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ABSTRACT
We present RQFTL, a demand-based FTL for mobile stor-
age controllers that boosts the effective Logical-To-Physical
(L2P) address translation cache capacity over state-of-the-art
techniques. RQFTL stores a large part of the L2P cache in a
compressed form, and employs a learned data structure called
RQRMI that leverages tiny neural nets to quickly find the
correct translation entry in the cache. RQFTL uses neural
network inference for cache lookups, and rapidly retrains
the neural nets to efficiently handle L2P cache updates. It is
specifically optimized to achieve high coverage for scattered
read accesses, making it suitable for popular read-skewed
workloads such as mobile gaming.

We evaluate RQFTL on hours-long real-world I/O traces of
popular modern mobile apps, including games, video editing,
and social networking apps collected on Google Pixel 6a
phone. We show that RQFTL outperforms all the state-of-
the-art FTLs in these workloads, increasing the effective L2P
cache capacity by over an order of magnitude compared to
DFTL and up to 5× over the recent LeaFTL. As a result, it
achieves 65%, and 25% lower miss rate compared to DFTL
and LeaFTL respectively, under the same SRAM capacity, and
allows reduction of the total SRAM capacity of a controller
by about a third of that of LeaFTL.
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1 INTRODUCTION
The storage demands of mobile systems are on the rise. Pop-
ular mobile phones already feature a TB-large SSD [46], and
many apps, such as games, video editing, and media, use GBs
of data on disk. Thus, maintaining high storage performance
is essential for a satisfactory user experience.
Such workload scaling puts significant pressure on inter-

nal Flash Translation Layer (FTL) structures, and in par-
ticular, the Logical-To-Physical (L2P) address translation
cache. The L2P translation table is itself stored on flash. Thus,
to avoid accessing the flash twice on each I/O, FTLs use a
memory-resident L2P translation cache that keeps the most
frequently-used page mappings. In mobile storage, the L2P
cache is particularly important not only for performance, but
also for reducing the dynamic power consumption of the SSD,
as it decreases the amount of reads of the L2P translations.
Many popular mobile apps feature read-skewed, mostly

random I/O accesses scattered across a wide range of logical
addresses. Our analysis of the three most popular I/O-heavy
mobile games (§3) corroborates this observation. For exam-
ple, the I/O accesses of Diablo are scattered over 120GB
without any visible spatial locality, and this behavior does
not change throughout the whole multi-hour gaming session
(Figure 2). Such access pattern results in poor locality of L2P
translation table accesses, and requires a large L2P cache to
accommodate growing working sets.

Increasing the size of the L2P cache is quite costly. Mobile
SSD controllers feature a small SRAM of about 512KB [21]

https://doi.org/10.1145/3688351.3689157
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and only about a half of it is available for the L2P cache. At
the same time, SRAM is known to be the dominant power and
area consumer on a die, so adding more SRAM would have a
sizable negative impact on the cost of the controller and its
power consumption. For example, the area size of an ARC
EM6 embedded processor used in popular SSD controllers is
about 0.01𝑚𝑚2 1 whereas 512KB-large SRAM block at 7nm
technology is 0.28𝑚𝑚2 [27].
Another solution is a Host Performance Booster [21],

where the L2P cache is stored in the phone’s DRAM. How-
ever, this mechanism is no longer supported by the Android
Linux Kernel due to a lack of community interest [8]. The
successor technology, zoned UFS, has not been adopted so
far either [9].
A preferable alternative is to reduce the L2P table’s foot-

print by leveraging its internal structure. Specifically, prior
works [18, 44] observed that the L2P table often contains con-
tiguous strides of logical page addresses that are mapped to
contiguous strides of physical pages. Thus, a more compact
representation is to store one mapping per range. For exam-
ple, the recent LeaFTL [44] demonstrated that such ranges
are abundant in the enterprise SSD setting, and exploiting
them in the FTL reduces its memory footprint.

