. Shan et al.

● Network Requirements for Resource Disaggregation, OSDI’16, PX 
Gao et al.

● HeteroOS: OS design for heterogeneous memory management in 
Datacenter, ISCA’17, S. Kannan et al.

● rCUDA https://www.rcuda.net
● SmartIO: Zero-overhead Device Sharing through PCIe Networking, 

ACM TOCS’2020, J Markussen et al.
● AvA: Accelerated Virtualization of Accelerators, ASPLOS’20, H Yu et al
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A few words about ACSL@Technion
https://acsl.group
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ACSL group  circa 2020
(COVID-inspired group meeting)
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Looking forward to reading your papers
about accelerator-centric systems!

Thank you!
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Answers to questions for self-study
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[1]
1. One accelerator can only accelerate the amount of work proportional to the acceleratable 

part α. Higher speedups require high α, which is often unrealistic. Multiple accelerators may 
together be able to accelerate a large part of the application.

2. Yes. Full programmability implies that a processor must spend resources on transforming 
instructions into actions and doing so in an efficient way. Further, many CPUs suffer from the 
von Neumann bottleneck. A fixed-function ASIC has no such issues.

3. A look-aside accelerator is explicitly invoked by some controlling unit. It is fed with data and 
is more similar to a remote machine that is requested to perform certain operations by 
Remote Procedure Calls. An inline accelerator is implicitly invoked when data are passing 
through it (hence inline). It does not have any explicit invocation controlling unit, and 
determines which data to process and how.  Such accelerators are driven by data elements, 
and are located “on the way” of data transfers.

4. A look-aside accelerator involves control  and data movement overheads, which need be 
amortized by increasing the granularity of the invoked tasks, i.e., via batching.
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[2]
1. Accelerators are used as co-processors. This would have been OK for fixed-function units. However for programmable 

accelerators there are cases where a user program needs access I/O or invoke tasks on other devices. Accelerators 
today are isolated from the rest of the system from the programmer perspective, and they do not expose appropriate 
OS abstractions. Therefore, developers have to develop complex programs on a central CPU to perform accelerator 
management and data transfers.

2. The term “OS” is traditionally associated with monolithic OSes such as Linux and Windows. However, in a more 
general context, an OS is a group of inter-operating services that offer simple programming abstractions that hide 
system complexity, and perform seamless performance optimizations for applications. From that perspective, an OS 
can be a runtime library that carries out such functions.

3. GPU kernels must be highly-parallel, and must achieve high memory access efficiency. 
4. JIT-compiling a kernel allows GPU vendors to modify hardware architecture quite dramatically in newer generations, 

while maintaining backward compatibility with the existing software. The compiler generates an intermediate 
assembly, for which the backward compatibility is mostly guaranteed. The JIT-compiled kernel is cached for later 
reuse, i.e., the JIT-compilation is performed only once for a given GPU.

5. A CPU fully manages the device: it allocates memory, copies data to and from the GPU, configures and controls the 
GPU execution, handles exceptions and cleans up.
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[3]
1. Accelerator’s access to CPU memory does not pass through the CPU MMU, therefore the CPU virtual page originally 

mapped into the accelerator VM could have been swapped out and the physical memory content would be 
inconsistent.  Pinning the page on the CPU prevents the page from being swapped out.

2. In general, the answer is yes – peripheral devices may access CPU memory directly making the CPU VM protection 
irrelevant.  However, at a system level, memory mappings are performed by the accelerator’s driver, which is a 
trusted and privileged software component. The driver’s responsibility is to validate that a particular application has 
permissions to access the CPU memory region being mapped. But rogue drivers or rogue devices may breach 
system security severely (see DMA attacks)

3. No: a GPU memory pointer might be perfectly valid on a CPU if, coincidentally, a GPU had allocated virtual memory 
addresses that happened to be also allocated by a CPU. But they refer to a different buffer and thus such accesses 
would be to a wrong data.

4. This is the scenario described in detail in the false-sharing case. The same page is being accessed by multiple 
processors and thus being constantly migrated. Worse, due to the different memory page size in different 
processors, the migration is performed at the granularity of the largest page among all processors. Thus, an 
application might not even be aware that it suffers from false sharing.
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1. Stronger memory models are potentially more costly (performance-wise) to use because they disallow 
or limit optimizations in the cases where strong ordering is not necessary, leading to unintended (and 
hard to debug) performance degradation. On the other hand, weaker models are harder to use (and 
so the chance of complex correctness bugs is higher) but can be much more efficient.

2. No. When the processor already implements a stronger consistency model  (i.e., TSO in x86), some 
orderings are enforced by hardware, hence fences are replaced with NOPs by a (smart) compiler if 
they are deemed unnecessary for the specific processor.

3. Memory model expresses a contract between a developer and a system. If a developer develops for 
hardware directly (assembly) then she writes for the model defined for that hardware. Using C++11 
and later versions allows a developer to build portable programs assuming memory consistency 
defined by the C++11 spec. It is the job of the compiler to optimize a portable program for a particular 
hardware memory model. Java has a different memory model. 

4. Scopes enable more fine-grain programmer control over ordering-related overheads.
5. No. Prints can be reordered/delayed in the output buffer by the OS, so let’s consider two scenarios

a. if b is printed first and is 1, then T1 read b==1. t2lock is 1 due to the program order of T2. Due to SC this order is 
guaranteed globally. Thus T1 will observe t2lock==1 and must read a== 0. 

b. If a is printed first and is 1, then t2lock was 0 according to T1 when b was loaded by T1. But since T1 observes writes 
to t2lock and to b  in the same order as T2, then if t2lock is 0, b must have been 0 too. So T1 would read b==0

[4]
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[5]
1. Writes are posted (non-blocking) and reads are non-posted (blocking). But how can a device know 

that its write is complete? It must read from where it wrote, and since reads are not reordered with 
the preceding writes, such reads must return the written values when the write has been actually 
completed.

