
NeuroLPM - Scaling Longest Prefix Match Hardware with Neural
Networks

Alon Rashelbach
Technion
Israel

alonrs@campus.technion.ac.il

Igor de Paula
Technion
Israel

igordptx@gmail.com

Mark Silberstein
Technion
Israel

mark@ee.technion.ac.il

ABSTRACT
Longest Prefix Match engines (LPM) are broadly used in computer
systems and especially in modern network devices such as Network
Interface Cards (NICs), switches and routers. However, existing
LPM hardware fails to scale to millions of rules required by modern
systems, is often optimized for specific applications, and thus is
performance-sensitive to the structure of LPM rules.

We describe NeuroLPM, a new architecture for multi-purpose
LPMhardware that replaces queries in traditionalmemory-intensive
trie- and hash-table data structures with inference in a lightweight
Neural Network-based model, called RQRMI. NeuroLPM scales to
millions of rules under small on-die SRAM budget and achieves
stable, rule-structure-agnostic performance, allowing its use in a
variety of applications. We solve several unique challenges when
implementing RQRMI inference in hardware, including minimiz-
ing the amount of floating point computations while maintaining
query correctness, and scaling the rule-set size while ensuring small,
deterministic off-chip memory bandwidth.

We prototype NeuroLPM in Verilog and evaluate it on real-world
packet forwarding rule-sets and network traces. NeuroLPM offers
substantial scalability benefits without any application-specific
optimizations. For example, it is the only algorithm that can serve
a 950K-large rule-set at an average of 196M queries per second
with 4.5MB of SRAM, only within 2% of the best-case throughput
of the state-of-the-art Tree Bitmap and SAIL on smaller rule-sets.
With 2MB of SRAM, it reduces the DRAM bandwidth per query,
the dominant performance factor, by up to 9× and 3× compared to
the state-of-the-art.

CCS CONCEPTS
• Hardware→ Networking hardware; • Networks→ Packet
classification; • Computing methodologies→ Machine learn-
ing.

ACM Reference Format:
Alon Rashelbach, Igor de Paula, and Mark Silberstein. 2023. NeuroLPM
- Scaling Longest Prefix Match Hardware with Neural Networks. In 56th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’23), October 28-November 1, 2023, Toronto, ON, Canada. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3613424.3623769

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 56th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO ’23), October 28-
November 1, 2023, Toronto, ON, Canada, https://doi.org/10.1145/3613424.3623769.

1 INTRODUCTION
Longest PrefixMatching (LPM) is a versatile primitive with a variety
of applications. Given a rule-set, where each rule is a binary vector in
the form of prefix:wildcard, and a query, LPM finds a matching
rule with the longest prefix shared with the query. Traditionally
being the core mechanism in network systems, e.g., routing [18, 27]
and policy-based routing [53], LPM has also been used in load
balancing [35], string matching [9] and clustering [23].

Despite years of research and pervasive deployment, LPM en-
gines struggle to keep up with the increasingly challenging re-
quirements of modern applications, as systems must support large,
million-scale LPM rule-sets. For example, data center packet for-
warding workloads need to handle millions of rules, and the rule-
sets are likely to grow [25, 48, 49, 60].

Unfortunately, efficient scaling to large rule-sets is hard. Ternary
Content Addressable Memory (TCAM), the go-to solution for im-
plementing hardware LPM [6, 11, 28], does not scale beyond a few
thousands of rules due to its high power consumption and large
silicon area per rule. State-of-the-art hardware-oriented algorithms,
such as SAIL [78] and Tree Bitmap [20], can handle any number of
rules, but their performance drops significantly at scale: their data
structures spill out of on-chip memory, and the resulting DRAM
accesses are largely random, leading to poor cache efficiency and
high DRAM access overheads. LPM engines deployed in Network
Interface Cards (NICs) suffer from similar issues [36]. Purely soft-
ware solutions running on a CPU [40, 79] are too slow, and also
suffer from poor scaling.

Additionally, today’s systems mostly support 32-bit rules and
cannot be easily extended to use higher bit-width rules, e.g., 128-bit
for IPv6 addresses. Wide rules cause a dramatic increase in space
requirements of their internal data structures. For example higher
bit-width increases the depth of tries, which in turn leads to an
exponential growth in the space requirements as they use sparse
bitmaps in the nodes. Thus, they cannot fit in SRAM and require a
high number of dependent DRAM accesses during the query, which
deteriorates performance significantly. A common solution [7] is
to exploit the application-specific structure of the rules leveraging
low diversity of the most-significant bits, which then serve as a
directory for the lower-bits LPMs. However, they cannot handle
more general rules.

At the same time, there is a need for a general, multi-purpose
LPM engine that can handle diverse rule-sets for a variety of appli-
cations, both in networking and beyond. For example, LPM can be
used in string pattern search for network security applications [9],
regular expression matching [47], and fast data clustering [23]. The
rule-sets from these applications do not have the domain-specific

https://orcid.org/0000-0003-3207-471X
https://orcid.org/0000-0001-9659-068X
https://doi.org/10.1145/3613424.3623769
https://doi.org/10.1145/3613424.3623769

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Alon Rashelbach, Igor de Paula, and Mark Silberstein

properties of packet-forwarding rules, i.e., small entropy of tar-
get actions associated with each rule [79], or a skewed distribu-
tion of highly popular prefix lengths. Unfortunately, existing ap-
proaches [17, 20, 24, 27, 34, 78, 79], leverage these very properties to
scale to more rules. As a result, their performance is sensitive to the
structure of the rules, as they suffer from a worst-case exponential
blow-up of their internal data structures. For example, only a few
thousand rules are enough to inflate the active working set of Tree
Bitmap [20] to tens of MBs, resulting in unacceptable performance.

In this work, we introduce NeuroLPM, a multi-purpose LPM
hardware engine that can efficiently handle millions of rules with
a modest on-chip memory budget, is robust to the rules’ character-
istics, allows bit-width scaling, and thus suitable for use in diverse
LPM applications. A key to NeuroLPM’s advantages is the recent
learned data structures [39] that it employs instead of traditional
tries and hash tables. Our work builds upon a Range-Query Recur-
sive Model Index (RQRMI) data structure [56] which learns LPM
rules by training a model, and then can quickly find the matching
rule for a given input via inference. RQRMI lookups are precise,
i.e., they are guaranteed to produce the same results as the tradi-
tional algorithm. The RQRMI model is lightweight: it is built of
a hierarchy of tiny Neural Nets and its inference requires only a
handful of arithmetic operations. Thus, the LPM query is performed
via compute-intensive cache-friendly inference instead of memory-
intensive cache-inefficient trie traversal or hash table lookup.

RQRMI offers several important benefits. First, it can scale to
larger rule-sets as it is more space-efficient than the traditional
approaches: the model is small (8KB in our case) and only requires
storing the rule-set without any auxiliary data structures. Second,
its memory footprint is insensitive to the properties of the rules,
and always scales linearly with the rule-set size. Third, extending
RQRMI to support rules with higher bit-width only requires lin-
ear scaling of the width of the arithmetic units used to perform
model inference, but does not pose higher memory demands, nor
it changes the underlying hardware architecture. Last, RQRMI al-
lows fast batched updates to the rule-sets [58] through lightweight
hardware-friendly training algorithm.

Using RQRMI in an LPM engine poses several challenges.
Representing LPM rules as non-overlapping integer ranges.
RQRMI can learn a set of non-overlapping integer ranges (i.e.,
{[1 − 3], [5 − 9]}), but LPM rules do overlap by definition: the
goal of LPM engine is to find the best match among many matching
(overlapping) rules. The solution suggested in the original RQRMI
paper [56] would be highly inefficient. We devise an algorithm to
convert LPM rules into non-overlapping ranges with low space
overheads, leveraging the prior work on the binary search for
LPM [41, 71].
Minimizing floating-point computations without violating
correctness. RQRMI inference assumes floating-point arithmetic
which is slow and costly in terms of power and area. A common solu-
tion is to apply quantization [26, 70, 74]. While quantized inference
for neural nets is well-understood, RQRMI is different: ensuring
the correctness of the queries requires analytically estimating the
model accuracy during training for all possible inputs, which assumes
no loss of precision during inference and thus does not tolerate
quantization. In other words, naive attempts to quantize RQRMI

inference break its correctness guarantees. We develop a method
to reduce the number of floating-point operations from 26 to 4 per
inference without compromising query correctness, thus obviating
the need for quantization.
Scaling to off-chip memory. The original RQRMI model becomes
inefficient when the rule-set itself exceeds the size of the fast on-
chip memory and spills into DRAM. That is because the required
DRAM bandwidth to access the spilled data turns out to be prohibi-
tive and non-deterministic, nullifying RQRMI’s algorithmic advan-
tages. We develop an approach to split the model data structures
into on-chip and off-chip which allows scaling with the number of
rules and also leaves sufficient on-chip memory for caching DRAM
accesses. This approach enables fine-grained performance tuning
depending on the workload and cache architecture.

We prototype NeuroLPM in Verilog with on-chip memory, as
well as in a software emulator with DRAM and on-chip caching.
We evaluate it on real network traces and ten, million-scale pro-
duction packet forwarding rule-sets. NeuroLPM shows up to 9×
lower off-chip access rate and up to 5× lower bandwidth compared
to the state-of-the-art. It is also the only solution that can serve
these rule-sets with 4.5MB of SRAM in a DRAM-less configuration.
NeuroLPM hardware engine achieves stable throughput of 196M
queries/second at 100MHz, which is nearly identical to the best-case
performance of the state-of-the-art SAIL LPM engine. We further
show that updates can be as fast as 100msec on x86 CPUs and
500msec on NVIDIA BlueField-2 [51] SmartNIC.

In summary, we make the following contributions.

• We show the first use of RQRMI learned data structures in
hardware as a replacement for traditional memory-intensive
data structures;

• We leverage RQRMI to build a multi-purpose LPM engine,
NeuroLPM, and solve several algorithmic and design chal-
lenges associated with its hardware implementation, includ-
ing LPM conversion to ranges, minimization of the floating-
point operations and efficient scaling to off-chip memory;

• We show, via a comprehensive evaluation, that NeuroLPM
offers significant scalability and performance advantages.

2 BACKGROUND
2.1 Longest Prefix Matching
An LPM rule consists of 𝑏 bits, where the least significant bits are
replaced by zero or more wildcards, e.g., 5-bit rules 𝑟1 =001** and
𝑟2 =00***. The non-wildcard bits are called a prefix. For a binary
string of 𝑏 bits, LPM finds the matching rule with the longest prefix.
In the example, for input 00111, the matching rule is 𝑟1 as it matches
more fixed bits than 𝑟2.