However, applying range-based compaction inmobile stor-
age controllers turned out to be tricky. We found that the
data structures to allow efficient lookup and update of ranges
incur prohibitively high space overheads. These overheads
are less critical for enterprise-grade SSDs targeted by LeaFTL,
as they keep the whole L2P table in a DRAM of several GBs.
In contrast, for mobile storage controllers, almost a half of
the SRAM capacity dedicated for the L2P cache is wasted on
these data structures (see §3 for the detailed analysis).
We introduce RQFTL, a novel approach for range-based

L2P compaction with a small memory footprint suitable for
mobile storage. RQFTL improves the SRAM space utilization
compared to LeaFTL, extending the effective L2P cache cov-
erage thereby reducing translation miss rate in mobile work-
loads. Our key idea is to use a recent space-efficient range-
matching data structure, RQRMI [39]. One of the unique
aspects of RQRMI is its use of tiny neural networks to enable
fast range matching while storing the ranges in a dense array.
Thus, the space overheads of RQRMI are determined by the
neural network size, which is independent of the L2P cache
capacity and sums up to about 6KB.
The challenge, however, is that RQRMI does not support

fast updates: its neural networks must be retrained to incor-
porate new mappings added to the cache, and the training
may take a few milliseconds, which clearly cannot sustain
a realistic L2P cache update rate. To solve this problem, we

1https://www.synopsys.com/dw/ipdir.php?ds=arc-em4-em6

introduce a small Short-Term Cache to absorb all the cache in-
sertions. This cache stores themappings in a space-inefficient
but small hash table. The newly cached ranges are periodi-
cally transferred into a large Long-Term Cache indexed using
space-efficient RQRMI. Cache lookups start in the Long-Term
Cache, and, if missed, continue to the Short-Term Cache.
These two caches share the same SRAM space, which is dy-
namically partitioned among them depending on the access
pattern.
RQFTL effectively serves most read I/O operations with

the read-after-read reuse pattern from the Long-Term Cache.
Instead, reads with the read-after-write reuse pattern are
served from the Short-Term Cache. Since our target work-
loads are read-skewed, a large portion of the cache space
is indexed using the space-efficient RQRMI data structure.
The result is a logically unified L2P cache with low space
overheads.
We implement RQFTL in a WiscSim [14] SSD simulator

and thoroughly evaluate it using a variety of real-world
block-I/O traces from several popular I/O-intensive mobile
apps. For that purpose, we collect a large set of new mobile
traces while running apps from popular categories, including
video editing, social instant messaging, and several games,
with over 24 hours of traces in total. We run the apps on a
Google Pixel 6a mobile phone and record the traces using
a small eBPF program without modifying the Android ker-
nel. We put special emphasis on mobile games as they are
the most downloaded type of mobile apps with the annual
number of downloads higher than all other app categories
combined [43].
On microbenchmarks RQFTL demonstrates up to 40×

higher cache capacity than the popular DFTL [13] and up
to 5× compared to LeaFTL [44]. It achieves 1.65× and 1.25×
lower miss rate in the mobile application traces compared
to them. In synthetic benchmarks that stress the L2P cache,
RQFTL achieves up to 3.6× and 2× lower miss rate com-
pared to DFTL and LeaFTL, with an overall latency speedup
of 1.5× and 1.2×, respectively. Notably, these read perfor-
mance benefits come without degrading the performance in
write-intensive workloads. Last, RQFTL reduces the total L2P
cache SRAM capacity by a third of that required by LeaFTL
while achieving the same I/O performance. Importantly, we
show that the computational and power overheads due to
the RQRMI training are negligible.

