
Multitenant In-Network Acceleration with SwitchVM

Sajy Khashab
Technion

Alon Rashelbach
Technion

Mark Silberstein
Technion

Abstract
We propose a practical approach to implementing multite-

nancy on programmable network switches to make in-network
acceleration accessible to cloud users. We introduce a Switch
Virtual Machine (SwitchVM), that is deployed on the switches
and offers an expressive instruction set and program state ab-
stractions. Tenant programs, called Data-Plane Filters (DPFs),
are executed on top of SwitchVM in a sandbox with memory,
network and state isolation policies controlled by network
operators. The packets that trigger DPF execution include the
code to execute or a reference to the DPFs deployed in the
switch. DPFs are Turing-complete, may maintain state in the
packet and in switch virtual memory, may form a dynamic
chain, and may steer packets to desired destinations, all while
enforcing the operator’s policies.

We demonstrate that this idea is practical by prototyping
SwitchVM in P4 on Intel Tofino switches. We describe a
variety of use cases that SwitchVM supports, and implement
three complex applications from prior works – key-value store
cache, load balancer and Paxos accelerator. We also show
that SwitchVM provides strong performance isolation, zero-
overhead runtime programmability, may hold two orders of
magnitude more in-switch programs than existing techniques,
and may support thousands of concurrent tenants each with
its private state.

1 Introduction

Data-plane programmable PISA switches1 transformed the
field of in-network computing from dream into reality. By
enabling stateful custom packet processing at a switch line-
rate, they offer dramatic performance boost in infrastructure
services such as telemetry [26, 33, 35] and congestion con-
trol [18, 34], and accelerate networking applications such as
load balancers [24, 37, 59], distributed protocols [10, 11, 31],
concurrency control [30, 54], aggregation [42, 43], storage
[22, 23, 32], and more [25].

Unfortunately, the benefits of in-network application ac-
celeration have only been accessible to data center opera-
tors. The vision of in-network programs being deployed in
switches by tenants [28,50] has so far remained quite far from
materialization. The main obstacle is well-known: existing
switches, such as Intel Tofino [19], lack the essential support

1We only discuss programmable switches, so we omit programmable in
the rest for brevity.

for multitenancy as they do not guarantee fault, resource, and
performance isolation of individual programs. Furthermore,
they cannot enforce the program compliance with operator
security policies, and require expensive reconfiguration each
time a new program is installed, causing traffic disruption for
all tenants. These limitations are further aggravated by the
severe scarcity of on-switch hardware resources partitioned
among co-resident data-plane applications.

Motivated by the need for in-network acceleration of ten-
ants’ applications, recent proposals tackle the challenge of
switch virtualization. These solutions, however, still have
some practical limitations. Novel switch hardware [15, 28, 44,
46,49] offers isolation, but the perspectives of its adoption are
unclear. Others propose to run P4-based hypervisors [17, 56]
to guard the execution of application code, but high resource
demands limit their application to FPGAs and software targets
rather than ASIC switches such as Tofino. Another approach is
to merge multiple P4 programs into a single one while enforc-
ing isolation among them in software [41, 50, 58]. However,
neither does this approach guarantee fault isolation nor does
it scale beyond a handful of co-resident programs because the
switch resources must be provisioned at compile-time for the
aggregate of their hardware demands. Further, deploying a
new program requires recompilation and reconfiguration that
disrupts the traffic through the switch. Runtime programmabil-
ity for partial reconfiguration alleviates the traffic disruption
problem [53] but still requires an isolation-aware source code
merging mechanism to allow multitenancy.

In summary, multitenancy poses two fundamental chal-
lenges: (1) how to execute code on physical network switches
while constraining it to a stringent security sandbox guarded
by network operators; (2) how to enable a concurrent deploy-
ment, execution and update of thousands of switch programs
while assuring strong isolation among tenants.

We advocate for a Language-Level Virtualization approach
to overcome these challenges. The switch runs a Switch Vir-
tual Machine, SwitchVM, which executes Data-Plane Fil-
ters, (DPFs), written using a specialized, Turing-complete
Instruction Set. SwitchVM dynamically loads a DPF spec-
ified by the tenant on a per-packet basis, either from pre-
deployed in-switch libraries or from code located in the pack-
ets themselves. SwitchVM allows every packet to be pro-
cessed by a different DPF, allocating switch hardware re-
sources on demand per DPF while reusing the VM runtime.
Thus, SwitchVM introduces a runtime interpreter for DPF



code that translates it into switch operations using a shared
dataplane runtime. This approach enables time-sharing of
switch hardware across multiple DPFs, as opposed to static
resource partitioning in alternative solutions, and is key to
achieving superior multi-tenant scalability.

SwitchVM is inspired by software sandboxing techniques
such as Berkeley Packet Filters (BPFs) [36]. DPFs are Turing-
complete, yet they are less flexible than P4. Notably, DPFs
cannot parse new protocol headers or define match-action
tables with arbitrary keys and actions. Nevertheless, DPFs
are powerful enough to implement a variety of sophisticated
in-network applications. A DPF may perform arithmetic oper-
ations or hashes on packet header fields, update the in-switch
program state, and modify the packet forwarding depending
on the execution output, e.g., by choosing from a pre-defined
set of possible destinations or by performing a multicast. We
discuss many applications (§4), and fully implement a Key-
Value cache [23], count-min sketch [9], Paxos accelerator [10],
and several load balancers [40, 59]. Furthermore, SwitchVM
architecture is modular and can be easily extended to imple-
ment additional functionality, e.g., as new instructions.

DPFs of the same tenant may share a state in a switch. At
the same time, SwitchVM ensures strict resource isolation
between DPFs across tenants. A DPF uses virtual registers
with load/store instructions to access the state in the packet,
in-switch meta-data, or access virtual per-tenant space in the
switch memory. In RMT switches, DPFs invoked by different
packets will only observe consistent updates to the shared
state thanks to the per-packet atomicity guarantees of the
pipelined architecture. Proper placement of DPFs in multi-
pipeline switches is crucial for achieving this consistency
(§3.1). Furthermore, cross-tenant performance isolation is
achieved thanks to the RMT line-rate throughput guarantees.

Crucially, SwitchVM restricts DPFs to a sandbox, giving
fine-grain control over the data-plane functionality to opera-
tors on a per-tenant basis. SwitchVM enforces the sandbox
policy at runtime because DPFs originate from untrusted ten-
ants. Deployment of DPFs is performed via a control plane.
Runtime reconfiguration by a tenant, i.e., code deployment
and resource allocation, has no impact on the traffic of other
tenants, as it is equivalent to adding/removing entries of
match-action tables. Operators may deploy a per-tenant se-
curity policy, such as disallowing access to switch state, use
of packet steering, or disabling DPF execution. The switches
that are not authorized or unable to execute DPFs forward
the packets as usual as they are compatible with network
encapsulation protocols.

DPFs may reside in packets, similar to capsule-based active
networks [13, 21, 45, 47, 48], and also pre-stored in a switch
and invoked on-demand. In-switch deployment option is im-
portant because it eliminates the non-negligible bandwidth
overheads of the DPF code header in a packet, and enables
code sharing among tenants thus saving in-switch resources,
yet without compromising inter-tenant state isolation.

Under the hood, SwitchVM implements a pipeline of
generic Execution Units (EUs) that enable Multiple Instruc-
tion Multiple Data instruction execution, with several virtual
registers and an extensive instruction set. Each DPF is spa-
tially mapped onto the EUs. DPF chaining is supported by
allowing a DPF to choose and invoke another DPF in the same
or different switch to implement more complex logic.

We prototype SwitchVM on Intel Tofino-1. Implement-
ing such a complex mechanism in P4 under tight hardware
constraints is a formidable challenge. The key goal has been
to fit as much logic as possible in a single hardware stage
to increase the maximum instruction count of a single DPF.
Higher instruction count allows DPF execution in a single pass
through the switch, thereby eliminating bandwidth overheads
associated with recirculation, and guaranteeing atomicity of
accesses to a shared switch state, as well as strict performance
isolation among DPFs.

We evaluate SwitchVM on a range of microbenchmarks
and real-world applications of in-network acceleration which
were originally developed in P4 in prior works. We demon-
strate that performance overheads of SwitchVM compared
to the P4 analogous code are negligible or none, whereas it
allows concurrent execution of thousands of DPFs from dif-
ferent tenants, each with its own private state. We also show
zero-overhead reconfiguration without packet loss, and strong
performance isolation among different DPFs.

2 Motivation

The demand for in-network data-plane acceleration of net-
work applications is steadily growing, and there is an abun-
dance of proposals to use data-plane programmable switches
for that purpose [10, 22, 23, 25, 40, 59]. Such switches have
become a commodity, with offerings from multiple vendors,
most notably Intel [19], Broadcomm [5], Juniper [38], and
NVIDIA [39].

In practice, this acceleration has been accessible only to
the data center’s operators, not its tenants. Predeploying in-
network applications as services by the data center is possi-
ble, but these applications might require fine-tuning for the
needs of the specific tenant, i.e., custom-specific policies for
the RPC scheduler [27], or non-standard key-value sizes and
cache admission policies for KVS [23]. Such fine-tuning is
impractical on a per-tenant basis.

Building general in-switch acceleration services that can
suit multiple use cases of different tenants is notoriously dif-
ficult due to the switch’s hardware constraints. Satisfying
these constraints is fundamental to achieving high perfor-
mance on any architecture, as both Reconfigurable Match
Table switches (RMT), e.g., Intel Tofino, and disaggregated
RMT (dRMT) switches, e.g., NVIDIA Spectrum, cannot guar-
antee line-rate throughput if attempted to execute a program
that does not fit their hardware constraints.



Multitenancy in the switch would enable tenants to acceler-
ate their own virtual networking infrastructure with custom
network stacks and functions. Similarly, tenants might need
to deploy custom in-network telemetry to debug their network
performance. These services are difficult to offer as a gen-
eral service since the internals of tenant virtual networks are
usually not visible to the data center operators.

In summary, switch multitenancy is not supported today, but
could have significantly extended the range of applications
accelerated on switches in data centers and clouds.

2.1 Challenges

Present ASIC-based programmable switches lack the neces-
sary mechanisms for multitenancy. Their programs expect to
run assuming unmediated access to all hardware resources,
and existing platforms do not provide any kind of privilege
separation necessary to isolate tenant applications from the
infrastructure packet processing logic. Any bug in a program
may disrupt the stability of all the network traffic. Therefore,
network operators might be reluctant to use the solutions that
merge P4 programs of multiple clients into a single one to be
executed on the switch [7, 41, 50, 58].

Another challenge stems from the need to support thou-
sands of tenants with their own in-switch programs. Existing
compile-based solutions that merge multiple P4 programs, or
allow runtime reconfigurability in hardware [15,49,53], allow
co-residency of about a dozen of programs, which is a few
orders of magnitude less than needed.