2.2 RQRMI algorithm
Range-Query Recursive Model Index (RQRMI) is a learned data
structure for rangematching [56]. It uses a collection of independent
3-layer Neural Networks (Multi-Layer Perceptrons), each with one
input, one output, and eight fully-connected perceptrons with ReLU
activation function. We defer the description of RQRMI to §5.2.

The model is first trained to learn the distribution of sorted, non-
overlapping integer ranges 𝑆 = {𝑅0, 𝑅1, ..., 𝑅𝑛−1} in memory. We

NeuroLPM - Scaling Longest Prefix Match Hardware with Neural Networks MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

RQRMI inference

𝑅0

𝑅1

𝑅2

𝑅3

...

Search Area

Range Array

Estimation: 𝑖 = 1
Error: 𝑒 = 1

Result: 0
(𝑥 ∈ 𝑅0)

Input:
Integer 𝑥

Figure 1: Range matching via RQRMI model inference [56].

call 𝑆 a Range Array. A query (Figure 1) is performed in two steps:
(Step 1) The input 𝑥 is fed into the RQRMI model which outputs
the estimate of the index of the matching range (𝑖) in 𝑆 and an
upper bound on the prediction error (𝑒) computed during training;
(Step 2), a secondary search over a subarray of 𝑆 located between
(𝑖−𝑒, 𝑖+𝑒) outputs the true index (if there is a match). In the example,
𝑖 = 1, 𝑒 = 1, and the matching range is at index 𝑖 = 0. The RQRMI
training takes about a second on a single CPU core for a range
array of hundreds of thousands of ranges [58].

3 THE MULTI-PURPOSE LPM ENGINE
We first present several classes of applications that benefit from a
high-performance LPM hardware engine. We derive the require-
ments for a multi-purpose LPM engine and explain the limitations
of the state-of-the-art methods.

3.1 LPM applications
App 1: Routing. Packet routing is performed in hardware by net-
work routers based on the packet’s destination IP address and the
installed forwarding tables that hold LPM rules. An action associ-
ated with a rule specifies the router port to forward the packet to
its next hop. The number of forwarding rules is constantly growing,
straining the available table capacity [27, 54].
App 2: Policy-based routing. Data centers use network virtual-
ization to manage their complex multi-tenant networks [15, 21].
Virtual switches such as Open vSwitch allow specifying complex
packet steering policies [2, 45, 53], and commonly leverage LPM
and exact match hardware offloads in NICs to speed up the process-
ing. Open vSwitch often uses multiple chained rule tables, so the
matching is done sequentially table by table, resulting in multiple
queries per packet, and requires low, predictable latency per query
to allow high throughput with small buffering. Thus, the query
latency should be a small fraction of the best-case packet latency
of today’s production NICs (a few 𝜇s) [36].
App 3: Clustering. K-means clustering is broadly used in stream-
ing applications to group elements into subgroups according to
the proximity to predefined centroids. Some applications, such as
Denial-Of-Service attack defence [5], must perform clustering at
network speed. Recent work [23] transforms the clustering logic
into LPM, where centroids are encoded as rules and groups are
encoded as actions. Thus, the rule action might be any large inte-
ger and is not limited to 8 bits as assumed by popular LPM algo-
rithms [78, 79].

10 20 30 40
100

102

104

106

Rule prefix bits

N
um

.o
fR

ul
es

Network routing (32-bit) String matching (48-bit)

Figure 2: Real-world LPM rules prefix distribution for the
network routing and string matching applications.

App 4: String pattern matching. String pattern matching is used
in a variety of performance-sensitive systems to scan data streams
for string patterns. For example, Snort [63] and ClamAV [13] are
open-source Network Intrusion Detection systems (NIDS) that per-
form pattern matching on incoming packets to block malware. Prior
work [47] shown the utility of LPM for pattern matching. Further,
these tools often use the Aho-Corasick algorithm [3] for dictionary
search, which transforms a set of strings into a deterministic finite
automation (DFA), and in turn can be efficiently described using
LPM rules [9]. Importantly, the bit-width of the rules, the length
of the prefixes and their total number are determined by the size
and diversity of the dictionary. These do not match the assump-
tions made by standard packet forwarding LPM engines, hence
rendering their optimizations ineffective. For example, most rules
in IP-routing have the prefix of 24 bits [78], while string matching
rules for Snort signatures have a different prefix distribution, as
shown in Figure 2.
App 5: Load balancing. Load balancing is commonly used in
network systems for providing higher throughput or reliability, as
in the case of limited link capacities or hardware resources [77].
Efficient approaches to load balancing use LPMs for splitting the
traffic [35, 61]. Specifically, these algorithms approximate load-
balancing weights using LPM rules and achieving high accuracy
requires high rule capacity.

3.2 Multi-purpose LPM requirements
We derive the following requirements from the surveyed applica-
tions.
R1: Scalability. All the applications require efficient support for
large million-scale rule-sets.
R2: Robustness. As the rule structure depends on the application,
no assumptions should be made about it in a multi-purpose LPM
design (see string matching).
R3: High throughput, bounded latency. LPM throughput is the
primary performance goal, especially as network rates approach
800 Gbps. In addition, the query latency should be bounded to avoid
large buffers in chainedmulti-query workloads (e.g., in policy-based
routing).

3.3 State-of-the-art hardware LPM engines
Existing LPM engines do not satisfy these requirements, as we
explain below.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Alon Rashelbach, Igor de Paula, and Mark Silberstein

Ternary Content Addressable Memory (TCAMs) are broadly
used in hardware designs [46]. The largest commodity TCAMs hold
up to 256 tables with up to 1K rules per table, each consisting of
up to 160 ternary bits [67]. TCAMs are fast, but the number of
rules per table a TCAM may hold is over two orders of magnitude
smaller [44] than our target rule-set size. Further, TCAMs consume
high power and area, with at least 2× transistors per bit compared
to SRAM [4, 43]. Their dynamic power consumption is an order of
magnitude higher than that of SRAM, limiting their use [43, 81].
Tuple Space Search (TSS) [64] is used in both software (e.g., by
Open vSwitch [53]) and hardware (e.g., by NVIDIA’s NICs) [36].
It splits the rules into several hash-tables according to the length
of their prefixes. Each table contains rules with prefixes of the
same length, resulting in the worst case of 32 tables for 32-bit
LPM rules. Unfortunately, increasing the number of tables causes
severe performance degradation. For example, in NVIDIA’s NICs,
using 4 and 16 tables degrades the throughput by up to 2.5× and
7.5× respectively [36]. Worse, different applications use many more
tables, e.g., stringmatching rules for intrusion detection [63] require
over 26 tables, and forwarding rules span over 24 tables (Figure 2).
Thus, as TSS is sensitive to rule prefix distribution, it is inefficient
in such applications.
SAIL [34, 78] is a hardware-oriented LPM algorithm optimized for
network routing. The rules are divided into three tables: for rules
with up to 16-bit prefix (stored on-chip), up to 24-bits (on-chip),
and for the rest (off-chip). A query traverses the tables from the
first to the last and returns the first match. If no match is found in
the second table, it retrieves the pointer to the third one in DRAM,
and then performs another DRAM access to find the rule. These
accesses are dependent, and with only 4 bytes per access. Overall,
SAIL cannot scale to a larger bit-width, and its performance is
highly sensitive to the rule prefix length distribution.
Tree Bitmap [20] is a hardware-oriented algorithm used in com-
mercial NICs 1. Rules are represented as a trie. The trie nodes are
aggregated into 64-byte chunks, each representing the same prefix
and including 511 bit-nodes in the same subtree of depth 8. Thus,
32-bit rules require a 4-level tree. A query traverses the trie from
the root as usual, thus visiting up to four chunks, some of which are
stored in off-chip memory. The traversal involves random reads of
64-byte chunks, with a poor spatial locality, and, consequently, low
performance even in the presence of caches. Thus, the algorithm
performance heavily depends on the prefix distribution. Further,
for rules with a larger bit-width, the number of dependent, off-
chip accesses grows linearly with the width, which causes further
performance degradation.
Hybrid approaches combine LPM and exact match. Exact match
(EM) offloading is supported in many modern NICs, including
NVIDIA’s Connect-X family [36] or Intel’s IPUs [33]. Using these
for LPM matching involves expanding LPM rules with longer pre-
fixes to several EM entries while keeping the smaller prefixes in
other data structures. For example, the rule 01* gets expanded to
two EM entries 010 and 011. Since the expansion grows exponen-
tially with the number of wildcard bits, EM rules often reside in
off-chip memory to free valuable on-chip capacity for LPM data-
structure. Unfortunately, this technique is not scalable by design,

1We cannot disclose the vendor due to NDA.

creates unacceptable off-chip bandwidth with multiple tables [36],
and is thus highly sensitive to rule prefix distribution.

3.4 Support for updates
Any LPM engine is required to support modifications to its installed
rules. However, there is significant variability in the application
requirements.

Network routing, the most demanding application, must accom-
modate updates that involve thousands of rules per second [32].
The update delay is usually within hundreds of milliseconds in
modern devices [30, 36].

Other applications do not require frequent updates. For example,
strings in Network Intrusion Detection Systems do not change too
often. Similarly, in load-balancing systems, the rule update rate
depends on the server churn [35], but it rarely exceeds a few dozen
per second.

In this work, we primarily focus on the LPM query performance
while striving to maintain the update performance on par with
existing network devices. We achieve this goal by leveraging unique
trade-offs offered by RQRMI (§6.5).

4 NEUROLPM
NeuroLPM overcomes the limitations of the existing LPM engines
by leveraging an RQRMI learned data structure to index the rules,
thus sidestepping inherent weaknesses of traditional tries and hash-
tables.

NeuroLPM operation comprises an offline rule-set preparation
stage and online query execution. The former is usually not time-
critical, so we currently implement it in software. The latter is on
the critical path and thus implemented in hardware. When the rules
need to be updated, the rule-set preparation is invoked again on
the modified rule-set which contains both old and new rules (more
details in §6.5).

The rule-set preparation stage includes:

(1) Conversion of LPM rules into a sorted array of non-overlapping
integer ranges, called range array. (§5.1).

(2) Bucketization (optional) is performed if the range array does not
fit in on-chip SRAM. It merges every 𝑘 neighbouring ranges
into a wider range, forming a 𝑘-times smaller bucket directory.
The bucket directory is always stored in SRAM, whereas the
corresponding bucket array with the original ranges is stored
in DRAM. An index 𝑏𝑖 in the bucket directory corresponds to
the bucket in the bucket array at offset 𝑏𝑖 × 𝑘 . Bucketization is
described in §7.