2. MMIO involves software execution a CPU (or any other programmable device). For example, to 
transfer a buffer from a CPU to a GPU via MMIO, the source data is loaded via the CPU load 
instruction into a CPU register from CPU memory, and then stored via the CPU store instruction in 
the GPU on its BAR. Thus, performing bulk transfers using MMIO is inefficient.

3. No, a PCIe switch is connected (potentially through other switches) to the CPU Root Complex, so the 
devices interact directly. This is the case, for example, for dual-GPUs such as NVIDIA K80.

4. They do not interfere on the PCIe, because the CPU has effectively a point-to-point PCIe connection 
to each device via its Root Complex. However, CPU DRAM my become a bottleneck.

5. NIC initiates the transfer hence NIC’s DMA is programmed to write into GPU’s BAR
6. The behavior is undefined and depends on how a device implements reads from a particular address 

on its BAR. The fact that the CPU reads (and not writes) does not mean that there will be no 
side-effects from this operation. For example, an incorrect read might reset a device or cause 
malfunction. 
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[6]
1. r_key is passed to the NIC by the remote party to allow access to a particular memory region. This 

r_key is unique, and must match the one used when registering the memory region to the NIC 
locally. Note that r_key is passed in the clear (not encrypted), hence this protocol is insecure if the 
network is untrusted.

2. HCA needs to access registered memory regions, which might comprise multiple physically 
non-contiguous pages. The memory registration mechanism updates internal translation tables 
on the NIC so that the NIC can find the physical pages upon remote access.

3. RDMA memory ordering semantics are defined by the standard. In particular, writes to the same 
QP cannot be reordered. 

4. Yes, QP is a logical communication end-point similar to socket, hence there are no restrictions on 
the number of QPs to use and how they are used. However, each QP consumes resources on the 
host and on the NIC, and these must be minimized to ensure high performance.

5. The OS kernel driver is a privileged software that ensures that an application registers only 
memory it has access to. The driver mediates all control-plane operations. 
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[7]
1. BF can serve as a management accelerator because it supports the mode of operation where it fully controls the 

host’s network I/O, and the host cannot reset or interfere with BF’s operations
2. GPUrdma requires the GPU to create and issue RDMA VERBs, and the GPU must perform PCIe writes to the NIC’s 

doorbell register. PCIe writes, despite being asynchronous, incur high latency when performed from the GPU 
code. The SmartNIC-driven design has no such limitations as it allows the accelerator to perform I/O by 
maintaining a local doorbell register polled by the SmartNIC, and also allows to optimize the structure of the 
local QPs in accelerator memory to make it convenient for the accelerator to access.

3. As PCIe RC is located on the ARM processor,  the code running on the SmartNIC cannot access the host’s PCIe 
bus directly, neither it can directly access host’s DRAM. As a result, the current design requires RDMA 
transactions to access host’s memory from the SmartNIC, which in turn puts unnecessary load on the ASIC NIC 
and internal buses. This limitation will likely be alleviated in the future versions of the SmartNIC (via 
non-transparent PCIe bridge)

4. First, all the data transferred to/from the accelerator must be put/read from the ARM’s DRAM. The memory 
subsystem may quickly become the bottleneck. Second, the ARM processor is quite weak, so if the application 
needs to perform pre-processing on the data before invoking the accelerator, then ARM would become the 
bottleneck. This is why SmartNICs are packed with accelerators that can be used by programs running on  the 
ARM CPU.

5. No. Acc DMA is not used  because the data is passed to the Acc by RDMA accesses on the Acc PCIe BAR.
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[8]
1. Indeed, for certain applications which are bottlenecked by storage bandwidth or are purely compute-bound, there is 

little to no performance benefits when using accelerator-native FIle I/O.  Still, one major benefit is that it  is easier to 
use, as writing accelerator programs, while having the CPU managing their I/O requests, forces changing a natural 
program flow. Second, certain files might still reside in the CPU page cache, so accessing them would copy their 
contents from CPU memory.  Third, the native File I/O implementation can be explicitly optimized for accelerators, 
i.e., by issuing multiple I/O requests in parallel, via prefetcher, and by implementing peer-to-peer DMA. Last, 
multi-accelerator case requires dealing with synchronizing the file caches, which is better be done by the OS 
infrastructure rather than a programmer.

2. Page cache eviction requires finding the right candidate page to evict.  Traditional recency-based algorithms might 
not be applicable, as they require running a background process (such as pdflush in Linux) that keeps track of the 
pages accesses and evicts less used pages in the background. Using CPU to perform page eviction on accelerators 
might not be possible due to the need to lock a page when evicting it. This is not possible today because of PCIe 
limitations. GPUfs introduced a mechanism where a GPU selects the pages for eviction following “least recently 
allocated” pages, and then lets the CPU migrate them to the disk. 

3. File data updated and stored in the accelerator page cache might not be persisted if the accelerator program 
crashes. This problem has no simple solution in GPUs.

4. Release consistency gives the programmer fine-grain control of the file synchronization among the system 
processors, without coupling  synchronization and file operations (open/close).

5. Release consistency entirely eliminates the false sharing-induced  pingpong of a page observed in a single-owner 
model. That is because each processor can concurrently update the page in its own memory, thus creating multiple 
versions of that page. The page is then merged at the synchronization time. See more about 3-way merge in the 
paper on Heterogeneous Page Cache from ATC’19.
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