Last, allowing a program to be dynamically updated with-
out disrupting the rest of the network traffic is difficult. Recent
works have introduced runtime reconfigurability by extending
the dRMT [53] and RMT [49] architectures. The dRMT ex-
tensions are indeed feasible on existing CPU-based switches,
but the RMT modifications are more invasive as they require
hardware changes. Our goal is to achieve runtime reconfig-
urability without architectural changes.

2.2 Packet Filters for Switches

The primary tenet of multi-tenancy is per-tenant isolation of
state, faults, and performance. Language Virtual Machines
(LVM), such as the Java Virtual Machine, can achieve the
first two. Such virtual machines enable full sandboxing of the
untrusted tenant code, with fine-grain control over the acces-
sible hardware resources. Furthermore, it may help solve the
current scalability issue by enabling switch compute resource
sharing among the programs, by loading and unloading the
relevant bytecode at runtime, without provisioning the actual
hardware resources at compile time for all co-resident pro-
grams as has been done till now. Last, if such an LVM could
run at line-rate on an RMT switch, then it would be possible
to provide perfect performance isolation among the tenants.

Implementing a general-purpose high-performance VM
in RMT systems is clearly unrealistic. Fortunately, however,
many data-plane programs do not require such a VM, and
involve relatively simple, more restricted logic. This obser-
vation is not new, as it served the designers of the popular
Packet Filters [36] (BPF) virtual machine to allow the execu-
tion of untrusted code in the OS kernel. Drawing inspiration
from BPFs, we seek to build an LVM to be executed on a
switch, while potentially restricting the scope of programs
that it can run efficiently and deviating from the standard P4
programming model.

Last, by implementing our design in P4, we intend it to
be modular and flexible, serving as the framework for im-
plementing a broader set of in-switch functions tailored to a
particular network environment.

2.3 Target Switch Architectures
Switch architectures with data-plane programmability range
from ASIC pipelines (i.e., Intel Tofino, RMT) and FPGAs to
manycore CPU processors (i.e., NVIDIA Spectrum-3, dRMT),
as well as a variety of hybrid designs. Among these, Tofino
switches have been prominent in in-network computing re-
search for the past few years. This success can be attributed to
the ability to execute stateful packet processing logic, defined
using the P4 language, while maintaining line-rate perfor-
mance on a multi-Tbps switch. These capabilities lead us
to focus on the Tofino RMT architecture as the target for
SwitchVM design.

We believe, however, that the concept of running in-
network programs in a Language Virtual Machine sandbox to
offer scalable multi-tenancy in resource-constrained switches
is not limited to RMT architecture. Yet, using other archi-
tectures may involve different design considerations. For in-
stance, CPU-based switches may benefit from Just-in-Time
compilation to reduce virtualization overhead. We leave the
exploration of other architectures for future research.

3 Design

SwitchVM enables secure and isolated per-tenant execution
of short programs, called Data Plane Filters (DPFs). DPFs are
invoked for each packet arriving at the switch. The packets
include the input and the reference/code of the DPF to invoke.
DPFs are executed inside a sandboxed environment controlled
by the operator. We first discuss the DPF programming model,
and then explain the SwitchVM design.

3.1 Programming Model
A DPF comprises three sections. A prolog specifies the loca-
tion of the input parameters and initializes the DPF execution
registers. A body specifies the actual data-plane logic using
the SwitchVM instruction set. An epilog determines what to



Instructions Description Instructions Description
Data Movement ALU Operations

MOV R1=R2 ADD SUB A = A op B
LOAD_IMM B=imm AND OR XOR
LOAD_CONST B=const_tbl[imm] LSH RSH NEG A = op(A)
HASH A=hash(A) MIN MAX A = op(A, B)

Memory Operations Control Flow
LOAD B = mem[A] HALT Goto END
STORE mem[A] = B JMP Goto pc

FAADD FAOR
FAAND FAMAX

t=Mem[A]
Mem[A]=op(t, B)
B=t

BEQ BSET BLT
BGT BLTS
BGTS

Goto A==B ?
pc_taken :
pc_not_taken

Prolog Epilog
POP R=stack.pop() PUSH stack.push(R)
PEEK R=stack.peek() FWD fwd according to R
LOAD_MD R=MD[md_idx] NEXT_PC pkt.next_pc = R
RAND R=rng.get() HDR_MOD drop DPF from pkt

Table 1: SwitchVM Instruction Set with representative in-
structions of each type. A/B are the register types, R can be
either, other values are immediates.

do with the packet after the DPF completes, e.g., send it to a
new destination based on the DPF output. It may also store
the DPF outputs in the packet.
In-packet state. The data inside the packet is handled as a
stack, similar to Tiny Packet Programs [21]. It can be read
in the prolog and written in the epilog. This is convenient:
when a packet traverses multiple switches, each pops the
inputs and pushes the output back to the stack, simplifying the
implementation of multi-switch applications. A variable-size
stack allows each application to allocate precisely the required
packet space, potentially growing or shrinking a packet during
processing, using a single unified SwitchVM parser.
Body. The code is organized into a sequence of Execution
Stages (ES), each comprising several instructions arranged in
lanes. The instructions in an ES are executed in parallel, effec-
tively implementing a Multiple-Instructions-Multiple-Data
(MIMD) program. Intra-lane parallelism is also available:
each lane may concurrently execute instructions of different
types. There are three types of instructions: ALU operations,
in-switch memory access and control flow branches.

Instructions use virtual registers shared across the execu-
tion stages. Thus, DPF computation can be seen as the process-
ing of information in the registers while it is flowing through
the pipeline of DPF ESes. There are two sets of registers,
A and B, and certain restrictions apply to their usage, e.g.,
only A registers may be used as addresses for memory access
instructions. Memory is virtualized to provide inter-tenant
isolation.

DPFs inherit the constraints of the RMT pipeline. Therefore,
a memory buffer is accessible only to a specific ES and lane,
since a packet may access each memory location only once.
Instruction set. The SwitchVM instruction set is summarized
in Table 1. Some instructions have restrictions. First, they
might support specific register types (either A, B, or both).
Second, some instructions are limited to the prolog/epilog
DPF sections only: register initialization is restricted to the
prolog, while packet steering, program-counter modification,

and stack enlargement must be performed at the epilog. Other
instructions are not limited to specific DPF sections.
Turing completeness. Turing completeness of a computa-
tional system implies that it is universal, i.e., it can perform
arbitrary computations. A system is Turing-complete if it can
access arbitrary memory locations and read/write any amount
of data, and perform conditional jumps [16]. SwitchVM in-
struction set satisfies these requirements.
DPF size. The number of instructions in a DPF is constrained
by the availability of hardware resources. If the application
code does not fit in a single DPF, dynamic chaining can be
used whereby one DPF may choose to invoke any other DPF,
enabling them to be automatically invoked one after the other.
The sequence of DPFs may run either on the same switch (via
recirculation) or on another one. We note that recirculation
might affect the performance isolation, so we strive to enable
the execution of complex DPFs in a single switch pass. For
non-RMT switches, DPFs can be sized for line-rate processing
to achieve performance isolation in the common case.
Atomicity execution semantics. DPFs naturally inherit the
per-packet atomicity execution semantics offered by the RMT
architecture. Specifically, the intermediate state updates done
by a packet are not visible to other packets that invoke the
same DPF on the same switch pipeline. Moreover, the state
shared among multiple DPFs of the same tenant is also up-
dated atomically, significantly simplifying the program de-
velopment. Multi-pipe switches, such as Tofino, comprise
multiple packet processing pipelines, each designated to serve
a subset of ports. Switch allocation to run DPFs in a data cen-
ter (§3.8) must consider the switch configuration to guarantee
atomicity for a particular DPF.
Example: in-switch counter. Assume that several clients
mark their outgoing packets with a unique application ID
∈ {1, . . . ,N}, and wish to count the total number of packets
per ID. One possible implementation of this logic in a DPF is
as follows. The DPF maintains one counter per ID allocated
to lane 0 of EU 0. The ID is used as a memory address of
the counter. The prolog POP-s the ID from the stack head in
the packet into register A[0]. Then, EU 0 loads constant 1
(LOAD_IMM) into register B[0], and invokes a fetch-and-add
(FAADD) operation in that lane to update the counter. The
epilog then can PUSH back the ID back onto the stack along
with the counter value. DPF placement and memory allocation
for the counters are executed by the control plane in the setup
stage, as explained in §3.8.

3.2 SwitchVM Design

Figure 1 shows the high-level design of the SwitchVM pro-
cessing pipeline. It comprises several fixed function modules:
Filtering and Permissions, Prolog, and Epilog, as well as a
variable number of Execution Units, (EUs). Each EU has L
lanes which is analogous to an execution unit of a Very Large
Instruction Word (VLIW) processor. Each Execution Stage



Filtering
and

Permissions
Prolog

EU 1 EU K...
CodeCode ...

...
Epilog

Forward
pkt

pkt
pass
drop
...
mirror

Data

DPF

Body
In-Switch Memory

Figure 1: SwitchVM data-plane processing pipeline.

of a DPF is mapped onto its own EU. The instruction schedul-
ing is static, i.e., a DPF specifies which instructions must be
scheduled on which EU and each lane. The maximum number
of EUs determines the maximum number of instructions in
the DPF, and depends on the number of available hardware
stages in the switch. The maximum number of lanes is deter-
mined by the number of match-action tables that can applied
in parallel at a single hardware stage. For example, we can
place 4 and 8 EUs in Tofino-1 and Tofino-2 respectively.
Packet processing flow. The packet is first passed to the
Permissions module which determines whether a tenant may
invoke a DPF. The Prolog then prepares the inputs of the
first EU. The EUs then execute the DPF body. Finally, the
Epilog prepares the output packet, and the Steering executes
the forwarding logic.

3.3 Filtering and Permissions
The permission module is not visible to an executing DPF. It
is managed by a privileged operator.

When a packet first enters the pipeline, its trusted
tenant_id is matched against the permissions table. This ta-
ble is programmed by the operator for each tenant that wishes
to run a DPF. The table contains the action to perform on a
packet that attempts to invoke a DPF without authorization
(i.e., drop or pass), and also may specify the default DPF to
invoke on any packet from that tenant. The table also stores
a bit vector that controls tenant’s access to certain functions
such as access to the switch metadata.

In addition, a user may want to invoke only a subset of DPFs
on a subset of switches. She specifies a special app_id token
when asking for the DPF authorization. This token is stored in
the Permission table as well. It must match the app_id token
in the packet to execute a DPF. We use this functionality in
our KVS cache application (See §4).