(3) Training the RQRMI model to learn the locations of SRAM-
resident ranges in RQ Array. RQ Array is either a range array
(if one fits SRAM) or a bucket directory.

The NeuroLPM hardware query engine is shown in Figure 3. It is
connected to DRAMvia a cache. A query enters the RQRMI inference
module to produce index 𝑖; the Secondary Search module searches
the RQ Array from 𝑖 − 𝑒 to 𝑖 + 𝑒 , where 𝑒 is the model’s error bound
for that input, and outputs the index of the matching range. If the
RQ Array stores the original range array, this is the final output.
Otherwise, the index is used to find the respective bucket in DRAM.
The Bucket Reader retrieves the original ranges from the bucket

NeuroLPM - Scaling Longest Prefix Match Hardware with Neural Networks MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

RQ-RMI
Inference

Input

SRAM DRAM

Model
Parameters

Secondary
Search

𝑖

𝑒

RQ
Array

Bucket
Reader

Bucket
Index

Range
Index

Cache
Bucket
Array

Bucket
Search

Range
Index

SRAM-Only Design

Figure 3: NeuroLPM overview.

and forwards them to the Bucket Search, which produces the index
of the matching range in the range array.

We discuss all the components in detail next.

5 ALGORITHMIC CHALLENGES
We discuss two challenges: how to learn LPM rules using RQRMI,
and how to minimize the use of floating point operations without
breaking query correctness.

5.1 Converting LPM rules into ranges
Out-of-the-box, RQRMI cannot be efficiently applied to general
LPM rules. A single RQRMI model can learn only non-overlapping
rules, but this is not the case for LPM. For example, 5-bit rules
𝑟0 =1000* and 𝑟1 =100** overlap over the whole range of 𝑟0. The
original RQRMI paper [56] suggests splitting the rule-set into mul-
tiple subsets of non-overlapping rules and learning each subset
in a separate model, choosing the final result from their outputs.
However, while this approach works well for the original packet
classification use cases, it becomes too expensive both compute-
and memory-wise for LPM rule-sets, because it requires evaluation
of multiple RQRMI models for a single query. For example, the
evaluated rule-sets (§10.1) require between 7 to 12 RQRMI models,
which would be too expensive in terms of hardware resources and
DRAM memory bandwidth requirements.

Instead, we directly represent LPM rules as ranges, similar to
prior work [41, 71]. For the two rules in the example above, the
resulting ranges are 10000-10001 for 𝑟0, and 10010-10011 for 𝑟1.

This transformation can be done efficiently in 𝑂(|𝑅𝑢𝑙𝑒𝑠 |) steps
and results in at most 2 × |𝑅𝑢𝑙𝑒𝑠 | ranges [41], though in practice
we observe the expansion of 18% on average (§10.5). The algorithm
resembles a balanced bracket checking [73].

The algorithm works as follows.
(1) Add a null rule for the whole input domain, if necessary.
(2) Sort the rules by their lower bounds, then sort those in a tie

by upper bounds. We say that a range is open when its upper
bound is not yet determined.

(3) In increasing order, for each lower bound𝑚𝑙 of rule𝑚, push
𝑚 onto a stack. Denote the rule at the top of the stack as 𝑡 . If
there is an open range 𝑟 𝑖 , close it by assigning the upper bound
𝑟 𝑖𝑢 = 𝑡𝑙 . Then open a new range 𝑟 𝑖+1 with the lower bound
𝑟 𝑖+1
𝑙

= 𝑡𝑙 , and assign 𝑡 as the matching rule for that range.

RQRMI

Stage 0: NN

Stage 1: NN NN NN...

Stage 2: NN NN NN NN...

𝑥

𝑥

𝑥

Index estimate: 𝑖
Error bound: 𝑒

Figure 4: The RQRMI model [56] (see §5.2.1).

(4) Symmetrically, for each upper bound𝑚𝑢 of𝑚, close the current
open range 𝑟 𝑖 by assigning 𝑟 𝑖𝑢 =𝑚𝑢 . Remove the rule from the
top of the stack. Open a new range 𝑟 𝑖+1 such that 𝑟 𝑖+1

𝑙
= 𝑚𝑢

and assign 𝑡 as the rule for that range.
A range is stored using 32 bits (for 32-bit rules), i.e., only its

lower bound, as the method covers all the input domain.

5.2 Reducing floating-point operations
To help understand our design, we first explain the RQRMI model in
more detail. We refer to the original paper [56] for a more elaborate
description.

5.2.1 Background: RQRMI. The RQRMI model architecture we use
in NeuroLPM is depicted in Figure 4. It consists of three stages.
Each stage includes a predefined number of independent Neural
Nets (NNs), which we call submodels.

The first stage always consists of a single submodel. During
RQRMI inference, only a single submodel gets evaluated in each
stage. All evaluated submodels are fed with the same input 𝑥 , nor-
malized using an affine transformation determined at training time.
The output of a submodel in the internal stages is the index of the
submodel used in the subsequent stage. The output of the submodel
in the last stage is the output of the model. In addition, the final
output includes the error bound 𝑒 for the submodel calculated at
training time.

Each submodel is a Multi-Layer Perceptron (MLP) with a single
input, a single output, and a single hidden layer with eight per-
ceptrons with a ReLU activation function. In total, each submodel
requires 26 floating point (FP32) operations to compute: 8 multiply-
adds, 8 multiplies, 8 sums, and 2 multiplies for input normalization
and output scaling.

The model learns the association between the ranges and their
locations in memory. It is trained stage by stage, submodel by
submodel, using a uniform sampling of the elements in the input
domain, and the respective index of their rules in the rule array.
Each subsequent stage is trained by sampling from a smaller input
domain compared to the previous stage, hence producing more
accurate submodels.

The submodels in the final stage are trained to output the index
of the matching range within the range array. During the training
of each submodel, the algorithm analytically computes the bound
on the prediction error of each submodel for any possible input.
Determining this bound is crucial to guarantee the correctness of

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Alon Rashelbach, Igor de Paula, and Mark Silberstein

the query. In the end, the training process outputs all the weights of
the submodels and their respective bounds on the prediction error.

5.2.2 Quantization challenge. The RQRMI inference requires 26
FP32 operations, which is too expensive both in terms of hardware
resources and latency. One common solution is quantization, i.e.,
replacing the FP32 arithmetics with integer arithmetics [74], which
is much faster and more resource-efficient.

Unfortunately, quantization introduces computation errors that
make analytical calculation of the submodel prediction error im-
practical. Specifically, each original submodel is a piece-wise linear
function as it is computed as a sum of eight ReLU functions of
the submodel’s input. This piece-wise linearity is key to efficiently
computing the upper bound on the prediction error for each lin-
ear segment, with only a handful of vantage points (see the details
in [57]). With quantization, i.e., when all the operations are per-
formed in lower bit-width or using fixed point arithmetic, these
segments cease to be linear and monotonic, due to the quantization
error. As a result, computing the submodel prediction error requires
sweeping over the entire input domain of a submodel, which is
clearly impractical (consider the input domain of 64-bit integers,
for example). Without knowing the prediction error, it is impossible
to guarantee query correctness.

To reiterate, the problem is not the quantization of neural net
inference, rather, the fact that the change in the output due to
quantization dramatically complicates the analytical calculation
of the submodel prediction error, and this challenge is unique to
RQRMI.
Solution: lookup instead of quantization.We observe that each
submodel is a piece-wise linear function with at most nine linear
segments in the form of 𝐴𝑖𝑥 + 𝐵𝑖 (𝑖 = 1, . . . , 9; 𝑥 is the input).
Coefficients𝐴𝑖 and 𝐵𝑖 are a sum of the respective weights and biases
of the subset of non-zero ReLU functions on segment 𝑖 . Thus, we can
compute 𝐴𝑖 and 𝐵𝑖 offline in full precision for each segment. Thus,
given 𝑥 we can find the respective coefficients, and the submodel
output would require a single MAC operation, affording computing
it in full precision as well.

For example, consider a submodel with two neurons in the sec-
ond layer, with weights 1 and 2, and biases 1 and 0 respectively.
Thus, the output of the submodel 𝑦 = 2 · 𝑅𝑒𝐿𝑈 (𝑥 + 1) + 𝑅𝑒𝐿𝑈 (2𝑥).
The first ReLU gets non-zero output for 𝑥 > −1, and the second for
𝑥 > 0. Therefore, the submodel can be divided into three linear sec-
tions: (1) 𝑥 < −1, in which 𝑦 = 0, i.e., 𝐴0 = 𝐵0 = 0 ; (2) −1 ≤ 𝑥 < 0,
in which 𝑦 = 2(𝑥 + 1), i.e., 𝐴1 = 2, 𝐵1 = 2; and (3) 𝑥 ≥ 0, in which
𝑦 = 4𝑥 + 2, i.e., 𝐴2 = 4, 𝐵2 = 2.

This logic can be easily implemented using a lookup table as
follows. We compute the boundaries of the linear segments 𝑋𝑖 in
the original submodel and save them in a table, with the respective
𝐴𝑖 and 𝐵𝑖 . During inference on 𝑥 , we search for matching segment
𝑗 for which 𝑋 𝑗 ≤ 𝑥 and then compute 𝐴 𝑗𝑥 + 𝐵 𝑗 . Notably, this
technique results with the same output as the original submodel so
query correctness is preserved.

Our FPGA-based prototype reveals that the lookup-table design
is 4× faster compared to implementing RQRMI inference in full
precision.

6 SRAM-ONLY DESIGN
We first focus on the NeuroLPM hardware design assuming that
the rule-set fits in SRAM, but later relax this assumption.

6.1 RQRMI inference design
The lean structure of the RQRMI model facilitates efficient imple-
mentation of inference in hardware. We first develop a pipelined
module for performing the inference of a single submodel (Fig-
ure 5b), and then connect three such modules in pipeline, according
to the number of stages in the RQRMI model which we use for LPM
(Figure 5a, left).

The submodel parameters are retrieved from the per-stage pa-
rameter buffer in SRAM according to the submodel index within the
RQRMI stage. Input normalization and output scaling are performed
according to the model parameters. The output of the module is
either the index of the submodel in the next RQRMI stage, or, for a
leaf submodel, the final result of the whole model. The submodel
error bound is determined during training, and is passed as part of
the output.