2 BACKGROUND
SSDs consist of several flash packages which allow perform-
ing many read, program (write), and erase operations in
parallel. Read and write operations are performed at a page
granularity, typically 4KB in size. Yet, a page must be erased
before it can be written. Erasure is performed at a flash block

https://www.synopsys.com/dw/ipdir.php?ds=arc-em4-em6
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SSD type Memory type Memory size L2P cache

Enterprise DRAM 1GB per 1TB of capacity All entries
Consumer SRAM Hundreds of KB [21] Hot Entries

Table 1: Properties of different SSD types.

granularity, where blocks are often groups of hundreds of
pages [36].
Flash Translation Layer (FTL). Flash erasures are much
slower than writes. Thus, data updates are performed out-of-
place. The Flash Translation Layer (FTL) maintains dynamic
mapping from logical addresses, called Logical Page Numbers
(LPNs), to the corresponding physical addresses, called Phys-
ical Page Numbers (PPNs). The mappings are maintained in
a Logical to Physical (L2P) table, which itself is stored on
flash. To avoid two accesses to the flash for each I/O (first to
translate LPN to PPN and then to the actual data page), the
FTL caches the L2P table in a dedicated fast memory such as
DRAM or SRAM.
Types of SSDs and L2P cache. Table 1 summarizes themain
differences between the SSDs of different types. Enterprise-
grade SSDs must satisfy strict tail latency guarantees, so
they store their entire L2P map in a DRAM hosted on the
SSD itself. Consumer-grade and mobile SSDs are DRAM-
less. They are equipped with a small SRAM, which serves a
cache for the most frequently used L2P mappings. These are
fetched from the flash on-demand by the FTL. Hence, such
FTLs are called demand-based. In the rest of the paper, we
focus on such demand-based FTLs for mobile storage devices.

Mobile SSD overview. Figure 1a shows a high-level struc-
ture of a mobile SSD. The SRAM stores three main objects:
a write buffer used to absorb writes before they reach the
flash, the L2P cache, and aGlobal Translation Directory (GTD)
which holds the location of the L2P mappings on the flash
as explained below.

In flash, L2P mappings are stored in dedicated pages called
translation pages (TPs). A typical TP holds 1K mappings.
When the mappings within the TP are modified, the TP
needs to be rewritten to a new PPN. The mapping between
a TP LPN and its PPN is stored in the GTD.

Mappings could be performed at the granularity of pages,
blocks, or some combination of the two [13, 26, 50]. We
focus on page-based mapping, which is more popular for its
efficiency, but comes at the cost of a larger memory footprint.

2.1 Range-matching using Neural Nets
Range-matching algorithm finds an integer interval (range)
that contains an input integer out of a given set of non-
overlapping ranges. For example, for the input 3 and the

Flash 
packages

SRAM
embedded

CPUs
Write 
buffer

GTD

L2P 
cache

UFS interface

(a)

In: 𝑥

RQRMI

𝑅1 𝑅2 𝑅3 𝑅4 𝑅5
…

Est: Ƹ𝑖 = 2
Err: e=1Search

Area

Range Array
Out: 1
𝑥 ∈ 𝑅1

(b)

Figure 1: (a) Mobile SSD Overview. (b) RQRMI [39]
lookup procedure.

dataset 𝑅1 = [0, 4], 𝑅2 = [7, 9], the algorithm produces 𝑅1 as
its output. Similarly, the input 6 produces NIL.

This work uses range-matching to find the L2P mappings
in the compressed L2P cache. Classical range-matching algo-
rithms require traversing a tree that stores the ranges [47],
but this approach does not scale well. Recently, a new range-
matching technique called Range-Query Recursive Model In-
dex (RQRMI) was shown to improve scalability and efficiency
of the existing techniques. So far, RQRMI has been used in
networking [39], but we apply it to L2P lookups in this work.