3.4 Program Loading and Initialization
The prolog module is responsible for initializing the virtual
registers (2L, where L denotes the number of lanes) used
as inputs for the first EU. The initial values can come from
three sources: the in-packet stack (POP,PEEK), switch meta-
data (LOAD_MD), or from a random number generator (RAND).
These instructions are the only ones available in Prolog.

Initializing registers from the packet stack cannot lead to
underflow since the data stack size is known. The switch

metadata may include ingress/egress ports, timestamps, or
a switch identifier. Execution of LOAD_MD can be restricted
to specific tenants to keep the network topology hidden for
the rest. Access to predefined protocol fields, e.g., TCP/IP
headers of inner packet, could also be supported in the same
manner, assuming it aligns with the operator’s sandboxing
policy.

The code for each segment (prolog, execution units, or epi-
log) may reside in a packet, or in the SwitchVM code memory
in the switch. A pointer to the prolog is taken from the packet
header, or is passed from the Permission module, effectively
enforcing invocation of a default DPF for the current tenant
on all the packets even without the SwitchVM header. The
prolog transfers the execution to the first EU, by specifying
the pointer to the first EU’s instruction.

3.5 Epilog and Steering
The epilog pushes the results of the computations into the
in-packet stack (up to 2L entries). It works similarly to Prolog.
Specifically, the only operation that can be executed is PUSH,
using any register as its input.

The epilog code additionally defines how to steer the
packet. This is determined by a dedicated immediate
value in the epilog, or from any of the 2L registers. This
value is then used to fetch a matching entry from a for-
warding table defined for the specific tenant_id. We
currently support the following actions (but more can
be added): pass, drop, return-to-sender, forward,
multicast, set_port, recirculate.

The default action is pass. The set_port and
recirculate actions are reserved only for privileged ten-
ants. Since the network uses encapsulation, some of these
actions can also affect the headers of the encapsulated packet.
Updates to the steering table require the use of privileged
control-plane requests to allow secure handling of virtual net-
work address translations without disclosing the physical IPs
to the tenant as we explain below.

A DPF may drop the code header after execution, saving
bandwidth if there is no need to keep it.

3.6 Execution Unit
The architecture of a single EU is shown in Figure 2. An EU
comprises L lanes. For each lane, each EU holds several fixed-
function modules: Selectors that determine how to move data
among registers, an ALU (one per lane), an in-switch memory
access (one per lane), and a branching unit (one per EU) that
determines the instruction pointer for the next EU. These
modules are divided between two switch pipeline stages, and
all modules in the same stage are executed in parallel.
Registers. An EU operates on 2L 32-bit registers, two for each
lane. These are divided into 2 groups: A[1..L] and B[1..L]. Due
to resource constraints, the registers from different groups



B[1]
...
B[L]

A[1]
...
A[L]

B[1]
...
B[L]

A[1]
...

B[L]

A[L]

CompareCurrent
Code

Next
Code

A[1]
...
A[L]

B[1]
...

Selection

Control
MEM

Address
Translation

Memory
Access

addr

ALU
oprnd2

oprnd1
Selection

data

Figure 2: Execution Unit (EU) architecture.

have minor usage restrictions. Specifically, only A registers
are allowed to compute a hash of their previous value, and
only B registers may store an immediate or a constant. These
constraints are insignificant in practice but allow reducing
required switch resources per EU, specifically the action in-
struction memory and hashing logic, as shown in §5.1.

The Selector module allows transferring data among ar-
bitrary registers via MOV instruction. This is crucial because
ALUs are constrained to execute operations only on the regis-
ters belonging to the same lane, as explained next.
ALU. Each ALU only performs 32-bit operations on regis-
ters from its lane, i.e., ALU i operates on A[i] and B[i]. The
supported set of operations can be easily extended (§3.7).

3.6.1 Memory Access

A DPF invokes LOAD, STORE and a few atomic operations to
access in-switch memory buffers. These buffers are separately
allocated for each EU, and each lane in the EU, without the
ability to share them among EU instructions. As mentioned
earlier, this limitation is due to Tofino RMT implementation
(see §3.1).

DPFs may only access virtual memory to isolate memory be-
tween tenants. The memory is allocated by the control-plane
API. Memory accesses involve virtual-to-physical address
translation as we explain next. Once translated, the respective
memory instruction is executed. The address operand in lane
i is provided in A[i], and B[i] is used for the stored or loaded
data.
Virtual address translation. SwitchVM supports two types
of translation mechanisms. A segment-based memory transla-
tion allows allocating power-of-two-sized contiguous buffers.
The allocation request specifies the requested virtual address
and the buffer size. The control plane then allocates a con-
tiguous range in physical memory, and uses TCAM to store
the virtual address range as a key, and the numerical offset
between the virtual and physical addresses as a value. The
virtual address needs to be aligned to the segment’s size.

When attempting to translate any address in this buffer, that
address will match the allocated range and TCAM will re-
trieve the offset, allowing one to compute the physical address
by adding that offset to the virtual address. For example, given
the virtual address 0x4 and the request to allocate 4 bytes,

the control plane may allocate a physical buffer of that size
at physical 0x2. The TCAM will store the range 0x4-0x7
as the key (using the mask 0xC), and the offset -2 as the
value. When accessing virtual 0x6, the respective physical
is computed as 0x6-2. Note that if a virtual address is not
mapped, it will not be found in the translation table, so no
buffer overflows are possible.

However, for the cases where we need to store sparse data
structures such as hash tables, the segmented allocation is
wasteful. Using many small segments depletes the TCAM
storage (about 1500 ranges per lane), whereas large ranges
waste too much memory due to internal fragmentation.

In applications where the data to store is known in advance,
one can create one-to-one virtual addresses mappings we
call direct. These mappings are stored in a table with up-to
45K entries per lane. One notable example of using direct
mappings is a KVS cache (see §4).
Memory Isolation. The entries in the translation tables are all
amended with tenant_id as another key. Thus, each tenant
may access only its own translation table.

3.6.2 Control Flow

Branching is essential to support realistic DPFs. Each EU
contains a single Control Flow Unit (CFU) that implements
different types of branches. Thus, DPFs specify the addresses
of the instructions in code memory, or from the packet.

Each stage in a DPF, including prolog, EUs and epilog, may
alter the control flow and choose the instructions invoked in
the next stage. The CFU may use any register to compute
the predicate and determine whether a branch is taken or not.
The code specifies the instruction pointers for both taken and
not-taken branches. SwitchVM supports multiple types of
conditional and unconditional branches.
Code memory. To allow code sharing among DPFs, code
memory is not virtualized and provides no memory protection.
The security is not compromised, because the DPF memory
isolation, permissions, and steering are enforced at runtime.
Thus, even though a DPF code is shared, each DPF instance
operates on a separate, per-tenant state.

The code addresses used in each stage point to code in the
following stage. For example, the addresses in the Prolog are
interpreted as addresses for the first EU, addresses in first EU
point to instructions in the second EU, and so on.

The use of instruction pointers per stage is useful for other
purposes too. First, it allows reusing code in switch mem-
ory by storing an init_pc that points to the prolog code
that needs to be executed. This pointer is stored either in the
packet (to invoke a specific DPF), or in the Permission table
of a switch to serve as a default DPF. This enables atomic
reconfiguration when replacing an in-switch DPF in-place, by
replacing the prolog only after all other stages of a DPF have
been stored in the switch. We demonstrate in-place replace-
ment in §6.2. Second, in the epilog, the code has the ability



to change the init_pc field in the SwitchVM header, which
allows service chaining whereby one DPF invokes the next
one in the next supporting switch. We show several examples
of such applications in §4.

3.7 P4 Extensions
We envision SwitchVM to serve as an extensible framework
that can be tailored to the needs of the specific environment
by minor modifications to its P4 implementation. Thanks to
its modular design, the modifications are localized. These
additions will extend SwitchVM’s capabilities and can be
invoked from DPFs.

SwitchVM parser can be easily modified to expose new
packet fields to a DPF and use them in the prolog to initialize
DPF registers. Similarly, it is possible to expose additional
switch metadata, such as port queue length. The steering unit
can also be updated with new steering policies. Further, new
instructions can be easily added to ALUs and memory units if
the hardware support is available. For example, one may add
support for bit slicing, or new Read-Modify-Write operations.
More elaborate changes may involve new fixed-function mod-
ules added to an EU. The code for these modules can be
integrated into an EU, and contain the control signals needed
to invoke them. For example, one may add a match-action
table that can match on multiple registers and access memory
from different lanes. Last, one may replace individual EUs
with fix-function units, e.g., complex data-plane sketch.

3.8 Control Plane
Control plane is used for managing authorization, deployment,
configuration, and memory allocation in switches. Our current
design assumes that this functionality is implemented in a
centralized controller managed by data center operators.
Authorization and Scheduling. DPF placement for in-
network computing must be taken into account by the data
center’s resource management and scheduling system [2–4].
A tenant may ask to invoke specific DPFs (or a DPF chain) on
certain switches along the data path of its virtual machines. To
prevent exposing the physical network topology to tenants, au-
thorization requests are expressed relative to a tenant’s virtual
network structure. Resource allocation should consider both
resource utilization and the network topology in order to en-
sure consistent processing of tenant’s DPFs across all packets,
in accordance with the packet routing policies. While these
aspects are beyond the scope of this paper, SwitchVM offers
flexible mechanisms to control the DPF execution (§3.3).
In-switch memory management. The mechanisms are sim-
ilar to the OS memory allocation. We implement a simple
first-fit allocation policy. Unlike the traditional allocators,
however, the tenant chooses the virtual addresses.
In-switch code deployment. Deploying a DPF involves sev-
eral steps. When a DPF does not invoke the code from other

DPFs (simplest case), the branch addresses it uses internally
can be automatically inferred during the deployment. The
physical address of the prolog is then reported to the user to
be specified in the packets. However, reusing in-switch code
requires knowledge of the addresses of the deployed code,
requiring a process analogous to linking, which currently is
performed manually.
Steering rules. The tenants use virtual networks with their
private IP addresses, thus they are unaware of the physical
addresses used to forward packets in a physical network. Thus,
updates to DPF steering rules require translation from the
virtual to physical IP addresses. The physical addresses are
not visible to the DPF. DPF chaining is already considered at
the authorization time, thus its effect on routing is acceptable
to the operator.
Switch state migration and replication. In-switch state be-
comes an integral part of the tenant’s application logic. Thus,
migration of a VM to a different location in the network
topology might require one to also migrate the state in the
respective switches. Multi-path forwarding in modern net-
works might require maintaining consistent program state
across multiple switches. Data-plane inter-switch replication
solutions [55] can be deployed by data center operators to
automatically synchronize the tenant’s state across switches.