6.2 Secondary search
The Secondary Search module (Figure 5a, right) searches for the
matching range in the RQ Array segment [𝑖 − 𝑒; 𝑖 + 𝑒] in SRAM,
where 𝑖 is the RQRMI predicted index and 𝑒 is the error bound. The
error may range from tens to hundreds of indexes, so we use binary
search (recall that RQ Array is sorted).

We considered two alternatives: (1) a pipelined design where
each stage performs a single access to the RQ Array, with a total of
⌈log 𝑒⌉ number of stages; or (2) multiple Finite StateMachines (FSM)
each performing the whole search to completion. We note that
achieving high throughput with multiple FSMs assuming enough
input parallelism is a valid approach as we strive to support many
independent queries (R3 in §3.2). We chose the FSM option for its
simplicity.

We use multiple banks to connect the FSMs to SRAM tominimize
memory stalls. Each FSM can access any bank via a crossbar. The
RQ Array entries are distributed across memory banks in a round-
robin manner, and the number of banks is a power of two to allow
efficient bank indexing.

To determine the number of FSMs, we observe that the Secondary
Search module must sustain one query per cycle on average. Thus,
the number of FSMs should be no less than the number of memory
accesses to the RQ Array by a single FSM (assuming one access
per cycle from each FSM), which in turn is determined by the
error bound of the RQRMI model. On the other hand, the memory
subsystem must sustain the demand from all the FSMs, and its
throughput depends on the number of banks and bank conflicts.
Next, we develop an expression to compute the throughput of the
memory subsystem under bank conflicts.

6.2.1 Memory throughput vs. banks vs. FSMs. Assume that each
FSM issues one memory request per cycle, and this request is in-
dependent of the previous request by the same FSM. There are 𝑘
FSMs and 𝑚 banks, 𝑚 ≤ 𝑘 where an FSM may access any bank
uniformly at random. The system runs at maximum throughput
when no banks are idle. Therefore, the average throughput in terms

NeuroLPM - Scaling Longest Prefix Match Hardware with Neural Networks MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

RQ-RMI Inference
Input

Secondary Search
Input, Index, Error Index

Stage 0 Stage 1 Stage 2Idx Idx Idx
Err

Inpt

Delay Delay Delay

Input Input

Input

Alloc
Idx
Err
Inpt

FSM

Req
Retire

Bank 0

Bank n

Arb 0Arb n Rsp 0 Rsp n

Idx

(a)

Fetch & Normalize

RQRMI Stage Parameters

Find
Segment MAC Acc &

Scale

Saturated
output

Submodel Params

Idx

(Err)

Submodel Idx
Input

Params, Input

Seg Idx

(b)

Figure 5: (a) SRAM-only NeuroLPM pipeline. (b) The RQRMI submodel inference module.

0 20 40 60 80 100
0
8
16
24
32

8 Banks
16 Banks

32 Banks

Number of FSMs

M
em

Ac
ce
ss
es

pe
rC

yc
le

(a)

Avg. Bank
Accesses

Lookup
Thrghput

Train Time [ms]
Intel ARM

1C 8C 8C

6 1.90 1572 302 1292
7 1.83 375 105 500
8 1.78 187 50 392

(b)

Figure 6: (a) The theoretical average throughput of the mem-
ory subsystem vs. the number of FSMs. (b) Training time and
its effect on end-to-end lookup throughput (packets/cycle).

of the number of memory requests per cycle is equal to the expected
number of banks accessed per cycle. To model the throughput as a
function of the number of FSMs, we observe that this is equivalent
to computing the expected number of distinct birthdays for𝑘 people
while having𝑚 days in a year. This is given by𝑇 =𝑚 · (1− (𝑚−1

𝑚)𝑘)
and depicted in Figure 6a.

This expression assumes that the accesses by the same FSM are
independent, which is not the case if the FSM’s access is delayed
due to a conflict. Instead, the expression gives an upper bound on
the throughput as it overestimates the number of FSMs that can
choose a bank in each cycle.

We now can determine the number of FSMs and memory banks
as follows. Assume that an average prediction error of a submodel
is 512. Thus, the number of binary search steps is log(512), i.e., the
average number of memory accesses per RQRMI query is 9. Thus,
to achieve the throughput of one query per cycle in the Secondary
Search, the memory subsystem must sustain 9 memory accesses
per cycle on average. According to Figure 6a, 16 banks and 10 FSMs
may serve only about 8 accesses on average, which is not enough.
However, 16 FSMs allow the system to serve about 10 memory
accesses per cycle on average, which is sufficient to achieve the
target throughput.

Inversely, this analysis shows that to achieve the highest through-
put with 16 banks and 16 FSMs, the RQRMI model must be trained
with error bound 𝑒 such that ⌈log 𝑒⌉ ≤ 10.

6.3 SRAM-only pipeline
The complete design supports multiple RQRMI modules to feed
the Secondary Search FSMs. This is necessary due to the stochastic

nature of the Secondary Search. Specifically, the submodel error
bound (and, consequently, the number of memory accesses per
search) varies from submodel to submodel, creating an uneven load
between the FSMs. Further, the number of bank conflicts varies
and depends on the input queries. As a result, when Secondary
Search runs without conflicts and with lower errors, FSMs might
get underutilized and the RQRMI module becomes the bottleneck.

NeuroLPM enables the addition of inference engines by aug-
menting the FSM job allocator to accept two queries and allocate
them to two FSMs at once. When only one FSM is available, one
engine is stalled in a round-robin fashion.

6.4 Scaling the bit-width
The design so far assumed 32-bit rules and inputs. However, scaling
the bit-width to 64 or 128-bit requires no architectural changes. It
requires increasing the bit-width of the MAC units for inference,
and the width of each SRAM bank. If these modifications decrease
the throughput of the RQRMI module, more such modules can
be added to feed the Secondary Search. Indeed, the NeuroLPM
software prototype scales to 128-bit rules (IPv6) just by using wider
data types.

Notably, the rule bitwidth has no impact on the number of mem-
ory accesses. This is in stark contrast with other LPM engines where
the number of accesses grows linearly with the bitwidth, e.g., due
to changing the height of a trie, or the number of accessed hash
tables.

6.5 LPM rule updates
Update types. Rule updates can be categorized into three types:
action modification, rule deletion, and new rule insertion. The
first two do not require retraining the RQRMI model, and involve
traversal of the RQ-array to mark relevant entries as invalid or
modifying their associated action. Inserting new rules is described
as follows.
Training time. Rule insertions require full retraining, i.e., the time
to train the whole rule-set determines the time to commit the new
rules, regardless of how many rules are inserted.

The training algorithm introduced in prior work [58] takes 1.5
seconds to train on a representative 870K rule-set (§10) using a sin-
gle x86 core. However, it can be sped up significantly by exploring

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Alon Rashelbach, Igor de Paula, and Mark Silberstein

the tradeoff between the training time and query performance, and
via parallelization.
Background: training. At a high level, a model is trained layer by
layer, where each submodel (Neural Network, NN, in Figure 4) in a
layer is trained independently using a standard back-propagation
via gradient descent by sampling from its input domain. The train-
ing ends when the attained error bound, 𝑒 , is below the target
value.

A shorter training might result in lower model accuracy and
higher 𝑒 , hence, a longer secondary search and slower lookup. This
tradeoff is not linear, however. First, the number of samples used to
train an NN can be reduced by about 3× compared to [56], without
any measurable effect on 𝑒 . Second, the training time is dominated
by a few “straggler” submodels which take longer to converge to
the desired 𝑒 . However, if faster training is needed, having a small
portion of submodels with higher 𝑒 has a negligible impact on the
lookup performance (about 3.5%), yet can shorten the training by
up to 4×. This is because most of the lookups are performed via
NNs with small 𝑒 , and because the query time increases as log(𝑒).

The training time improvements are shown in (Figure 6b). To-
gether with parallelization, i.e., by training each submodel indepen-
dently, the same 870K rule-set is trained on eight x86 cores in 105ms
(50ms) with 3.5% (7%) slower lookups (see §10 for setup details).

If NeuroLPM is deployed on a SmartNIC, training on eight ARM
A72 cores on the NVIDIA BlueField-2 [51], without using the host
(x86) CPUs, takes only 500ms (392ms).

Last, we note that training each submodel requires about 50K
arithmetic operations and is entirely compute-bound. Given that
RQRMI has three layers, the critical (sequential) path comprises
150K operations. Thus, dedicated hardware may enable training at
a millisecond scale.

To conclude, RQRMImodels offer novel tradeoffs that allow train-
ing about a million rules on commodity hardware within hundreds
of milliseconds. According to [36], this update rate is on par with
existing SmartNICs.
Atomicity. An atomic transition from the old rule-set to a new one
is often desirable, with minimum downtime. It implies that both the
old and the new versions of the rules must reside concurrently in
SRAM to avoid stalling the engine. The downside of this solution is
its low SRAM utilization. In NeuroLPM, however, any free SRAM is
used as a cache. Thus, placing the updated rules in SRAM momen-
tarily reduces the cache size and increases the DRAM bandwidth
without affecting the overall throughput.
Limitations. NeuroLPM targets applications in which rule inser-
tions originate in the control plane and take the order of hundreds
of milliseconds. For example, updates in Cloud routing tables take
about 180ms [16, 22]. On the other hand, NeuroLPM is ill-suited
for applications that require frequent, atomic rule insertions, such
as the Reconfigurable Match-Action Table (RMT) [8] or the disag-
gregated RMT (dRMT) [12] architectures used by programmable
switches. In these architectures, data-driven updates take a few
microseconds to complete on TCAM hardware [31].

Nonetheless, this limitation can be side-stepped using a delta
buffer for accommodating incremental updates. For example, a
small TCAM with 10K entries can support 33K (100K) updates per
second, given that RQRMI training takes 300ms (100ms). Note that

this approach is realistic as NVIDIA production switches make use
of 10K-entry TCAMs for similar purposes [59].

7 SCALING TO EXTERNAL MEMORY
In million-scale LPM rule-sets, the size of the range array may
exceed the available SRAM capacity.

One could use SRAM as a cache, and store the RQ Array in
DRAM. Unfortunately, the worst-case performance is unacceptable.
Secondary Search over DRAM would result in a prohibitively large
number of DRAM accesses per query, i.e., eight accesses on average
in the evaluated workloads (§10.3). Dependent memory accesses
and variable DRAM latency deteriorate the throughput, as observed
in production NICs (§3.3). Furthermore, these are 4-byte accesses
(for 32-bit rules) to non-adjacent indexes, so serving them would
incur high bandwidth overheads.