The RQRMI model is a mixture of experts (MoE), compris-
ing a hierarchy of tiny fully connected neural nets (Multi-
layer Perceptrons), each with one input, eight hidden nodes
with ReLU activation, and one output [39]. The model is first
trained to learn the distribution of sorted, non-overlapping
integer ranges 𝑆 = {𝑅1, 𝑅2, . . . , 𝑅𝑛} in memory. We call 𝑆 a
Range Array. A query (Figure 1b) is performed in two steps:
(Step 1) The input 𝑥 is fed into the RQRMI model which
outputs the estimate of the index of the matching range in
𝑆 (𝑖) and an upper bound on the prediction error computed
during training (𝑒 < log𝑛); (Step2), a secondary search over
a subarray of 𝑆 at [𝑖 − 𝑒, 𝑖 + 𝑒] outputs the index (if there is a
match). In the example, 𝑖 = 2, 𝑒 = 1, and the matching range
is at 𝑖 = 1.
RQRMI is the only learned index data structure that sup-

ports range-matching and guarantees small memory foot-
print and lookup correctness. The time to training a model
depends on the RQRMI size and the end-goal lookup la-
tency [40]. For the models used in this work, the training
takes a few milliseconds.
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3 MOTIVATION
3.1 Analysis of I/O-heavy mobile apps
Modern mobile apps pose significant performance and capac-
ity requirements for storage. In this paper, we put a particular
emphasis on mobile games. Games are by far the most popu-
lar segment of apps: they are the most downloaded type of
apps exceeding all other app categories combined [43]. At
the same time, many popular games are quite I/O heavy, con-
suming hundreds of GBs of space on the SSD, and featuring
multi-GB working sets.
We collected several hours-long gaming I/O traces on a

modern Google Pixel 6a phone (we provide more details on
the trace collection methodology in §7.1). Figure 2 visual-
izes the access pattern over time for three representative
games. We can see that the I/O operations are dominated by
many reads scattered over random LPNs. Moreover, adjacent
accesses often span large address ranges, so their L2P map-
pings are located in different Translation Pages (TPs). We
believe this behavior stems from loading many small assets
throughout the game. At the same time, we assume the I/O
access latency is critical for a pleasant gaming experience.
This kind of access pattern is particularly challenging

to serve at low latency as it is not L2P cache-friendly, in
particular under stringent L2P space constraints. Specifically,
each miss in the cache results in doubling the number of flash
accesses on each read (i.e., one access to the page with the
LPN-to-PPN mapping, and the other to the actual data). Not
only L2P misses affect the read latency, but they also increase
the dynamic power of the storage device accordingly.

3.2 Why not host-side L2P caching
Host DRAM is sometimes used to increase the memory for
FTL [21, 42]. Specifically, Host Performance Booster (HPB)
dedicates a few hundred MBs from the host’s DRAM to store
the FTL data structures, including the L2P cache. It also uses
the host CPU to execute FTL operations [21].

Nevertheless, HPB has disadvantages: it uses CPU cycles
and DRAM capacity that would otherwise be available to
user applications. Moreover, for energy-sensitive devices,
the use of the host CPU is not an option. Last, HPB support
has been removed from the Linux kernel [8].

ZUFS (zoned UFS) [16] is expected to be HPB’s successor.
However, it also puts pressure on the host resources, and
some smartphone makers do not intend to support it [9].

3.3 FTL compaction using ranges
Techniques such as SFTL [18] and LeaFTL [44] take advan-
tage of the fact that multiple logically contiguous pages are
often written sequentially into physically contiguous pages

on the disk. Thus, a single compressed entry can encode mul-
tiple mappings in a single range. Such a compact represen-
tation of the mappings helps increase the number of L2P
mappings in the cache.
For example, for a single write spanning three logical

pages, the SSD allocates three contiguous LPNs 0x0001,
0x0002, 0x0003 and three contiguous PPNs 0x1001,
0x1002, 0x1003. Thus, instead of saving three mapping
entries, a single range mapping entry 0x0001-0x0003 ->
0x1001 suffices.
Range-based compaction depends on the availability of

ranges in the LPN and PPN address space. The former is predi-
cated on the low fragmentation of the LPN space. Fortunately,
low fragmentation is beneficial for the SSD performance in
general, and it is one of the design goals of modern file sys-
tems, therefore we assume that it is indeed a common case.
On the other hand, PPNs are mostly allocated and written
sequentially to the same flash block by design, therefore the
same-write allocations are usually contiguous in the PPN
space. Arguably, some PPN ranges get eventually broken
during garbage collection, but as most of the storage space is
written rarely, the vast majority of ranges will remain intact.
In practice, LPNs and PPNs are allocated when the data is
being written, so the range sizes are dictated primarily by
the size of the SSD write requests.
The recent LeaFTL project explored the opportunity to

compact L2P mappings using ranges, with an average range
size of about 4-5 pages in real-world enterprise storage traces.
We make similar observations for mobile apps, i.e., the aver-
age range size in Genshin Impact game trace varies between
25 and 75 pages (see §7.3).