3.9 Security
Tenant identifier. Ensuring isolation among tenants relies on
a trusted tenant_id, as it is used to distinguish tenants in all
the security-critical units in SwitchVM, such as steering and
virtual memory mappings. We use virtual network identifier
fields, e.g., VID or VXLAN ID, common to encapsulation
protocols, similar to prior research [28, 46, 49, 50].
DPF injection. Adding the DPF code or data to the packets re-
quires privileged access to the encapsulation protocol headers
via a hypervisor, which is expensive. One option is to add the
DPF invocation requests in the control path (e.g., by attaching
a function to an OS socket [14]), while adding the respective
headers during encapsulation. Another option that we leave
for future work is to modify the hypervisor networking in-
terface to specify DPF invocation requests per packet. The
in-packet data stack size needs to be validated at this point to
prevent under-/overflow during packet parsing and deparsing.
Steering, chaining and routing. By default, DPFs cannot
change packet steering nor routing, unless specifically autho-
rized via dedicated steering rules installed by the control plane.
These rules are tenant-specific, and they ensure that the tenant
packets cannot escape the virtual network. The same mecha-
nism applies to DPF chaining. In summary, neither steering
nor chaining can affect the packet’s original network path
without control plane authorization, which only installs rules
compliant with the network routing policies.
Unauthorized operations. Unauthorized access to memory
and the attempt to invoke non-installed steering rules is iden-



Application DPF Logic Memory Mapping Packet State Steering Chaining

KVS Cache [23] Cache-put/get/update Math Direct,Segment In/Out Return-to-sender ✓
Count-min sketch [9] Hash,Math Segment In/Out Optional

Load Balancer
LB1 (Beamer [40]) Hash Segment Out Dest. array

LB2 (Batch) Math Direct Dest. array
LB3 (RackSched [59]) Rand Segment Dest. array

Paxos [10] Leader Math Direct Out Mulitcast ✓
Acceptor Math Segment In/Out Mulitcast,Drop ✓

Table 2: Applications implemented using DPFs and the features they use.

tified by SwitchVM and can be reported to a control plane for
further handling.
Denial-of-service with recirculation. Packet recirculation is
not allowed by default, and can be limited to specific appli-
cations. Further, per-tenant rate limiting can be employed to
guarantee performance isolation between recirculated packets
of different tenants. In theory, packets can be recirculated
indefinitely, as expected from a Turing-complete system. This
can be prevented using per-packet recirculation counters, akin
to the concept of gas in blockchain smart contracts [6, 52], or
by re-purposing in-packet TTL counters.

4 Applications

We explain several complex applications we implement using
DPFs (Table 2). More use-cases supported by SwitchVM are
described in Appendix C.

4.1 Key-Value Store Cache
We implement an in-switch KVS cache, similar to Net-
Cache [23] with keys and values of 4B and 12B, respectively.

Frequently accessed keys are cached and returned upon
GET requests, while PUT requests invalidate the respective
cached entries. The installation and eviction of the entries
are performed by the control plane and orchestrated by the
auxiliary mapping data stored in the server using UPDATE
operations. The cache evictions are guided by hit-counters
and a count-min sketch [9] for frequently accessed keys.

Figure 3 summarizes the GET, PUT, and UPDATE opera-
tions. There are four DPFs (in boxes) in the application.

We implement a chain of two DPFs on the miss path. Specif-
ically, cache-get invokes count-min in case of a miss. The
DPFs are invoked in two pipes of the same switch, as our
prototype only runs on the ingress pipe. These DPFs make use
of most SwitchVM functions as explained next.
Data structures. Denote the cache size as k. We use direct
mapping for k memory elements in EU0 for mapping keys to
<valid-bit, index> tuples. The valid bit is reset when an entry
is invalidated. The index represents the virtual address where
the value for that key is stored. Additionally, a null segment
mapping maps all misses to a single invalid tuple. Values are

Client Sketch

count
min

Cache

get1

2

Client SketchCache

put

update
ServersServers

Figure 3: In-swtich key-value store cache implemented using
SwitchVM. 1 and 2 show the flow of cache hit and miss
respectively. Cache-get/put/update and count-min represent
DPFs and the pipeline they are executed on.

stored in 3 k-large segment-mapped arrays in EU2 using 4B
per entry, and a k-large array in EU3 for the hit counters.
Cache-get. The prolog POPs the requested key from the stack
and EU0 fetches the corresponding <valid-bit, index> tuple. A
BSET (branch-if-set) in EU1 computes AND between an MSB
one-hot mask (MSB set) and the tuple’s valid-bit and accesses
the tuple’s index upon a hit. On a hit, EU2 LOADs the 12B
value, and EU3 atomically increments the hit counter using
a FA-ADD instruction. The epilog PUSHs the key and value
onto the stack, executes a return-to-sender steering policy,
and drops the code section. On a miss, the epilog PUSHs the
key onto the stack and changes the DPF pointer in the packet
code header to point to the Count-Min DPF, and the packet
continues to the next switch pipe.
Cache-put. The prolog POPs the requested key from the stack
and EU0 performs a FA-AND operation with an MSB one-cold
(all but LSB set) mask to mark the entry as invalid. Invalidat-
ing a non-cached key is okay, since it is mapped to an invalid
entry anyway. The epilog PUSHs the key onto the packet stack,
and changes the code pointer to a default empty program entry.
The packet then continues to the next pipe which passes it as
is.
Cache-update. The server maintains the mappings of valid
keys and their corresponding tuple indices in the switch cache.
Upon the installation of a new key, the server sends the index
of a free tuple to the switch, alongside the key and the 12B
value. The prolog POPs these values from the stack, EU0 maps
the key to the new tuple, and marks the tuple as valid using
an FA-OR operation with an MSB one-hot mask. EU2 STOREs
the 12B value and the epilog executes a return-to-sender
operation and returns the packet as an ACK to the server.
Count-min sketch. The prolog extracts the key into first
three lanes using two PEEKs and a single POP operations. EU0
HASHes these lanes using three different hashing polynomials,



and ANDs the results to acquire only the logk least significant
bits. EU1 use the results as indices for atomically increment-
ing three counters using FA-ADD instructions. EU2 and EU3
extract the MIN value from all three counters. The epilog
PUSHes the key and the frequency back into the packet.
Selective execution. This application demonstrates the use
of app_id token for selective DPF execution. The server uses
the cache-update DPF, which executes at the cache switch.
The DPF needs to pass through the sketch switch, but it should
not be executed there. However, the tenant_id is already con-
figured there for allowing the count-min DPF to execute. Thus,
we use a separate app_id token for the cache-update DPF and
configure it only in the caching switch. We use a different
app_id for all other DPFs.
Comparison to NetCache. The key/value bitwidth is limited
in SwitchVM, due to the small number of lanes. Therefore,
the amount of data that can be read from the packet is lim-
ited too. The number of entries in the cache is also limited
because we divide the memory between VLIW lanes equally.
Consequently, while NetCache supports up to 64K entries,
16B keys, and 128B values, SwitchVM can only support up
to 45K entries, 4B keys, and 12B values.

4.2 Load Balancer
We implement three switch-accelerated load balancers.
Load-agnostic LBs. We consider two policies. LB1 splits
the traffic by hashing a user-defined value, as previously sug-
gested by Beamer [40]. LB2 schedules batches of 1024 pack-
ets to each server using round-robin.
Load-aware LB (LB3). Traffic is split according to load on
the servers. Similar to RackSched [59], requests are forwarded
to the least loaded server using an in-switch scheduler that
implements a power-of-two-choices selection. Servers send
their loads by piggybacking on existing traffic (Figure 4).

For lack of space, we only explain the details of LB3 DPFs.
LB3 setup. Denote the number of servers as 2m. We store
two copies of the server loads in two segment-mapped arrays
of size 2m, each assigned to a different lane of EU1. Updates
are assured to be consistent between the two arrays due to the
RMT per-packet atomicity guarantees.
Client requests. The prolog RAND-omizes two registers. EU0
AND-s each register with a mask to achieve the m least signifi-
cant bits per register. The results indicate the indices of two
servers. Next, EU1 LOAD-s the values of the server-reported
loads, and performs a conditional branch using BGT. The se-
lected packet steering policy is based on the branch result.
Server responses. The prolog extracts the server index and
updates two registers using two PEEKs and two POPs. EU1
uses these indices to STORE the new load into the correspond-
ing array entries. The packets are not modified.
Comparison to RackSched/Beamer. LB1 and LB3 func-
tionalities are identical to those of Beamer [40] and
RackSched [59]. RackSched uses a different memory for each

Client Servers

Steer

Update
Client Servers

Lead
Accept

1 2

Figure 4: 1 Load-aware load balancing. 2 In-network Paxos
acceleration with one leader switch and three acceptors.

IMM
FWD

Prolog SEL[0:7] SEL
OP2

POP
NUM FIRST_PC

Execute

IMM[0:1]

IMM[2:3] IMM_OP1 EXEC_OP[0:3]

MEM_OP[0:3] CTRL

Epilog
SEL
FWD

SEL
IG

SEL
EG

IMM
EG

SEL[0:7]

SEL[0:7]

HDR
MOD

IMM
IG

PC_TAKEN PC_NTAKEN

SEL
OP1

SEL
OP2

IMM_OP2

PUSH
NUM

Figure 5: Program encoding for prologs, EUs, and epilogs.

server load, allowing it to use a single copy. This, however,
limits the number of supported servers to a few dozens.

4.3 Paxos
Paxos [29] is a consensus protocol in which clients agree on
one proposed value. Figure 4 shows how we use DPFs for an
in-network acceleration of Paxos, similar to P4xos [10]. The
leader is similar to NoPaxos [31]. Due to space limitations,
we provide the DPF descriptions in Appendix A.

5 Implementation

Our prototype targets Intel Tofino [19] and has four EUs,
each with four lanes. Each lane has up to 45K 32-bit memory
entries and 1.5K segment mappings. The first lane of each
EU has additional direct mappings, possibly to all registers.
Overall, each DPF can execute up-to 16 ALU and 16 Memory
operations. Permissions and forwarding tables have up to
32K entries each. It is possible to store up-to 4K in-switch
instructions of each type. Assuming each DPF uses at most a
single two-way branch, as is the case with our applications,
the switch can store up-to 2K entirely distinct DPFs. These
can be shared among tenants thanks to virtual memory and
instruction pointers. We highlight only the most interesting
aspects of the implementation for the lack of space.
Packet structure. DPFs are stored in an option field of the
Geneve encapsulation protocol [20]. It includes parser hints,
data used by SwitchVM, optional ingress and/or egress DPFs
and a data stack. If the stack is small (up to 16 entries) it can
be fully parsed with the encapsulated packet (up to layer 4).
Code header. The code header encodes the DPF program
(Figure 5). All fields have a default nop operation to be ig-
nored by the relevant unit. The SEL field determines where
to read register values from. The EXEC_OP and MEM_OP
fields dictate which operation should be executed by the ALU



or Memory access. The CTRL field determines the DPF con-
trol flow. All SwitchVM components are implemented using
match-action tables. These tables effectively map the opcodes
to the actual execution logic.