For example, in the packet forwarding use case, handlingminimum-
size packets at 200 Gbps would require about 200 Gbps of DRAM
bandwidth, even assuming an 8-byte access granularity. The mem-
ory bandwidth is a scarce resource, i.e., NVIDIA’s BlueField pro-
vides only 140 Gbps to DRAM [50], and it is shared between all
applications. Moreover, NICs are often DRAM-less and instead use
the host’s DRAM via PCIe bus, where both the latency and the
bandwidth are significantly worse.

Last, the DRAM bandwidth requirements in this solution are
dictated by the RQRMI error bound, and cannot be set according to
system constraints.

7.1 Avoiding secondary search in DRAM
We compress the range array such that the compressed ranges,
called bucket directory, can be placed in SRAM, while the uncom-
pressed ranges, called bucket array, are stored in DRAM. We call
this process bucketization. Adjacent ranges in the original range
array are grouped together into equal-sized buckets each with 𝑘

ranges. A bucket directory is formed by merging the ranges in the
same bucket and forming new bucket ranges that subsume the orig-
inal ones. The size of the bucket directory is exactly [𝑏𝑢𝑐𝑘𝑒𝑡𝑠𝑖𝑧𝑒]×
smaller than the original range array. All inputs that match the
ranges in the bucket also match the respective bucket range. Thus,
given the index of the bucket range, finding the bucket in the bucket
array is easy, akin to finding a memory frame in virtual memory.

Example. Given a range array of [1-3],[4-5],[6-10],[11-15]. Bucketi-
zation with the buckets of size 2 results in a bucket directory array
of [1-5],[6-15]. For input 9, the matching range [6-15] is located in
the bucket directory at offset 1. To find the actual matching range,
one compares the two ranges in the bucket at offset 2 of the range
array.

With bucketization, the RQRMI query is first performed on the
bucket directory. When the respective bucket range is found, the
bucket rules are fetched from DRAM at once. Thus, the per-query
DRAM bandwidth is no longer a function of the error bound and
determined by bucket size.Moreover, the bucket size can be adjusted
to suit other constraints, such as DRAM memory bandwidth.

An optimized version does not store additional ranges in RQ
array, rather it uses every 𝑘𝑡ℎ range in the range array as a range
boundary in the bucket directory. Thus, in a bucket of size 𝑘 , one

NeuroLPM - Scaling Longest Prefix Match Hardware with Neural Networks MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

range already resides in SRAM hence only 𝑘 − 1 ranges need to be
fetched from DRAM.

8 DISCUSSION
Rule-set scaling. Bucketization is key to scaling to large rule-sets.
For example, with 4MB of SRAM as in NVIDIA ConnectX6-Dx [55],
bucket size of 8 (32 bytes) and half of SRAM allocated for cache,
NeuroLPM can support up to four million ranges. Importantly,
the memory requirements grow linearly with the size of the rule-
set, and cannot spike unexpectedly due to problematic rule-set
characteristics. Scaling further within the same SRAM is possible
by doubling the bucket size, at the expense of doubling the worst-
case DRAM bandwidth as we explain below.
DRAM bandwidth vs. cache size. Bucketization offers a new
design trade-off between the cache size and the worst-case DRAM
bandwidth. Given a fixed SRAM budget, larger buckets result in
a smaller bucket directory and more SRAM space for the cache.
On the other hand, large buckets increase the worst-case DRAM
bandwidth and assume higher spatial access locality to ranges to
use the ranges in the same bucket. We evaluate this trade-off in our
application in §10.2.
Exact match cache. Exact Match Cache (EMC) stores the matched
rules instead of individual memory accesses. This approach, how-
ever, is inefficient [69]. Furthermore, it is complementary to ours,
so we do not consider it here.
RQRMI vs. full binary search.At a high level, RQRMI can be seen
as a way to speed up a simple binary search. Specifically, it reduces
the asymptotic complexity of binary search in a sorted array of
size 𝑛 from 𝑂(log 𝑛) to 𝑂(log 𝑒), where 𝑒 is RQRMI error boud. In
the data sets we use to evaluate NeuroLPM, RQRMI reduces the
number of required memory accesses per query by more than 2×
compared to a full binary search.
Scaling the number of rules. NeuroLPM introduces a unique
tradeoff between the lookup performance, DRAM bandwidth, and
training time. More rules can be accommodated with the same
model (and the same training time), but with larger buckets (i.e.,
higher 𝑘), so lookups would consume more DRAM bandwidth.
However, if updates are infrequent and longer training is acceptable,
one may increase the model size to maintain the same DRAM
bandwidth and the same throughput. Then, the training time can
be shortened but at the expense of slight throughput degradation.

We illustrate this tradeoff by experimenting with a rule-set 4.5×
larger (3.9 million LPM rules) than a representative 870K rule-set we
use in §10. Under the samemodel configuration, the lookup through-
put degrades by 12% but training is only 1.6× longer. Doubling the
number of submodels increases the training by an additional 2×, but
regains the throughput within 2% from the throughput of the 870K
rule-set. Doubling the DRAM bandwidth, i.e., by using double-sized
buckets, keeps the lookup throughput as with the 870K rule-set but
takes 22% longer to train.

In contrast, state-of-the-art LPM engines do not offer such flexi-
bility, as they either cannot handle larger rule-sets at all, or suffer
from significant performance degradation due to a large number of
DRAM accesses, e.g., two-three DRAM accesses per packet in the

worst case for SAIL and Tree Bitmap, compared to one access for
NeuroLPM (§10.2).
The effect of RQRMI size on the training time. Increasing
the RQRMI model size by adding NNs may reduce the number of
“straggler” submodels and shorten its training time, even though
more submodels must be trained (§6.5). However, establishing a
correlation between the two is challenging due to the reliance of
“straggler” submodels on the range distribution. For example, a
single submodel suffices to approximate rule sets with uniformly
distributed ranges, so adding submodels would only increase the
training duration. Therefore, we prefer to use smaller RQRMI mod-
els and absorb the high error bound of problematic submodels, if
such exists, in the secondary search phase. In practice, our experi-
ments (§10) demonstrate that an RQRMI model with 1, 4, and 64
submodels per stage, respectively, achieves good performance for
all evaluated rule sets.
Deployment options. NeuroLPM is naturally suitable for NICs
and network middle boxes, but we also envision its use in switches
and routers, by deploying multiple replicas. Such architecture can
achieve multi-Tbit bandwidth by leveraging parallelism as ports
can be processed in parallel, as has been considered earlier in Tree
Bitmap [20].

9 IMPLEMENTATION
We implement the RTL of the SRAM-only NeuroLPM pipeline (See
Figure 3) in Verilog in Xilinx Vivado. The implementation closely
follows the described design.
RQRMI inference. We implement the 3-staged RQRMI model
configuration described in the design. The implementation is fully
pipelined and is designed to produce one output per cycle. For each
stage, we implement the lookup-table (LUT) approach described
in §5.2.2. It utilizes FP32 operations implemented using Vivado’s IP
blocks.
Secondary search.A query enters a simple scheduler that allocates
it to an idle secondary search FSM. When two RQRMI pipelines are
connected, and there is more than one input per cycle, the scheduler
finds the available FSMs and chooses which input engine to stall.
First, the allocator uses pop-count to find the available FSMs. If at
least two are available, it allocates them for execution. Otherwise,
it stalls one or both input units using the round-robin policy.

All FSMs are connected to memory banks via a crossbar. Each
bank has a round-robin arbiter to resolve bank conflicts. Blocked
FSM waits for the next read cycle to try again.

Our design supports one or two RQRMI pipelines, 8, 16, or 32
memory banks, and 8, 16, 32, 48, 64, and 96 FSMs. Doubling the
number of banks and FSMs further resulted in prohibitively high
resource utilization, i.e., 55% FPGA LUT utilization for 64 banks,
3.6× more than with 32 banks.
Software. We implement all parts of the NeuroLPM design in
software to allow the evaluation of the DRAM version for large
rule sets.

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Alon Rashelbach, Igor de Paula, and Mark Silberstein

10 EVALUATION
We seek to answer the following questions: (1) comparison to the
state-of-the-art; (2) evaulation design trade-off; and (3) resource
consumption.

10.1 Methodology
We focus on packet forwarding. We obtain ten large real-world
LPM rule-sets from RIPE [1] (four rule-sets of about 870K each),
Stanford [80] (two of about 180K rules), and RouteViews [52] (four
from 850K to 950K rules each). These rule-sets are then converted
using the Zebra FIB converter 2 such that all duplicate rules are
removed.

We use a CAIDApacket trace fromEquinix data center in Chicago
[10], similar to prior works [56, 58]. We modify the traces for each
rule-set to allow the evaluation of the system with realistic query
locality according to the methodology used by prior works [56].

We note that the graphs presented below include a single rule-
set from each source, as the other rule-sets from the same source
behave almost identically.
NeuroLPM configuration. NeuroLPM uses 32-byte buckets. As a
result, the worst-case DRAM bandwidth is 88 Gbps when serving
minimum-size packets at 200 Gbps. However, thanks to caching the
effective bandwidth is only a small fraction of that (as discussed
next). The RQRMI model consists of three stages, with 1, 4, and
64 submodels per stage respectively. The total model size is 8KB.
We report the numbers for RQRMI models with 6 average bank
accesses.
Baselines. We compare NeuroLPM against the state-of-the-art
SAIL and Tree Bitmap hardware-oriented LPM algorithms (See
§3.3). We do not evaluate TCAM as it is limited to much smaller
rule-sets.

10.2 DRAM access rate per query
We measure the DRAM access rate and bandwidth of these algo-
rithms by running their software emulation. The measurements are
performed as follows. We emulate a cache (2-way associative LRU,
with 32 bytes cache lines), and instrument the algorithms to access
their internal data structures used for matching via the cache. Thus,
the Tree Bitmap algorithm accesses the trie chunks of 64 bytes,
SAIL reads two-byte indexes of the 3rd-level table and one-byte
action indexes, and NeuroLPM reads bucket-size buckets with the
ranges, four bytes per range. The rest of the data are assumed to be
statically allocated in SRAM, so accessing them does not contribute
to the cache statistics. The effective cache size is determined by
the SRAM size set in the experiment, minus the size of the data
structures stored statically in SRAM according to the design of the
algorithm. We measure the cache miss rate per query and use it to
derive the DRAM bandwidth per query according to the maximum
between the effective size of memory accesses and the cache line
size.

Such an approach provides a fair comparison of the cache effi-
ciency and DRAM access rates at the algorithmic level, independent
of the hardware implementation. We note that caching has not been
considered in the context of baseline algorithms before.