3.4 Range compaction for mobile FTL
LeaFTL demonstrated impressive performance benefits of
range-based compaction compared to other popular FTL
techniques such as DFTL [13] and SFTL [18]. However, it
focused primarily on enterprise SSDs with abundant DRAM.
Thus, the compaction of the L2P table in DRAM allowed
allocating more DRAM space for the data cache, leading to
improved end-to-end performance.
In contrast to enterprise SSDs, mobile storage SSDs do

not have enough space for data caching. Thus, the primary
benefit of range-based compaction is to increase the L2P
cache coverage, and as a result, reduce read latency and
power consumption.

We, therefore, attempted to apply LeaFTL inmobile setting.
Unfortunately, we find that LeaFTL suffers from certain space
overheads that have been relatively negligible in enterprise
SSDs but make LeaFTL less suitable for mobile devices. We
discuss these next.
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Figure 2: The I/O access pattern (LPNs accessed over time) of three popular games (see §7.1 for the collection
methodology): Call of Duty (CD), Diablo (DB), and Genshin Impact (GI). The first 100K I/O operations are shown.
The leftmost subplot shows the entire address span, and the subplots to the right show the zoomed-in LPN range
in the red box. The blue dots are read commands, and the orange are write commands.

3.4.1 Space overheads of LeaFTL. We now give a brief back-
ground on LeaFTL and then discuss its overheads. Note that
SFTL [18] suffers from similar issues.
LeaFTL overview. LeaFTL [44] uses segmented linear re-
gression for recognizing patterns in its LPN to PPNmappings.
The compressed segments are sorted and stored in multiple
layers of a log data structure maintained for each Translation
Page (TP). Given an LPN, LeaFTL first searches the RAM
for the location of the TP that contains the mapping to the
relevant PPN. The TP’s mappings are stored in a multi-layer
log structure similar to a Log-Sort-Merge-Tree to support
fast updates. Specifically, the TP’s log is scanned layer by
layer, from top to bottom, until the most up-to-date seg-
ment that contains the LPN is found. Since the segments
are sorted in each layer, the in-layer search is performed via
binary search. Layers of the multi-layer log are periodically
flattened to reduce the number of layers to scan.
Unaccounted space overheads. Unlike uncompressed TPs
which can be stored in a simple array with fixed-size entries,
LeaFTL stores compressed TPs whose size depends on the
compressibility, i.e., the number of the ranges in that page.
Therefore, when compressed TPs are used, a hash table is
required for indexing the locations in memory of cached TPs.
However, a hash table incurs over-provisioning overheads to
avoid collisions. Further, the multi-layer log data structure,
which is an essential part of LeaFTL, requires a sorted data
structure with fast insertions such as an AVL tree. Such a data
structure relies on dynamicmemory allocation, implying that
pointers must be accounted as part of its memory footprint.
We are not aware of any other suitable data structure that is
more compact than AVL.
We calculated the actual memory footprint of LeaFTL

including the overheads as follows. We assume the best-case
scenario of highly compressible mappings, with a segment
size of 256. So a translation page is represented by 4 segments

with a memory footprint of 4 × 9 = 36 Bytes (each segment
is 9 Bytes: 4 Bytes for PPN, 2 Bytes for LPN offset from
translation page start, 2 Bytes for segment slope, 1 Byte for
segment length).
We note that originally, LeaFTL used translation pages

with only 256 LPNs and a segment memory footprint of 8
Bytes (The LPN offset was 1 Byte). However, we set the TP
size of 1024 LPNs, because it is better for LeaFTL as it reduces
the hash table overhead (4× fewer hash table entries).