We use the prolog unit as an example to show how code in
the header is translated into the actual execution. A unit with
four lanes is built with 8 match-action tables we call selectors,
and each initializes the value of a respective virtual regis-
ter. The value SEL[i] in the prolog code section determines
the source for initialization of the i-th register, i.e., the stack
(POP,PEEK) the metadata (LOAD_MD) or RAND. These opcodes
are used by the selector match-action table to initialize the re-
spective register. Semantically, the A registers are initialized
first, and the registers with lower indices are initialized before
those with higher ones.
Execution Unit. Each EU occupies two hardware pipeline
stages (Figure 2). In the first it executes register selection,
memory translation, and comparisons. The second runs ALU
operations, memory access and branching. Selection is im-
plemented similarly to the Prolog selection above, and it is
used to shuffle the registers between different lanes, use them
for hashing, and for loading immediate values. The ALUs are
per-lane match-action tables with the key being the operation
opcode, and the action simply performs the operation on the
respective register pair.
Memory Access. Direct and segmented mappings are done in
first stage of the EU, for each lane. We match on both tables,
but only at most one action is executed, giving priority to
the direct mapping. In addition to the address at the lane’s A
registers, each table accepts the tenant_id as an additional
matching key for isolation. The resulting physical address is
used to access the per-lane Tofino register in the next stage,
using the RegisterAction specified by the opcode.
Control Unit. In each EU, we can perform a single branch
operation based on evaluating a predicate on two registers. In
the first stage, we use comparison to compare two registers. In
the second stage we use the result to select code for execution
in the next EU. More details about the implementation of all
branching operations are found in Appendix D.

5.1 Resource Usage

The key optimization goal is to reduce the number of hardware
stages, hence our decision to use VLIW EUs. Permissions,
prolog, epilog and steering each requires one hardware stage,
whereas each execution unit takes up two. Since we have four
execution units, SwitchVM uses all 12 stages of Tofino-1.

Appendix B reports total resource consumption of our
SwitchVM prototype, which we summarize here. Our pro-
totype utilizes 57% of available SRAM, due to having the
memory access only at the second stage of the two-stage EU.
We use the 41% of the TCAM for virtual memory mappings
and the control flow units. We utilize 64% of the PHV con-
tainers, used to mainly to carry the in-packet parsed DPF code

through the pipeline.
The primary constraint on expanding the EU size is the

number of logical tables (73%) and available action instruc-
tion memory (85%) within each stage. Tofino’s design is
geared towards a small number of large tables capable of exe-
cuting wide actions, i.e., ones that can modify many header
fields simultaneously. In contrast, SwitchVM would bene-
fit from a large number of small tables with narrow actions.
Tofino-2 has 20 stages, which can be utilized for doubling the
number of EUs from 4 to 8, implementing P4 extensions, or
for handling standard data-center networking operations. We
note that we were able to compile eight 2-way VLIW EUs for
Tofino-2, but increasing the number of ways failed to compile
due to a compiler bug.

As mentioned earlier, the switch can store a maximum of
2K distinct DPFs. These can be safely shared among tenants
because they use virtual memory. However, certain resources
that cannot be shared may limit the number of co-located
tenants. These include the number of direct and segmented
mappings in each EU, total memory per EU, and the overall
number of forwarding rules.

Appendix B offers more details on the resource usage by
the concrete DPFs we implemented in our prototype. The
number of distinct co-resident DPFs of the same type depends
on the resource usage of each DPF. For example, a single
key-value cache can accommodate up to 45K keys, but the
number of isolated key-value cache instances is capped at
2K, regardless of the cache size, because of the limit on the
number segmented mappings. Similarly, the total memory
capacity directly impacts the number of co-resident DPFs. On
the other hand, some of the scalability limits can be increased
via a more sophisticated implementation of SwitchVM, e.g.,
by implementing direct mappings on additional lanes.

This factor should be carefully considered, as highlighted
in previous research [60].
Deployment. It is often desirable to combine the execution
of SwitchVM with traditional networking functions, such as
a regular switch. Indeed, we implement a simple L3 switch
on the same pipeline. However, relatively high resource us-
age of SwitchVM may complicate colocation with resource-
intensive P4 programs. To this end, we propose three practical
deployment options: (1) Leveraging additional pipeline stages
of Tofino-2, where 12 stages can be used for SwitchVM and
the rest 8 stages for other data-plane functions. (2) In a multi-
pipe switch, dedicating a separate pipe for SwitchVM at the
cost of reduced bandwidth. (3) Employing SwitchVM as a
discrete in-network computing appliance, in line with the
existing proposals for stateful network function disaggrega-
tion [1].

5.2 Limitations
Design limitations. First, by choosing the language-level vir-
tualization approach, SwitchVM introduces non-negligible



resource overheads which increase the resource consump-
tion and constrain the generality of the functions that can
be implemented on top. We believe that this is a viable de-
sign point, however, as many in-network computing functions,
e.g., eBPFs, require a fairly limited functionality. Second,
SwitchVM is tailored for in-network computing and not for
general data-plane programmability. This specialization facil-
itates implementing the security sandbox, which restricts the
packet headers exposed to DPFs and constrains the effect of
the DPFs on the packet network behavior. The downside of
this design choice is that DPFs cannot be used to implement
new network protocols, for example.
RMT-related constraints. First, to guarantee performance
isolation, RMT-based switches require a DPF to fit within a
single pipeline pass. This requirement places a hard upper
limit on the DPF size. In contrast, CPU-based dRMT archi-
tectures could allow longer DPFs at the expense of gradual
performance degradation. Second, RMT switches parse the
entire packet prior to processing, necessitating the use of a
uniform packet structure for all tenants. Since in SwitchVM
the access to packet headers is virtualized, DPFs cannot access
the headers, unless dedicated P4 extensions are incorporated
during compile time, as discussed in §3.7.
Prototype. We do not yet have a compiler for DPFs, so they are
implemented in assembly, using a Python framework for code
construction. Further, SwitchVM cannot run on both egress
and ingress pipelines due to the limitations of the egress parser
in Tofino-1. Last, our control-plane APIs and the client API
for using DPFs in applications are rather immature, and the
Recirculation rate-limiting logic is not implemented.

6 Evaluation

We aim to highlight the following SwitchVM characteristics:

1. Strong performance isolation among tenants;
2. Runtime programmability behavior without interference

when adding/removing tenants;
3. Low latency and bandwidth overheads;
4. End-to-end performance in applications equivalent to P4

baselines.

We emphasize that SwitchVM was compiled once and never
modified throughout all the experiments.

6.1 Methodology
Setup. We use a dual-socket machine with Intel Xeon Silver
4216@2.1 GHz CPU with 188 GB of RAM and connect it
to a 3.2Tbps Intel Tofino switch (EdgeCore Wedge 100BF-
32X) via two two-port 100G NICS (Intel E810-C). Unless
stated otherwise, the packet generator and the receiver server
use different NIC ports and run on different sockets. Hyper-
threading and power saving are disabled for consistent results.

100 120 140 160 180
0

50
75

100
125
150

Rate [Kpps]

L
at

en
cy

[µ
s] Median

Client RackSched SwitchVM

100 120 140 160 180
0

100
200
300
400
500
600

Rate [Kpps]

99th Percentile

(a)

0 2 4 6 8 10 12 14 16
0

200
400
600
800

1,000

Time [s]

L
at

en
cy

[µ
s] Median

99th percentile

(b)

Figure 6: A load-aware load balancer using SwitchVM. (a)
SwitchVM demonstrates negligible end-to-end latency over-
heads compared to RackSched in P4 [59]. (b) SwitchVM
changes the load-balancer scheduling policy at times t = 6,12
without any request delays or packet drops.

Packet generator and receiver. Microbenchmarks were per-
formed using Cisco TRex traffic generator [8] (DPDK-based).
End-to-end applications are implemented using DPDK. Un-
less stated otherwise, packets are encapsulated using the Gen-
eve protocol [20] for simulating data center environments.

6.2 End-to-End Applications
We show SwitchVM performance using the Load Balancer
and KV store cache applications from §4.

6.2.1 Load-Aware Load Balancer

Our environment consists of two servers that execute the
requests of a single client. We compare our implementation
to the RackSched [59], a load-aware load balancer written
in P4. We use the original RackSched implementation for
clients, servers and the P4 scheduler. To run with DPFs we
slightly modify the client and servers. Additionally, we add
a dummy payload to RachSched original packets to mimic
the bandwidth overheads of Geneve encapsulation protocol
in SwitchVM, but without performing encapsulation itself to
avoid intrusive P4 code changes.

As in RackSched, we run a synthetic workload with a bi-
modal request processing distribution (5µs and 50µs, for 90%
and 10% of the requests respectively). We measure the me-
dian and the 99-percentile latency as a function of the load for
three systems: the original RackSched, SwitchVM using in-
switch DPF, and a client-based implementation that randomly
selects a server for each request.



Figure 6a shows no latency difference compared to the
P4-only baseline for up to 180K requests/s for the median
latency, and up to 15% overheads in the 99% latency for
higher rates. We believe, however, that the overhead is not
related to the in-switch processing (which shows no sensitivity
to load as we see in microbenchmarks), but is an artifact of the
increased server load due to the Geneve encapsulation used
in SwitchVM. Regardless of these artifacts, the use of DPFs
improves the client-only implementation latency by 1.4× and
2.4× at maximum throughput.
In-place policy replacement. Unlike RackSched, SwitchVM
can easily replace its scheduling policy without suffering
from packet loss due to switch reconfiguration. We show this
by dynamically modifying the scheduling policy from batch-
round robin to the load-aware power-of-two-choices policy
and back (§4). Figure 6b demonstrates the end-to-end median
and the 99-th percentile latency as observed by the client.
At t = 6 and t = 12 the policy is altered without the client
having to stop. These results clearly demonstrate the power
of SwitchVM to react to different network conditions with
full application transparency.

6.2.2 In-Switch Cache for Key-Value Stores

We connect one client to a server and use two switch pipes,
i.e., each pipe acts as an independent switch. SwitchVM runs
a chain of two DPFs that act similarly to NetCache [23].

We demonstrate SwitchVM end-to-end latency for GET
operations under abrupt changes in the key distribution (hot-in
in [23]) and a constant TX throughput. The client sends 10K
requests per-second (10 Kpps) while targeting a set of 128
keys that repeatedly changed every 10 seconds. The server
periodically collects the most frequently accessed keys from
a count-min sketch [9] implemented in DPF, then caches the
128 most frequent keys in the in-switch cache. Cache hits and
sketch counters are cleared every 5 seconds.