2https://github.com/rfc1036/zebra-dump-parser

1 2 4
0

10

20

Av
g.

BW
[B
/Q

ue
ry
] RIPE

1 2 4
0

10

20

SRAM Size [MB]

Routeviews

NeuroLPM Tree Bitmap SAIL

1 2 4
0

3

6 Stanford

0
0.2
0.4
0.6
0.8
1

Ca
ch
e

M
iss

[%
] 17

31
-

9.3
17
-

4.4
8.6
6.9

1.6
8.4
-

0.7
3.4
-

0.4
1.5
1.2

16
30
-

8.6
16
-

3.9
8.0
6.7

Figure 7: Average DRAM bandwidth per query vs. SRAM size.
SAIL requires at least 2.4MB of SRAM to run. Lower is better.

We run a trace with 10M packets (i.e., 10M queries) on all ten rule-
sets. As Figure 7 shows, NeuroLPMoutperforms all other algorithms
for all the rule-sets. Specifically, it shows up to 5× and 3× miss rate
reduction over Tree Bitmap and SAIL, respectively, for the Stanford
rule-set, and up to 4× and 1.7× DRAM bandwidth reduction for the
Routeviews rule-set. These effects are particularly pronounced for
smaller SRAM sizes, where SAIL cannot run at all as it statically
allocates 2.25MB of SRAM.

With 4.5MB SRAM (not shown in the figure), NeuroLPM is the
only one that allows serving queries from SRAM alone. In contrast,
SAIL and Tree Bitmap access DRAM, e.g., their miss rate for the
RIPE rule-set is 4.3% and 1.5% respectively.

We claim that this experiment is indicative of the NeuroLPM
performance and scalability advantages in a complete system. The
algorithms achieve the best-case throughput, i.e., about 200 Mpps
(Million packets per second) for SAIL, when serving queries from
SRAM (more details about throughput below). However, their per-
formance is dominated by DRAM accesses once they need to scale
to larger and more diverse rule-sets. This is why DRAM access
savings of NeuroLPM directly translate into system performance
benefits.
Worst-case DRAM access rate. The worst-case number of mem-
ory accesses per query is an important metric to evaluate LPM
engines for networking applications, as abrupt changes in traffic
might occur, rendering caching ineffective [69].

The worst-case scenario for Tree Bitmap is when all trie nodes
but the root are in DRAM. Trie traversal involves dependent mem-
ory accesses, and latency hiding requires large buffers to avoid
stalls, and designs must be built for such a worst-case.

SAIL and Tree Bitmap require two and three accesses in the worst
case, whereas NeuroLPM needs only one access. This deterministic
behavior is a clear advantage over the alternatives.

10.3 Hardware performance
We use Intel Quartus ModelSim Logic Simulator to estimate the
latency and throughput of the NeuroLPM hardware implementation
without caching (the SRAM-only design in Figure 3). We use a trace
with 10M packets and report the results of a representative rule-set
from each public archive.

https://github.com/rfc1036/zebra-dump-parser

NeuroLPM - Scaling Longest Prefix Match Hardware with Neural Networks MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

16 Banks
1 RQRMI

32 Banks
2 RQRMI

0
0.5
1

1.5
2

65
58 61 64

66

Th
ro
ug

hp
ut

[Q
ue
ry
/C
yc
le
] RIPE

16 Banks
1 RQRMI

32 Banks
2 RQRMI

65
58 62 64

67Routeviews

16 Banks
1 RQRMI

32 Banks
2 RQRMI

0
0.5
1

1.5
2

56 58 58 81

78

Th
ro
ug

hp
ut

[Q
ue
ry
/C
yc
le
] Stanford

16 FSMs 32 FSMs
48 FSMs 64 FSMs
96 FSMs

Figure 8: End-to-end performance of the hardware prototype
(SRAM-only). Higher is better. The average latency in cycles
(for 100MHz synthesis) is annotated on top of each bar.

Throughput and latency. The NeuroLPM prototype with 96 FSMs,
32 banks and two RQRMI modules achieves the average throughput
of 196Mpps at 100MHz. For comparison, SAIL reaches 200Mpps at
200MHz. RQRMI inference completes in 22 cycles, and the end-to-
end query latency is dominated by the Secondary Search (between
35-55 cycles depending on the configuration and the trace).

These results show that NeuroLPM can serve multiple dependent
queries at a total latency of a few hundred cycles on average. This
translates into a 𝜇second packet latency at 100MHz for multiple
dependent queries in a sequence but can be further improved with
a higher frequency design.
Design-space exploration. We evaluate the system performance
under different hardware configurations while varying the number
of memory banks (16-32) and search FSMs (16-96). The graphs
do not show the inferior configurations: (1) when the number of
FSMs is smaller than the number of memory banks, and (2) when
the number of memory banks is 8, which leads to the memory
bottleneck due to bank conflicts.

Figure 8 shows the throughput (bars), and the average latency
(annotations) of the evaluated configurations for the representative
rule-sets. For a single RQRMI module, the 16:48 (#banks:#FSMs)
configuration yields the best throughput. The results also highlight
the throughput-latency trade-off: increasing the number of FSMs
while the memory is the bottleneck, without increasing the number
of banks, improves throughput but affects latency. Figure 9 confirms
this result.

Furthermore, Figure 8 demonstrates that when we keep the FSM
bank ratio constant but double the bank size we can double the
throughput by adding another RQRMI inference engine. This ap-
proach offers substantial improvement to scalability as the inference
stage requires only 8KB of memory and 1.5% of the board’s DSPs.

10.4 Resource consumption
We synthesize the SRAM-only prototype using Vivado Studio. For
comparison, we also implement and synthesize the SAIL algorithm
(§3.3). We target Xilinx Kintex UltraScale+ xcku 5p-ffve1760-3-e
FPGA. While our goal is a comparative analysis of the resource
consumption, this specific device is a viable platform for network
applications that can benefit from LPM engines [75].

40 60 80 100 120 140
0

0.2
0.4
0.6
0.8
1

Legend Format:
#RQRMI units-#Banks:#FSMs

Latency [Cycles]

CD
F

1-16:16 1-16:32
1-16:48 2-32:96

Figure 9: End-to-end query latency.

NeuroLPM NeuroLPM SAIL
(16 Banks:48

FSMs)
(32 Banks:96

FSMs)

LUT 10165 (1.9%) 81862 (15.6%) 600 (0.1%)
FlipFlop 2194 (0.2%) 11899 (1.13%) 757 (0.07%)
DSP 30 (1.52%) 60 (3.04%) 0
BRAM 120 (12.1%) 120 (12.1%) 546 (55%)

Table 1: FPGA resource consumption.

For NeuroLPM, we use the best-performing configuration with
16/32 banks, RQRMI with FP32 arithmetic, and either 48 or 96 FSMs.
The BRAM size (about 540KB) is sufficient to hold the RQ Array
for all the evaluated rule-sets with 32-byte buckets. For SAIL, we
allocate BRAMs to hold its 16- and 24-bit tables, which results in
2439KB.

Table 1 shows that SAIL consumes fewer LUTs and flip-flops
than NeuroLPM, but almost three times more BRAM. Note that
LUTs and FlipLops are usually abundant on FPGAs, whereas BRAM
is a scarce resource. As expected, SAIL does not use DSPs whereas
NeuroLPM uses them for RQRMI inference.

Alternatively, if we assume the same amount of BRAM for both
NeuroLPM and SAIL, we can instantiate 4× more NeuroLPM en-
gines using that memory budget, while having an extra 279KB
available for cache. Assuming one RQRMI module, 16 banks and
48 FSMs per NeuroLPM instance, four replicas of NeuroLPM can
reach 400Mpps average-case throughput at 100MHz, 2× better than
SAIL at 200MHz, only utilizing additional 6% and 5% LUT and DSP,
respectively, compared to a single replica.

In conclusion, NeuroLPM’s compute logic requires more re-
sources on die compared to SAIL, but this is compensated by a
much smaller memory footprint, and can thus be leveraged to im-
prove throughput by instantiating more NeuroLPM engines.
Power. LPM accelerators require large SRAM for their internal data
structures and the cache. SRAM logic dominates the power and
area of the design. Indeed, the static power estimate by the Vivado
analyzer shows that 72% is consumed by BRAM. Therefore, the
overall power consumption of SAIL and NeuroLPM is proportional
to their respective use of SRAM. Given the same amount of SRAM
for both, their power consumption is likely to be similar.

10.5 Analysis
LPM-to-ranges conversion overheads. We measure the space
costs of converting LPM to non-overlapping ranges. We observe

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Alon Rashelbach, Igor de Paula, and Mark Silberstein

8 16 32 64
0
2
4
6
8
10

Ca
ch
e
m
iss

[%
] RIPE

8 16 32 64
0
2
4
6
8
10

Bucket Size [B]

Routeviews

8 16 32 64
0

0.2
0.4
0.6
0.8
1 Stanford

Figure 10: NeuroLPM cache miss rate for 2MB SRAM for
different bucket sizes. Lower is better.

that each rule-set produces 18% more ranges than the rules on aver-
age across all rule-sets. The largest rule-set of 948K is transformed
into 1.05M ranges. In the worst case (Stanford rule-set), we observe
32% more rules.
Impact of bucket size on cache hit rate. Bucket size is an impor-
tant parameter that facilitates tuning NeuroLPM to system require-
ments such as cache line size and DRAM bandwidth. Additionally,
large buckets effectively result in a smaller RQ Array in SRAM,
freeing space for the cache. However, larger buckets have lower
spatial locality, so larger cache lines reduce the effective cache space.

Figure 10 shows the effect of bucket size on cache hit rate with
different rule-sets, with 2MB SRAM shared by the cache and RQ
Array. In this experiment (only), the cache line size is the bucket
size. The miss rate reduces when we increase the bucket size up to
32B, but then it grows again.

This result is expected. For example, with 8-byte buckets (bucket
size of 3) and 1M ranges as in Routeviews rule-set, the RQ Array is
1.3MB and leaves about 700K for the cache. Increasing the bucket
size to 16 bytes, increases the cache to 1.2MB, but also doubles the
cache line size. Given the poor spatial locality of accesses in the
same cache line, the cache miss rate does not improve.

