In-Network Address Caching for Virtual Networks

Lior Zeno, Ang Chen, Mark Silberstein

Virtual networks *enable* the public cloud, but they are also *difficult* to manage.

Virtual-to-physical IP translation is challenging, but necessary for packet forwarding.

Sailfish: Accelerating Cloud-Scale Multi-Tenant Multi-Service Gateways with Programmable Switches

In-network IP address caching

Why Need efficient updates & fast routing How

Systematic approach backed by distributed computing results

Results

3

Better7.8×4.3×6.1×FCTFirst-packetBandwidth overhead

Background: Packet Forwarding in Physical Networks

Background: Packet Forwarding in Virtual Networks

Background: VM Roaming

Where to Perform Address Translation?

Host-Driven Design

 10^{6}

8

Gateway-Driven Designs

Sailfish: Accelerating Cloud-Scale Multi-Tenant Multi-Service Gateways with Programmable Switches, SIGCOMM'21. 9

The Tradeoff

Routing Performance

The Lookup-Update Tradeoff

Routing Performance

The Read (Lookup)-Write (Update) Tradeoff

The Dangers of Replication and a Solution Jim Gray (Gray@Microsoft.com)

THE COST OF DATA REPLICATION +

Hector Garcia-Molina Daniel Barbara

Department of Electrical Engineering and Computer Science Princeton University Princeton, New Jersey Ø8544

Our Idea: In-Network Address Caching

Agenda

- Background
- SwitchV2P: overview
- Challenges
- Design
- Experimental results

In-Network Address Translation

Cache Miss

Cache Hit: Source → Destination

Caching by Learning

Caching by Learning

The Greedy Approach

The Greedy Approach

Local Decisions are not Enough

Topology-Aware Caching

- Direct-mapped cache with small metadata (1 bit)
- ToRs learn source addresses
- GW ToRs learn destination addresses
- Evicted entries are spilled to other switches
- Popular entries are promoted to upper levels
- Move mappings to the traffic

Please see the paper for more details!

Updates

Updates

Goal

Minimize the number of misdelivered and invalidation messages

Key idea Cache coherence is not necessary

Keeping Correct Forwarding

Keeping Correct Forwarding

Lazy Invalidations

Simulations

- Large network topologies: 10K VMs, 128 servers, 80 switches (>800 switches for Alibaba)
- Traces: Hadoop, WebSearch, Alibaba RPC, Microbursts, Video
- Network- and application-level metrics
- Main results:
 - Up to 7.8× reduction in FCT and 4.3× reduction in first packet latency
 - Low miss rates (below 1%) same performance with an order-of-magnitude fewer gateways
 - Reduced network load
 - Low migration costs

Baselines

Hadoop: Hit Rate

Hadoop: FCT

Relative to the number of addresses (10K)

Updates: Results

	Avg. Packet Latency	Gateway Packets	Misdelivered Packets	Total Invalidation Packets
NoCache	1×	100%	1×	
OnDemand	0.25×	0%	11×	
SwitchV2P	0.25×	8.7%	1.2×	24

SwitchV2P reduces the load on the stale destination with a small number of invalidation packets

Conclusions

- Give the power to the switches!
- In-network address translation is practical and efficient
- Key ideas: topology-aware caching, move mappings to the traffic, and lazy invalidations
- Up to 7.8× reduction in FCT and 4.3× reduction in first packet latency
- Up to 6.1× reduction in bandwidth overheads

Thank you! Questions?

liorz@campus.technion.ac.il