Figure 7 reports the median and the 99th percentile of
the requests’ end-to-end latency. The periodic key changes
induces cache misses that redirect the requests to the server,
as evident from the momentary latency spikes.

This experiment shows the power of DPFs to implement
complex in-network accelerated applications.

6.3 Microbenchmarks
Similar to previous works [23], we simulate a fully loaded
switch using a snake configuration, where two ports are con-
nected to the traffic generator and to the receiver server while
all remaining ports are connected to each other in pairs. Un-
less states otherwise, we use MTU-size packets (1500B).
Throughput vs. latency. We compare SwitchVM perfor-
mance to a standard L3 forwarding application implemented
in P4. SwitchVM invokes a private counter DPF that incre-
ments a counter stored in switch memory, similar to the leader

0 10 20 30 40
0

10
20
30
40

Time [s]

L
at

en
cy

[µ
s] Median 99th percentile

Figure 7: NetCache-like cache for key-value store imple-
mented with DPFs. Latency spikes reflect cache misses due to
an abrupt change in the hot-key working set. As the cache is
re-populated with new hot keys the latency drops.

0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

Throughput [Gbps]

A
ve

ra
ge

M
ed

ia
n

L
at

en
cy

[µ
s]

L3 fwd. Default app In-packet In-switch

Figure 8: Throughput vs. per-port median latency using
1.5KB MTU-size packets. L3 fwd shows the smallest latency
of a functional switch.

DPF used in Paxos (§4).
We compare the performance of three ways to invoke a

DPF: in-switch, in-packet, and in-switch default DPF that has
no bandwidth overheads.

Direct measurements of per-port latency were too noisy
due to sub-µs values. Instead, we calculate the average per-
port latency as follows. First, we measure the median latency
from the generator to the receiver after passing through the
switch in the snake configuration. Next, we obtain the median
latency from the generator to the receiver using a single pass,
and subtract the two to cancel the latency of the server and
client machines. We then divide the result by 31, which is the
number of additional times the packet traverses the switch in
the snake configuration.

Figure 8 shows that the switch approaches its maximum
throughput (3.14Tbps) at about the same latency for all in-
vocation techniques. As expected, L3 forwarding has lower
latency, all three ways to invoke DPFs perform the same.
Performance isolation. We demonstrate the performance
isolation among tenants by running five network flows which
together achieve the maximum aggregate switch bandwidth.
Among these, there are four flows, each with its own DPF,
and a base flow that does not invoke any. We measure the
throughput per DPF at the receiver. We start with a single flow
and gradually add more to see if there is any interference
between them. No measurable interference was observed;
neither among the DPFs nor with the other traffic (Figure 9a).
Scalability. We measure SwitchVM tenant reconfiguration
performance by scaling the number of served tenants. We use
the private counter DPF again, with in-packet code. Note that
for a given amount of required resources, the DPF code has



0 5 10 15
0

0.8

1.6

2.4

3.2

Time [sec]

T
hr

.[
T

bp
s]

Base App1 App2

App3 App4

(a)

0 50 100 150
0

0.6
1.2
1.8
2.4
3.0

Time [sec]

R
X

T
hr

.[
T

bp
s]

Base Tenant apps

#Tenants

0
0.6
1.2
1.8
2.4
3

#T
en

at
s

[×
10

4 ]

(b)

Figure 9: (a) SwitchVM demonstrates strong performance
isolation between different DPFs and a base flow without DPF
invocation. (b) Aggregate receive throughput vs. the number
of tenants, each having its own DPF and a private switch state.
Packets of unauthorized tenants are dropped. Base represents
the background traffic not using DPFs.

no effect on scalability, therefore this experiment is represen-
tative for the case when each tenant executes her own DPF
(Figure 9a).

We start by dynamically adding tenants in batches of 350
tenants per second until reaching 30K tenants, then removing
them at the same rate. The process invokes the control plane
API to authorize execution of DPFs for the respective tenants,
and allocates the private state in the switch (or deauthorizes
and deallocates state upon tenant removal). For the purpose
of this experiment, SwitchVM is configured to drop packets
that attempt to run a DPF that has not been authorized.

The packet generator constantly sends packets for all the
tenants at 80% line rate. The remaining bandwidth is occupied
by packets that do not invoke any DPF. We measure the total
bandwidth at the receiver. Initially, tenants are not authorized
to run any DPF, so all the packets but those not invoking DPFs
are dropped, as expected (Figure 9b). Once the tenants are
authorized to run, the aggregate bandwidth grows until all the
30K tenants are authorized. Symmetrically, the tenants are
gradually removed in the second part.

This experiment shows that SwitchVM scales to up to 30K
tenants with strong performance isolation and without measur-
able interference. A similar experiment with in-switch code,
instead of in-packet, shows the same results. Note however
that in this case the amount of different DPFs (shared across
tenants) is limited to 2K, assuming each DPF has at most a
single branch instruction. For comparison, compiler-based
approaches for merging P4 programs [41,50,58], and runtime
reconfigurable switches [53] can only scale to a handful of
co-resident in-switch applications.
DPF bandwidth overheads. Figure 10a reports the additional
header size required for a representative DPF application. This
overhead translates to a reduction in the effective bandwidth
of the system (goodput) as a function of the packet size.

Figure 10b shows the maximal achievable throughput per
packet size for different DPF invocation mechanisms. Natu-

App Header
Size [B]

Default 0
In-switch 12
In-packet 192

(a)

128 512 1,024 1,500
0

70
80
90

100

Packet size [B]

R
X

T
hr

.[
G

bp
s]

Default

In-switch

In-packet

(b)

Figure 10: (a) Packet overheads for DPFs. (b) Receive side
throughput as a function of the packet size.

rally, the throughput is lower for smaller packets but eventu-
ally converges to 99% of the line-rate for all types, at MTU-
size packets. Small in-packet DPFs impose packet parsing
overheads that reduce the receive-side throughput.

7 Related Work

P4 virtualization. Several prior works focus on virtualization
of the data-plane at the P4-level. HyPer4 [17] and HyperVDP
[56] use a hypervisor P4 program that emulates other P4
programs, thus incurring significant overheads that limit these
approaches to software and FPGA targets. SwitchVM offers a
more efficient virtualized ISA that is optimized for in-network
computing.
In-switch programming abstractions. Several works im-
plement application-specific in-switch primitives that can be
composed at runtime to implement certain in-switch applica-
tions. DIP [51] proposes in-switch primitives combined using
in-packet recipes for implementing network layer protocols.
NetRPC [57] offers primitives that can be composed via an
in-switch recipe to implement a few popular in-network ap-
plications. Their primitives, however, are tailored to specific
tasks. Moreover, their multitenancy is limited to a few dozens
of concurrent applications of a few types. SwitchVM is more
general and flexible, and scales to thousands of tenants exe-
cuting arbitrary DPFs.
Compile-time merge. P4Visor [58], PRIME [41], SPEED [7]
and [50] propose merging p4 programs before compilation.
This has the potential of providing multitenancy, but is limited
to only a few applications due to logic partitioning. In addi-
tion, changing the set of applications requires recompilation
and switch reconfiguration and disrupts the switch traffic.
New architectures. Menshen [49] proposes an extension
of the RMT architecture for data-plane multitenancy at the
P4 level. Their solution adds a hardware indirection layer
to allow running per-tenant packet processing logic on each
packet, ensuring cross-tenant isolation using a specialized
trusted compiler. SwitchVM also adds an indirection layer
with its virtual ISA, with the key difference that it allows se-
cure execution of untrusted DPFs thanks to runtime checks.
P4VBox [44], MTPSA [46] and [28] propose new hardware
architectures for data-plane virtualization. These architectures
allow spatial partitioning of the resources between different



hot-pluggable applications. However, they are currently lim-
ited to FPGA targets as they require hardware modifications,
and they cannot scale beyond tens of programs. In contrast,
SwitchVM runs on commodity switches and can scale to
thousands of DPFs.
Runtime programmability. FlexCore [53] and IPSA [15],
propose a runtime programmable dRMT architecture that
allows changing functionality without causing traffic dis-
ruptions. These works do not discuss inter-tenant isolation.
SwitchVM naturally offers runtime programmability since
changing programs is equivalent to installing match-action
entries. HW modification proposals [44, 46, 49] naturally in-
tegrate runtime programmability, a necessity for ensuring
performance isolation across tenants.
In-network computing as a service. Several works discuss
the isolation requirements [28, 46, 49, 50] for allowing multi-
tenancy of programmable switches in data centers. Runtime
memory allocation was proposed in [50, 60] to allow chang-
ing memory allocation between tenants. SwitchVM allows
implementing such allocation policies due to virtual memory.
Multi-core switches. Multicore switches, e.g., Juniper’s Trio
[38] and NVIDIA’s Spectrum [39], follow a more conven-
tional Von Neumann hardware architecture, rather than the
dataflow type architecture of RMT switches. SwitchVM can
be seen as a compatibility layer that allows architecture-
independent network function development, but we leave
adaptation of SwitchVM for such targets for future work.
These architectures differ substantially from RMT, and there-
fore might require different design considerations.

RMT switches feature a simple programming abstraction,
where packets execute a sequence of match-action tables,
such that each packet appears to execute to completion before
the next packet processing starts. CPU-based switches on the
other hand are more versatile, which potentially makes them
better suited for complex in-network applications. In partic-
ular, they offer gradual performance degradation for longer
programs, as opposed to the RMT pipelines that either fail
to run or require coarse-grained packet recirculation. Addi-
tionally, CPU-based switches can potentially achieve higher
scalability by utilizing a memory hierarchy, in contrast to
the use of stage-local memory in RMT pipelines. However,
achieving line-rate processing and performance isolation be-
tween co-resident programs on CPU-based switches is much
more challenging, and cannot be generally guaranteed.
Deployment. Harmony [2] and HIRE [3] discuss the manage-
ment implications and scheduling requirements of multitenant
in-network computing. SwitchVM’s scalability reduces the
complexity of these management tasks as it makes migrating
programs between switches more efficient.
Active Networks. The idea of embedding code into pack-
ets for in-network execution dates back to Active Net-
works [45,47,48]. Active networks allow users of a shared in-
frastructure to inject customized packet processing programs
into network nodes, primarily driven by the desire to intro-

duce new networking services on a per-user basis. SwitchVM
can be viewed as a version of active networks for multi-tenant
in-network computing within a data center. A key difference,
however, is that SwitchVM establishes clear privilege separa-
tion between the network’s operator and its users, sidestepping
the security and management issues associated with active
networks. The in-packet state management we implement in
SwitchVM is inspired by tiny packet programs [21]. TPPs
do not consider multitenancy and isolation and are focused
primarily on telemtery applications.