11 RELATEDWORK
Learned data structures. Learned data structures have been ap-
plied to databases, key-value stores, and virtual software switches
[14, 19, 37–39, 42, 56, 58, 68], and show performance benefits by
tradingmemory accesses for ML inference. To the best of our knowl-
edge, our work is the first to consider and solve the challenges of
using them for this purpose in hardware, such as quantization, bank
organization, and extension to DRAM.
Packet classification. The closest to our work is NuevoMatch [56],
which uses RQRMI for compressing the data structure to fit the
CPU cache. NeuroLPM builds on RQRMI, but it extends it to use for
LPM and designs a hardware engine that implements it efficiently.
Machine-learning in the data-path.ML have been applied in the
performance-critical parts of flash devices [29], RDMA key-value
stores [72], programmable switches [76], NICs [62, 65, 66], and
virtual switches [58]. To the best of our knowledge, ours is the first
work that applies ML to LPM hardware.
Quantized inference of Neural Nets.Quantization of neural nets
has been explored in the context of reducing DRAM bandwidth
and improving the inference throughput [26, 74]. This work is
fundamentally different: we reduce the number of floating point

operations required for the RQRMI model inference, thus obviating
the use of quantization altogether.

12 CONCLUSION
This paper discusses a new approach for designing hardware LPM
engines using RQRMI learned data structure. From the algorithmic
perspective, this is the first use of RQRMI for LPM, and its robust-
ness is leveraged to input distributions, scalability with the number
of rules, and easy extension to larger bit-width. From the hardware
perspective, this is the first design of learned data structures in
hardware that replaces tries. Our comprehensive evaluation shows
scalability advantages of NeuroLPM over state-of-the-art alterna-
tives. We hope that this work will open a new avenue for using
learned data structures in hardware architectures.

13 ACKNOWLEDGEMENTS
We thank our anonymous shepherd and the reviewers of MICRO’23
for their helpful comments and feedback. We gratefully acknowl-
edge generous support from Intel and Israel Science Foundation
(Grant 1998/22).

REFERENCES
[1] 2022. RIPE NCC RIPE NETWORK AND COORDINATION CENTER.

https://www.ripe.net/analyse/internet-measurements/routing-information-
service-ris/ris-raw-data.

[2] A Linux Foundation Collaborative Project. 2021. Open vSwitch. https://www.
openvswitch.org/.

[3] Alfred V. Aho and Margaret J. Corasick. 1975. Efficient String Matching: An Aid
to Bibliographic Search. Commun. ACM 18, 6 (1975), 333–340.

[4] Mohammad J. Akhbarizadeh, Mehrdad Nourani, Deepak S. Vijayasarathi, and T.
Balsara. 2006. A nonredundant ternary CAM circuit for network search engines.
IEEE Trans. Very Large Scale Integr. Syst. 14, 3 (2006), 268–278.

[5] Albert Gran Alcoz, Martin Strohmeier, Vincent Lenders, and Laurent Vanbever.
2022. Aggregate-based congestion control for pulse-wave DDoS defense. In ACM
Special Interest Group on Data Communication (SIGCOMM).

[6] Michiel Appelman and Maikel de Boer. 2012. Performance analysis of OpenFlow
hardware. University of Amsterdam, Tech. Rep (2012), 2011–2012.

[7] Barefoot Networks. 2019. Algorithmic longest prefix matching in programmable
switch. https://patents.google.com/patent/US10511532B2/en.

[8] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin
Izzard, Fernando A. Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-
sis: fast programmable match-action processing in hardware for SDN. In ACM
Special Interest Group on Data Communication (SIGCOMM).

[9] Anat Bremler-Barr, David Hay, and Yaron Koral. 2014. CompactDFA: Scalable
Pattern Matching Using Longest Prefix Match Solutions. IEEE/ACM Trans. Netw.
(TON) 22, 2 (2014), 415–428.

[10] CAIDA. 2021. Center for Applied Internet Data Analysis based at the University
of California’s San Diego Supercomputer Center. https://www.caida.org/.

[11] Dibei Chen, Zhaoshi Li, TianzhuXiong, Zhiwei Liu, Jun Yang, Shouyi Yin, Shaojun
Wei, and Leibo Liu. 2020. CATCAM: Constant-time Alteration Ternary CAM
with Scalable In-Memory Architecture. In IEEE/ACM International Symposium on
Microarchitecture (MICRO).

[12] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Vargaftik,
Alon Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse Chuang, Isaac
Keslassy, Ariel Orda, and Tom Edsall. 2017. dRMT: Disaggregated Programmable
Switching. In ACM Special Interest Group on Data Communication (SIGCOMM).

[13] ClamAV. 2022. ClamAV - Open Source Antivirus Engine for detecting trojans,
viruses, malware and other malicious threats. https://www.clamav.net/.

[14] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2020. FromWiscKey to
Bourbon: A Learned Index for Log-StructuredMerge Trees. InUSENIX Symposium
on Operating Systems Design and Implementation (OSDI).

[15] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman
Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,
James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter,
Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi,
Srinivas Krishnan, Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vah-
dat. 2018. Andromeda: Performance, Isolation, and Velocity at Scale in Cloud

https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.openvswitch.org/
https://www.openvswitch.org/
https://patents.google.com/patent/US10511532B2/en
https://www.caida.org/
https://www.clamav.net/

NeuroLPM - Scaling Longest Prefix Match Hardware with Neural Networks MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada

Network Virtualization. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

[16] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Arefin, Anshuman
Gupta, Brian Fahs, Dima Rubinstein, Enrique Cauich Zermeno, Erik Rubow,
James Alexander Docauer, Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter,
Marc de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Riccardo Crepaldi,
Srinivas Krishnan, Subbaiah Venkata, Yossi Richter, Uday Naik, and Amin Vah-
dat. 2018. Andromeda: Performance, Isolation, and Velocity at Scale in Cloud
Network Virtualization. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI).

[17] Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink. 1997.
Small Forwarding Tables for Fast Routing Lookups. In ACM Special Interest Group
on Data Communication (SIGCOMM).

[18] Sarang Dharmapurikar, Praveen Krishnamurthy, and David E. Taylor. 2006.
Longest prefix matching using bloom filters. IEEE/ACM Trans. Netw. (TON)
14, 2 (2006), 397–409.

[19] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,
Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
David B. Lomet, and Tim Kraska. 2020. ALEX: An Updatable Adaptive Learned
Index. In ACM International Conference on Management of Data (SIGMOD).

[20] Will Eatherton, George Varghese, and Zubin Dittia. 2004. Tree bitmap: hard-
ware/software IP lookups with incremental updates. ACM SIGCOMM Computer
Communication Review (CCR) 34, 2 (2004), 97–122.

[21] Daniel Firestone. 2017. VFP: A Virtual Switch Platform for Host SDN in the Public
Cloud. In USENIX Symposium on Networked Systems Design and Implementation
(NSDI).

[22] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian M. Caulfield,
Eric S. Chung, Harish Kumar Chandrappa, Somesh Chaturmohta,Matt Humphrey,
Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham
Popuri, Shachar Raindel, Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivaku-
mar, Nisheeth Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert G. Greenberg. 2018. Azure
Accelerated Networking: SmartNICs in the Public Cloud. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI).

[23] Roy Friedman, Or Goaz, and Ori Rottenstreich. 2021. Clustreams: Data Plane
Clustering. In The ACM SIGCOMM Symposium on SDN Research (SOSR).

[24] Kaustubh Gadkari, M. Lawrence Weikum, Daniel Massey, and Christos Pa-
padopoulos. 2016. Pragmatic router FIB caching. Comput. Commun. 84 (2016),
52–62.

[25] Igor Gashinsky. 2011. Datacenter scalability panel. North American Network
Operators Group (NANOG) 52 (2011).

[26] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney,
and Kurt Keutzer. 2021. A Survey of Quantization Methods for Efficient Neural
Network Inference. CoRR abs/2103.13630 (2021).

[27] Garegin Grigoryan, Yaoqing Liu, and Minseok Kwon. 2020. PFCA: A Pro-
grammable FIB Caching Architecture. IEEE/ACM Trans. Netw. (TON) 28, 4 (2020),
1872–1884.

[28] Qing Guo, Xiaochen Guo, Yuxin Bai, and Engin Ipek. 2011. A resistive TCAM
accelerator for data-intensive computing. In IEEE/ACM International Symposium
on Microarchitecture (MICRO).

[29] Mingzhe Hao, Levent Toksoz, Nanqinqin Li, Edward Edberg Halim, Henry Hoff-
mann, and Haryadi S. Gunawi. 2020. LinnOS: Predictability on Unpredictable
Flash Storage with a Light Neural Network. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI).

[30] Keqiang He, Junaid Khalid, Aaron Gember-Jacobson, Sourav Das, Chaithan
Prakash, Aditya Akella, Li Erran Li, and Marina Thottan. 2015. Measuring control
plane latency in SDN-enabled switches. In The ACM SIGCOMM Symposium on
SDN Research (SOSR).

[31] Peng He, Wenyuan Zhang, Hongtao Guan, Kavé Salamatian, and Gaogang Xie.
2018. Partial Order Theory for Fast TCAM Updates. IEEE/ACM Trans. Netw.
(TON) 26, 1 (2018), 217–230.

[32] Thomas Holterbach, Stefano Vissicchio, Alberto Dainotti, and Laurent Vanbever.
2017. SWIFT: Predictive Fast Reroute. In ACM Special Interest Group on Data
Communication (SIGCOMM).

[33] Intel. 2021. Intel IPU’s. https://www.intel.com/content/www/us/en/products/
network-io/smartnic.html.

[34] Md Iftakharul Islam and Javed I. Khan. 2019. SAIL Based FIB Lookup in a
Programmable Pipeline Based Linux Router. In IEEE International Conference on
High Performance Switching and Routing (HPSR).

[35] Nanxi Kang, Monia Ghobadi, John Reumann, Alexander Shraer, and Jennifer Rex-
ford. 2015. Efficient traffic splitting on commodity switches. In ACM International
Conference on emerging Networking EXperiments and Technologies (CoNEXT).

[36] Georgios P. Katsikas, Tom Barbette, Marco Chiesa, Dejan Kostic, and Gerald
Q. Maguire Jr. 2021. What You Need to Know About (Smart) Network Interface
Cards. In Passive and Active Measurement (PAM).

[37] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass learned

index. In ACM International Conference on Management of Data (SIGMOD).
[38] Tim Kraska, Mohammad Alizadeh, Alex Beutel, Ed H Chi, Jialin Ding, Ani Kristo,

Guillaume Leclerc, Samuel Madden, Hongzi Mao, and Vikram Nathan. 2019.
SageDB: A learned database system. In Biennial Conference on Innovative Data
Systems Research (CIDR).

[39] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In ACM International Conference on
Management of Data (SIGMOD).