In a concurrent work, ActiveRMT [12, 13] proposes a
capsule-based active networking approach with a shared
runtime for interpreting small in-packet programs. Simi-
larly to SwitchVM, ActiveRMT also enables per-packet re-
programmability, with the primary goal of improving in-
switch memory utilization for multiple programs. Despite
this similarity, ActiveRMT pursues different goals which fur-
ther dictate different design choices, and make it less suitable
for our purposes. First, the in-switch memory in ActiveRMT
is segmented, rather than virtualized as in SwitchVM. As a
result, in-switch program deployment and sharing available in
SwitchVM cannot be easily supported, incurring bandwidth
overheads due to in-packet code header and preventing ser-
vice chaining natively supported in DPFs. Another implication
is that, unlike in SwitchVM, in-switch memory reallocation
requires updating all the tenants affected by it, impeding scal-
ability in a multi-tenant system. Further, ActiveRMT design
relies heavily on packet recirculations, which SwitchVM ex-
plicitly strives to minimize in order to enjoy atomic in-switch
state update, reduce bandwidth overheads, and achieve strict
performance isolation. Last, ActiveRMT does not support
variable-size in-packet state, so it complicates its use in multi-
switch applications such as in-network telemetry.

8 Conclusion

SwitchVM enables data center tenants to build in-network
accelerated applications by securely deploying and executing
Data Plane Filters on programmable switches. SwitchVM
supports concurrent execution of thousands of DPFs while
offering strong performance, state and fault isolation. We
show SwitchVM’s ability to build complex applications and
experimentally demonstrate its performance and scalability.
We envision that SwitchVM will open new opportunities for
in-network accelerated applications in data centers.

Acknowledgments

We thank our shepherd Mina Tahmasbi Arashloo and the
reviewers for their helpful comments and feedback. We also
thank Ron Marcus and Assaf Klein for their help with shaping
this paper. We gratefully acknowledge generous support from
Israel Science Foundation (Grant 1998/22).



References

[1] Deepak Bansal, Gerald DeGrace, Rishabh Tewari,
Michal Zygmunt, James Grantham, Silvano Gai, Mario
Baldi, Krishna Doddapaneni, Arun Selvarajan, Arunk-
umar Arumugam, Balakrishnan Raman, Avijit Gupta,
Sachin Jain, Deven Jagasia, Evan Langlais, Pranjal Sri-
vastava, Rishiraj Hazarika, Neeraj Motwani, Soumya
Tiwari, Stewart Grant, Ranveer Chandra, and Srikanth
Kandula. Disaggregating stateful network functions. In
USENIX NSDI, 2023.

[2] Theophilus A. Benson. In-network compute: Consid-
ered armed and dangerous. In ACM HotOS, 2019.

[3] Marcel Blöcher, Lin Wang, Patrick Eugster, and Max
Schmidt. Switches for hire: Resource scheduling for
data center in-network computing. In ASPLOS, 2021.

[4] Marcel Blöcher, Lin Wang, Patrick Eugster, and Max
Schmidt. Holistic resource scheduling for data center
in-network computing. IEEE/ACM TON, 2022.

[5] Broadcom. Trident4 / BCM56880 series.
https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs/
bcm56880-series, 2023.

[6] Vitalik Buterin et al. A next-generation smart contract
and decentralized application platform. white paper,
2014.

[7] Xiang Chen, Hongyan Liu, Qun Huang, Peiqiao Wang,
Dong Zhang, Haifeng Zhou, and Chunming Wu.
SPEED: Resource-efficient and high-performance de-
ployment for data plane programs. In IEEE ICNP, 2020.

[8] Cisco. TREX: Realistic traffic generator. https://
trex-tgn.cisco.com/, 2023.

[9] Graham Cormode and S. Muthukrishnan. An improved
data stream summary: the count-min sketch and its ap-
plications. J. Algorithms, 2005.

[10] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh
Lee, Noa Zilberman, Hakim Weatherspoon, Marco
Canini, Fernando Pedone, and Robert Soulé. P4xos:
Consensus as a network service. IEEE/ACM TON, 2020.

[11] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fer-
nando Pedone, and Robert Soulé. NetPaxos: Consensus
at network speed. In ACM SOSR, 2015.

[12] Rajdeep Das and Alex C. Snoeren. Enabling active
networking on RMT hardware. In ACM HotNets, 2020.

[13] Rajdeep Das and Alex C Snoeren. Memory management
in activermt: Towards runtime-programmable switches.
In ACM SIGCOMM, 2023.

[14] Haggai Eran, Lior Zeno, Maroun Tork, Gabi Malka, and
Mark Silberstein. NICA: An infrastructure for inline
acceleration of network applications. In USENIX ATC,
2019.

[15] Yong Feng, Zhikang Chen, Haoyu Song, Wenquan Xu,
Jiahao Li, Zijian Zhang, Tong Yun, Ying Wan, and Bin
Liu. Enabling in-situ programmability in network data
plane: From architecture to language. In USENIX NSDI,
2022.

[16] Maurizio Gabbrielli and Simone Martini. Programming
Languages: Principles and Paradigms. Undergraduate
Topics in Computer Science. Springer, 2010.

[17] David Hancock and Jacobus van der Merwe. HyPer4:
Using P4 to virtualize the programmable data plane. In
ACM CoNEXT, 2016.

[18] Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wójcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
ACM SIGCOMM, 2017.

[19] Intel. Intel® tofino™ programmable ether-
net switch asic. https://www.intel.com/
content/www/us/en/products/network-io/
programmable-ethernet-switch/tofino-series.
html, 2023.

[20] T. Sridhar J. Gross, I. Ganga. Geneve: Generic
network virtualization encapsulation. https://www.
rfc-editor.org/rfc/rfc8926.pdf, 2020.

[21] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong
Geng, Changhoon Kim, and David Mazières. Millions
of little minions: Using packets for low latency network
programming and visibility. In ACM SIGCOMM, 2014.

[22] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and
Ion Stoica. Netchain: Scale-free sub-RTT coordination.
USENIX NSDI, 2018.

[23] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing key-value stores with fast
in-network caching. ACM SOSP, 2017.

[24] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh
Sivaraman, and Jennifer Rexford. HULA: Scalable load
balancing using programmable data planes. In ACM
SOSR, 2016.

[25] Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb.
An exhaustive survey on P4 programmable data plane
switches: Taxonomy, applications, challenges, and fu-
ture trends. IEEE Access, 2021.

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://trex-tgn.cisco.com/
https://trex-tgn.cisco.com/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.rfc-editor.org/rfc/rfc8926.pdf
https://www.rfc-editor.org/rfc/rfc8926.pdf


[26] Changhoon Kim, Anirudh Sivaraman, Naga Katta, An-
tonin Bas, Advait Dixit, and Lawrence J Wobker. In-
band network telemetry via programmable dataplanes.
In ACM SIGCOMM, 2015.

[27] Marios Kogias, George Prekas, Adrien Ghosn, Jonas
Fietz, and Edouard Bugnion. R2P2: making RPCs first-
class datacenter citizens. In USENIX ATC, 2019.

[28] Johannes Krude, Jaco Hofmann, Matthias Eichholz,
Klaus Wehrle, Andreas Koch, and Mira Mezini. On-
line reprogrammable multi tenant switches. In ACM
ENCP, 2019.

[29] Leslie Lamport. Paxos made simple, fast, and byzantine.
In OPODIS, 2002.

[30] Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris:
Coordination-free consistent transactions using network
multi-sequencing. In ACM SOSP, 2017.

[31] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana
Szekeres, and Dan R. K. Ports. Just say no to Paxos
overhead: Replacing consensus with network ordering.
In USENIX OSDI, 2016.

[32] Jialin Li, Jacob Nelson, Ellis Michael, Xin Jin, and Dan
R. K. Ports. Pegasus: Tolerating skewed workloads in
distributed storage with in-network coherence directo-
ries. USENIX OSDI, 2020.

[33] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu.
FlowRadar: A better netflow for data centers. In ACM
NSDI, 2016.

[34] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan
Zhuang, Fei Feng, Lingbo Tang, Zheng Cao, Ming
Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan
Yu. HPCC: High precision congestion control. In ACM
SIGCOMM, 2019.

[35] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
UnivMon. In ACM SIGCOMM, 2016.

[36] Steven McCanne and Van Jacobson. The BSD packet
filter: A new architecture for user-level packet capture.
In USENIX Winter, 1993.

[37] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. SilkRoad: Making stateful layer-4
load balancing fast and cheap using switching asics. In
ACM SIGCOMM, 2017.

[38] Juniper Networks. MX series universal rout-
ing platforms. https://www.juniper.net/us/en/
products/routers/mx-series.html, 2023.

[39] NVIDIA. NVIDIA spectrum-4. https://www.nvidia.
com/en-us/networking/ethernet-switching,
2023.

[40] Vladimir Andrei Olteanu, Alexandru Agache, Andrei
Voinescu, and Costin Raiciu. Stateless datacenter load-
balancing with beamer. In USENIX NSDI, 2018.

[41] Ricardo Parizotto, Lucas Castanheira, Fernanda Bonetti,
Anderson Santos, and Alberto Schaeffer-Filho. PRIME:
Programming in-network modular extensions. In IEEE
NOMS, 2020.

[42] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan,
Marco Canini, and Panos Kalnis. In-network compu-
tation is a dumb idea whose time has come. ACM
HotNets, 2017.

[43] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob
Nelson, Panos Kalnis, Changhoon Kim, Arvind Kr-
ishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. Scaling distributed machine learning with
In-Network aggregation. In USENIX NSDI, 2021.

[44] Mateus Saquetti, Guilherme Bueno, Weverton Cordeiro,
and Jose Rodrigo Azambuja. P4VBox: Enabling P4-
based switch virtualization. IEEE Communications Let-
ters, 2020.

[45] B. Schwartz, A.W. Jackson, W.T. Strayer, Wenyi Zhou,
R.D. Rockwell, and C. Partridge. Smart packets for
active networks. In OPENARCH, 1999.

[46] Radostin Stoyanov and Noa Zilberman. MTPSA: Multi-
tenant programmable switches. In ACM EuroP4, 2020.

[47] David L. Tennenhouse and David J. Wetherall. Towards
an active network architecture. SIGCOMM CCR, 2007.

[48] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie, D.J.
Wetherall, and G.J. Minden. A survey of active network
research. IEEE Communications Magazine, 1997.

[49] Tao Wang, Xiangrui Yang, Gianni Antichi, Anirudh
Sivaraman, and Aurojit Panda. Isolation mechanisms
for high-speed packet-processing pipelines. In USENIX
NSDI, 2022.

[50] Tao Wang, Hang Zhu, Fabian Ruffy, Xin Jin, Anirudh
Sivaraman, Dan RK Ports, and Aurojit Panda. Multite-
nancy for fast and programmable networks in the cloud.
In USENIX HotCloud, 2020.