[40] Minseok Kwon, Krishna Prasad Neupane, John Marshall, and M. Mustafa Rafique.
2020. CuVPP: Filter-based Longest Prefix Matching in Software Data Planes. In
IEEE International Conference on Cluster Computing (CLUSTER).

[41] Butler W. Lampson, Venkatachary Srinivasan, and George Varghese. 1999. IP
lookups using multiway and multicolumn search. IEEE/ACM Trans. Netw. (TON)
7, 3 (1999), 324–334.

[42] Pengfei Li, Yu Hua, Pengfei Zuo, and Jingnan Jia. 2019. A Scalable Learned Index
Scheme in Storage Systems. CoRR abs/1905.06256 (2019).

[43] Alex X. Liu, Chad R. Meiners, and Eric Torng. 2016. Packet Classification Using
Binary Content Addressable Memory. IEEE/ACM Trans. Netw. (TON) 24, 3 (2016),
1295–1307.

[44] Rick McGeer and Praveen Yalagandula. 2009. Minimizing Rulesets for TCAM
Implementation. In IEEE International Conference on Computer Communications
(INFOCOM).

[45] Nick McKeown, Thomas E. Anderson, Hari Balakrishnan, Guru M. Parulkar,
Larry L. Peterson, Jennifer Rexford, Scott Shenker, and Jonathan S. Turner. 2008.
OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Computer
Communication Review (CCR) 38, 2 (2008), 69–74.

[46] Chad R.Meiners, Alex X. Liu, Eric Torng, and Jignesh Patel. 2011. Split: Optimizing
Space, Power, and Throughput for TCAM-Based Classification. In ACM/IEEE
Symposium on Architectures for Networking and Communication Systems (ANCS).

[47] Chad R. Meiners, Jignesh Patel, Eric Norige, Eric Torng, and Alex X. Liu. 2010.
Fast Regular Expression Matching Using Small TCAMs for Network Intrusion
Detection and Prevention Systems. In USENIX Security Symposium.

[48] Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang,
Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat.
2009. PortLand: a scalable fault-tolerant layer 2 data center network fabric. In
ACM Special Interest Group on Data Communication (SIGCOMM).

[49] Thomas Narten, Manish Karir, and Ian Foo. 2013. Address Resolution Problems
in Large Data Center Networks. RFC 6820 (2013), 1–17.

[50] NVIDIA. 2020. NVIDIA Mellanox BlueField SmartNIC for Ethernet. https:
//network.nvidia.com/files/doc-2020/pb-bluefield-smart-nic.pdf.

[51] NVIDIA. 2021. NVIDIA BLUEFIELD-2 DPU. https://www.nvidia.com/content/
dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-
dpu.pdf.

[52] University of Oregon. 2022. University of Oregon Route Views Project. https:
//www.routeviews.org/routeviews/.

[53] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon,
and Martín Casado. 2015. The Design and Implementation of Open vSwitch. In
USENIX Symposium on Networked Systems Design and Implementation (NSDI).

[54] Danny Pinto. 2021. What will happen when the routing table hits
1024k? https://blog.apnic.net/2021/03/03/what-will-happen-when-the-routing-
table-hits-1024k/.

[55] Boris Pismenny, Liran Liss, Adam Morrison, and Dan Tsafrir. 2022. The benefits
of general-purpose on-NIC memory. In ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS).

[56] Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. 2020. A Computa-
tional Approach to Packet Classification. In ACM Special Interest Group on Data
Communication (SIGCOMM).

[57] Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. 2022. A Computational
Approach to Packet Classification. IEEE/ACM Trans. Netw. (TON) 30, 3 (2022),
1073–1087.

[58] Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. 2022. Scaling Open
vSwitch with a Computational Cache. In USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI).

[59] Pedro Reviriego, Gil Levy, Matty Kadosh, and Salvatore Pontarelli. 2022. Algo-
rithmic TCAMs: Implementing Packet Classification Algorithms in Hardware.
IEEE Commun. Mag. 60, 9 (2022), 60–66.

[60] Ori Rottenstreich, Marat Radan, Yuval Cassuto, Isaac Keslassy, Carmi Arad, Tal
Mizrahi, Yoram Revah, and Avinatan Hassidim. 2014. Compressing Forwarding
Tables for Datacenter Scalability. IEEE Journal on Selected Areas in Communica-
tions (JSAC) 32, 1 (2014), 138–151.

[61] Yaniv Sadeh, Ori Rottenstreich, and Haim Kaplan. 2022. Minimal Total Devi-
ation in TCAM Load Balancing. In IEEE International Conference on Computer
Communications (INFOCOM).

[62] Giuseppe Siracusano, Salvator Galea, Davide Sanvito, Mohammad Malekzadeh,
Hamed Haddadi, Gianni Antichi, and Roberto Bifulco. 2020. Running Neural
Networks on the NIC. arXiv:2009.02353 (2020).

https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://www.intel.com/content/www/us/en/products/network-io/smartnic.html
https://network.nvidia.com/files/doc-2020/pb-bluefield-smart-nic.pdf
https://network.nvidia.com/files/doc-2020/pb-bluefield-smart-nic.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/documents/datasheet-nvidia-bluefield-2-dpu.pdf
https://www.routeviews.org/routeviews/
https://www.routeviews.org/routeviews/
https://blog.apnic.net/2021/03/03/what-will-happen-when-the-routing-table-hits-1024k/
https://blog.apnic.net/2021/03/03/what-will-happen-when-the-routing-table-hits-1024k/

MICRO ’23, October 28-November 1, 2023, Toronto, ON, Canada Alon Rashelbach, Igor de Paula, and Mark Silberstein

[63] Snort. 2022. Snort Open Source Intrusion Prevention System. https://www.snort.
org/.

[64] Venkatachary Srinivasan, Subhash Suri, and George Varghese. 1999. Packet
Classification Using Tuple Space Search. In ACM Special Interest Group on Data
Communication (SIGCOMM).

[65] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur, and Kunle
Olukotun. 2022. Taurus: a data plane architecture for per-packet ML. In ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS).

[66] Tushar Swamy, Annus Zulfiqar, Luigi Nardi, Muhammad Shahbaz, and Kunle
Olukotun. 2023. Homunculus: Auto-Generating Efficient Data-PlaneML Pipelines
for Datacenter Networks. In ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS).

[67] Synopsis. 2022. DesignWare Ternary Content-Addressable Memory Compilers.
https://www.synopsys.com/dw/ipdir.php?ds=dwc_tcam_memory_compilers.

[68] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang, Minjie
Wang, and Haibo Chen. 2020. XIndex: a scalable learned index for multicore
data storage. In ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP).

[69] Marcel Waldvogel. 2000. Fast longest prefix matching: algorithms, analysis, and
applications. Ph.D. dissertation, ETH Zürich (2000).

[70] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash
Gopalakrishnan. 2018. Training Deep Neural Networks with 8-bit Floating
Point Numbers. In Annual Conference on Neural Information Processing Systems
(NeurIPS).

[71] Priyank Ramesh Warkhede, Subhash Suri, and George Varghese. 2004. Multiway
range trees: scalable IP lookup with fast updates. Comput. Networks 44, 3 (2004),
289–303.

[72] Xingda Wei, Rong Chen, and Haibo Chen. 2020. Fast RDMA-based Ordered Key-
Value Store using Remote Learned Cache. In USENIX Symposium on Operating
Systems Design and Implementation (OSDI).

[73] Weisstein, Eric W. 2022. Dyck Path. From MathWorld–A Wolfram Web Resource.
https://mathworld.wolfram.com/DyckPath.html.

[74] Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius.
2020. Integer Quantization for Deep Learning Inference: Principles and Empirical
Evaluation. CoRR abs/2004.09602 (2020).

[75] Xilinix. [n. d.]. Xilinix Ultrascale+ datasheet. https://www.xilinx.com/products/
silicon-devices/fpga/kintex-ultrascale.html.

[76] Zhaoqi Xiong and Noa Zilberman. 2019. Do Switches Dream of Machine Learn-
ing?: Toward In-Network Classification. In ACM Workshop on Hot Topics in
Networks (HotNets).

[77] Minxian Xu, Wenhong Tian, and Rajkumar Buyya. 2017. A survey on load
balancing algorithms for virtual machines placement in cloud computing. Concurr.
Comput. Pract. Exp. 29, 12 (2017).

[78] Tong Yang, Gaogang Xie, Alex X. Liu, Qiaobin Fu, Yanbiao Li, Xiaoming Li, and
Laurent Mathy. 2018. Constant IP Lookup With FIB Explosion. IEEE/ACM Trans.
Netw. (TON) 26, 4 (2018), 1821–1836.

[79] Marko Zec and Miljenko Mikuc. 2017. Pushing the envelope: Beyond two bil-
lion IP routing lookups per second on commodity CPUs. In IEEE International
Conference on Software, Telecommunications and Computer Networks (SoftCOM).

[80] Hongyi Zeng, Peyman Kazemian, George Varghese, and Nick McKeown. 2014.
Automatic Test Packet Generation. IEEE/ACM Trans. Netw. (TON) 22, 2 (2014),
554–566.

[81] Kai Zheng, Chengchen Hu, Hongbin Lu, and Bin Liu. 2006. A TCAM-based
distributed parallel IP lookup scheme and performance analysis. IEEE/ACM
Trans. Netw. (TON) 14, 4 (2006), 863–875.

https://www.snort.org/
https://www.snort.org/
https://www.synopsys.com/dw/ipdir.php?ds=dwc_tcam_memory_compilers
https://mathworld.wolfram.com/DyckPath.html
https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale.html
https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale.html

	Abstract
	1 Introduction
	2 Background
	2.1 Longest Prefix Matching
	2.2 RQRMI algorithm

	3 The Multi-Purpose LPM Engine
	3.1 LPM applications
	3.2 Multi-purpose LPM requirements
	3.3 State-of-the-art hardware LPM engines
	3.4 Support for updates

	4 NeuroLPM
	5 Algorithmic Challenges
	5.1 Converting LPM rules into ranges
	5.2 Reducing floating-point operations

	6 SRAM-only Design
	6.1 RQRMI inference design
	6.2 Secondary search
	6.3 SRAM-only pipeline
	6.4 Scaling the bit-width
	6.5 LPM rule updates

	7 Scaling to External Memory
	7.1 Avoiding secondary search in DRAM

	8 Discussion
	9 Implementation
	10 Evaluation
	10.1 Methodology
	10.2 DRAM access rate per query
	10.3 Hardware performance
	10.4 Resource consumption
	10.5 Analysis

	11 Related work
	12 Conclusion
	13 Acknowledgements
	References