[51] Ziqiang Wang, Zhuotao Liu, Xiaoliang Wang, Songtao
Fu, and Ke Xu. DIP: Unifying network layer innovations
using shared L3 core functions. In ACM HotNets, 2022.

https://www.juniper.net/us/en/products/routers/mx-series.html
https://www.juniper.net/us/en/products/routers/mx-series.html
https://www.nvidia.com/en-us/networking/ethernet-switching
https://www.nvidia.com/en-us/networking/ethernet-switching


[52] Gavin Wood et al. Ethereum: A secure decentralised
generalised transaction ledger. Ethereum project yellow
paper, 2014.

[53] Jiarong Xing, Kuo-Feng Hsu, Matty Kadosh, Alan Lo,
Yonatan Piasetzky, Arvind Krishnamurthy, and Ang
Chen. Runtime programmable switches. In USENIX
NSDI, 2022.

[54] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman,
Mosharaf Chowdhury, and Xin Jin. NetLock: Fast, cen-
tralized lock management using programmable switches.
ACM SIGCOMM, 2020.

[55] Lior Zeno, Dan RK Ports, Jacob Nelson, Daehyeok
Kim, Shir Landau-Feibish, Idit Keidar, Arik Rinberg,
Alon Rashelbach, Igor De-Paula, and Mark Silberstein.
SwiSh: Distributed shared state abstractions for pro-
grammable switches. In USENIX NSDI, 2022.

[56] Cheng Zhang, Jun Bi, Yu Zhou, and Jianping Wu. Hy-
perVDP: High-performance virtualization of the pro-
grammable data plane. IEEE JSAC, 2019.

[57] Bohan Zhao, Wenfei Wu, and Wei Xu. NetRPC: En-
abling in-network computation in remote procedure
calls. In USENIX NSDI, 2023.

[58] Peng Zheng, Theophilus Benson, and Chengchen Hu.
P4Visor: Lightweight virtualization and composition
primitives for building and testing modular programs.
In ACM CoNEXT, 2018.

[59] Hang Zhu, Kostis Kaffes, Zixu Chen, Zhenming Liu,
Christos Kozyrakis, Ion Stoica, and Xin Jin. RackSched:
A microsecond-scale scheduler for rack-scale computers.
In USENIX OSDI, 2020.

[60] Hang Zhu, Tao Wang, Yi Hong, Dan R. K. Ports,
Anirudh Sivaraman, and Xin Jin. NetVRM: Virtual reg-
ister memory for programmable networks. In USENIX
NSDI, 2022.

A The Paxos DPFs
We focus on two DPFs that correspond to Paxos’s second
phase messages.
Leader. This DPF requires a single directly mapped counter
that can be placed in either lane of any EU. Upon packet
arrival, the EU increments the counter using a FA-ADD in-
struction. Next, the epilog PUSHes the register value onto the
packet stack alongside the Paxos round number, which is a
constant zero for the fast-path phase of Paxos. The epilog
also changes the program counter to the acceptor DPF and
performs multicast steering action to send the packet to all
acceptors.

Resource Utilization

Exact match Xbar 24%
Ternary match Xbar 20%

TCAM 41%
SRAM 57%

Hash bit units 49%
Hash distribution units 72%

Gateways 17%
Action instruction memory 85%

Logical tables 73%
Normal PHV containers 64%

Table 3: SwitchVM resource utilization on Tofino-1 with 4
EUs and 4 lanes per EU.

Acceptor. Three n-sized arrays are allocated; one in EU0,
two in EU2. The first array holds a list of Paxos round values
per proposition. Similarly, the second and third arrays hold
the most recent value and the Paxos vround value for each
proposition, respectively.

The prolog POP-s the value proposition, its index i (i < n),
and the round number from the packet stack. EU0 performs
an atomic fetch and max (FA-MAX) between the locally saved
ith instance’s round number and the one extracted from the
packet. Next, EU1 compares these two values. If the local
round number is larger than that of the packet, the packet
is dropped. Otherwise, EU2 updates the ith vround entry to
hold the new round value and alters the ith value to the one
suggested by the packet. Then, the epilog multicast-s the
packet to all learners.
Comparison to P4xos and NoPaxos. The leader is func-
tionally identical to NoPaxos. Constraints similar to the ones
presented for the KVS application (§4.1) limit the values to
4B, compared to 32B in P4xos.

B Resource Usage

Table 3 reports total resource consumption of the SwitchVM
prototype. Table 4 shows the resource consumption of various
DPFs in terms of SwitchVM resources.

C Additional Applications

Tiny Packet Programs. SwitchVM extends Tiny Packet Pro-
grams (TPP) [21] with the ability to do complex computations
instead of a handful of simple instructions. This allows, for
example, aggregation of the maximal hop latency along the
path instead of collecting the samples into the packet.
Distributed coordination. A small amount of stateful mem-
ory can be used for implementing several distributed latency-
sensitive coordination tasks, including leader election, aggre-
gation, and distributed barriers.
NetChain. NetChain [22] performs in-network coordination
between switches. It requires similar functionalities as in



App EU0 EU1 EU2 EU3 FWDDir Seg Mem Dir Seg Mem Dir Seg Mem Dir Seg Mem
Cache k k 3 3k 1 k 1
Sketch 3 3k
LB1 3 3k 1 1 k
LB3 2 2k k

Leader 1 1 1
Acceptor 1 k 1 2 2k+1 1

Available total 45K 6K 180K 45K 6K 180K 45K 6K 180K 45K 6K 180K 32K

Table 4: SwitchVM resource consumption for various DPFs. k stands for the size of each DPF (top to bottom): number of cached
keys, number of counters in sketch, number of servers, number of servers, N/A, number of value propositions.

Paxos and NetCache, both already implemented. Source rout-
ing can be performed using the in-packet data stack.
Complex functions. Turing-completeness allows building
arbitrary functions using packet recirculation and the code-
pointer changing mechanism. For example, one can imple-
ment bubble sort in a few DPFs, i.e., element swapping DPF,
comparison DPF, and an iterator DPF.
Fast-path/slow-path. By adding mirroring capabilities to the
steering module, complex data-plane operations can split the
traffic to fast-/slow-paths. For example, all packets execute
a DPF that selects which packets to mirror at egress while
changing their code pointer to a slow-path DPF, which may
be a complex Turing-complete program.

D Control Unit Implementation

We now describe how the control logic parses the DPF fields
and changes the execution flow. The DPF fields that are
taken into account in the control unit are CTRL_OP, PC_TAKEN,
PC_NTAKEN, SEL_OP1, SEL_OP2, IMM_OP1 and IMM_OP2. We
refer the reader to Figure 5 for a complete list of the DPF fields.
PC_TAKEN and PC_NTAKEN contain pointers to the next execu-
tion unit’s instruction, or for the epilog code in the last EU.
It can point to either an in-packet instruction, or an in-switch
one.

Figure 11 provides an overview of the control logic. At first,
the operands are acquired based on the SEL_OP1 and SEL_OP2
fields. Each of these fields may either represent a register in-
dex or denote that an immediate value should be loaded from
one of the IMM_OP fields. After obtaining the operands they
get compared using five operators (CMP component in Fig-
ure 11): bitwise-AND, bitwise-XOR, saturated-subtraction,
sign-operand1, and sign-operand2. The outcome is a vector
that holds the results of all operations.

Next, a branch resolution unit takes the CTRL_OP data-field
for determining the next program-counter value. This is per-
formed using a TCAM selection that finds the first matching
result and acts according to the output action, effectively
implementing a long if-else-if operation. Depending on the
result, the code for the next stage is loaded from either the
packet or the stage local instruction memory. The table is
configured as follows (underscores represent don’t-cares):

table branch_tbl {
key = {

ctrl_op : ternary;
bitwise_and : ternary;
bitwise_xor : ternary;
sat_sub: ternary;
oprnd1_sign : ternary;
oprnd2_sign : ternary;

}
entries = {

(HALT, _, _, _, _, _) : halt();
(JMP, _, _, _, _, _) : taken();
(BSET, 0, _, _, _, _) : not_taken();
(BSET, _, _, _, _, _) : taken();
(BEQ, _, 0, _, _, _) : taken();
(BEQ, _, _, _, _, _) : not_taken();
(_, _, 0, _, _, _) : not_taken();
(BLT, _, _, 0, _, _) : taken();
(BGT, _, _, 0, _, _) : not_taken();
(BGT, _, _, _, _, _) : taken();
(BSLT, _, _, 0, 0, 0) : taken();
(BSLT, _, _, 0, 1, 1) : taken();
(BSLT, _, _, _, 1, 0) : taken();
(BSGT, _, _, _, 0, 1) : taken();
(BSGT, _, _, 0, 0, 0) : not_taken();
(BSGT, _, _, _, 0, 0) : taken();
(BSGT, _, _, 0, 1, 1) : not_taken();
(BSGT, _, _, _, 1, 1) : taken();
(_, _, _, _, _, _) : not_taken();

}
}

HALT stops the execution, JMP unconditionally choose the
instruction at PC_TAKEN for the next stage, all others op-
codes implement conditional branches by choosing between
PC_TAKEN and PC_NTAKEN based on the comparison result.
BEQ checks for equality, BLT and BGT check of less-than and
great-than inequalities of unsigned integers, BSLT and BSGT
are their signed counterparts, BSET performs a bitwise-and
between the operands and compares it to zero. Due to the
use of two-way branches, we can achieve more functionality
by swapping PC_TAKEN and PC_NTAKEN. For example, to im-
plement a less-than-equal branch we can use a greater-than
branch with swapped PC targets.

2L

oprand2
Selection

oprand1
Selection

compare

Branch
Resolution

CTRL_OP
taken

IMEM

A[L:1]
B[L:1]

C[2]
CMP

A[L:1]
B[L:1]

C[2]

PKT_OPT1

PKT_OPT2

A[L:1]
B[L:1]

C[2]
CMP

Next
Code

PC_TAKEN
PC_NOT_TAKEN

CTRL_OP

Figure 11: Overview of SwitchVM control unit.


	Introduction
	Motivation
	Challenges
	Packet Filters for Switches
	Target Switch Architectures

	Design
	Programming Model
	SwitchVM Design
	Filtering and Permissions
	Program Loading and Initialization
	Epilog and Steering
	Execution Unit
	Memory Access
	Control Flow

	P4 Extensions
	Control Plane
	Security

	Applications
	Key-Value Store Cache
	Load Balancer
	Paxos

	Implementation
	Resource Usage
	Limitations

	Evaluation
	Methodology
	End-to-End Applications
	Load-Aware Load Balancer
	In-Switch Cache for Key-Value Stores

	Microbenchmarks

	Related Work
	Conclusion
	The Paxos dpfs
	Resource Usage
	Additional Applications
	Control Unit Implementation