Now, we consider the space requirements of all the other
data structures. First, each range is stored in a node of an
AVL tree. Each node has an overhead of 5 Bytes: 2 pointers
of 2 bytes each, and another byte for the AVL-related infor-
mation. This sums up to the overhead of 4 × 5 = 20 Bytes
per translation page.
Secondly, we consider the hash table memory overhead.

Each entry in the hash table has a size of 5 Bytes (3 Bytes for
the translation page number, and another 2 Bytes to store
the translation page location in SRAM). The hash table size
is provisioned to suffice for the maximum number of cached
translation pages to avoid rehashing upon cache insertion,
with a moderate load factor of 0.5 [34]. This sums up to an
overhead of 1

0.5 × 5 = 10 Bytes per translation page.
Together, the AVL and hash-table overheads are 30 Bytes per

TP. This translates to 30
30+36 = 45% of the memory. This is a

pure overhead: only 55% of the SRAM capacity is used to store
the actual mappings.

3.5 Opportunity: range-matching data
structures

The recent RQRMI range-matching data structure may re-
duce the above space overheads significantly, improving the
effective L2P cache capacity. As discussed in §2.1, RQRMI
uses a small learned model based on tiny neural nets to
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enable fast retrieval of matching ranges from a sorted ar-
ray, with strict performance guarantees. The model space
overheads depend on the total array size and the desired
lookup performance. In our case, the model may occupy as
little as 6KB, a negligible overhead for a 256KB cache, and a
significant improvement over LeaFTL.

Compelled by these observations, we design the L2P cache
using the RQRMI model as its main data structure.

4 DESIGN
4.1 Considerations
Using RQRMI as the basis for the L2P cache management is
challenging because, fundamentally, RQRMI is an immutable
data structure. Thus, adding or removing a range requires
retraining RQRMI neural networks on the updated array of
ranges. Doing so on every cache update is not feasible.
There have been several attempts to enable updates to

learned data structures [7, 10, 29]. There are three main
approaches: (1) using Log-structuredMerge (LSM) Trees [30],
(2) leaving unoccupied gaps in the sorted data array to afford
insertion of new entries [7], and (3) absorbing updates in
an auxiliary updatable data structure. All these approaches
periodically retrain the model on the updated data.
We decided against the first two approaches. LSM trees

have significant space and management overheads such as
space amplification [30] that we strive to avoid. The second
approach also wastes space and results in slower lookup
unless the model is retrained. This is because the insertions
effectively make the model less precise with respect to the
new data, so the model outputs more loose predictions and
results in a longer search. Further, this approach is not suit-
able for caches: there could be a burst of insertions that
might exhaust the gap between two adjacent array entries,
so accommodating new entries would require evicting older
entries in the same area of the array. However, such an evic-
tion policy would be far from optimal, thereby affecting
cache performance.
Thus, we adopt the idea of maintaining a single updat-

able data structure that absorbs the updates. We periodically
merge its content into the RQRMI range array, and retrain
the model.
We note that the updatable and immutable parts of the

cache compete for the same memory space. The amount
of memory allocated for each part depends on the access
pattern and may have a significant effect on the cache perfor-
mance. We discuss how RQFTL deals with dynamic memory
partitioning in §4.7.

4.2 Overview
RQFTL L2P cache comprises two parts: an updatable sec-
tion called Short-Term Cache (STC) and an immutable section

Short Term Cache (STC) Long term Cache (LTC)

RQRMI 
model

Translation Page #304

Flash
SRAM

Translation 
Page Data Page

Translation Page #101 

Translation Page #201 

Transfer Buffer

New
RQRMI 
model

Range Array

⋮
Range
matching

New Ranges Array

Figure 3: The RQFTL L2P cache design has two parts:
Short-Term Cache (STC) and Long-Term Cache (LTC).
All updates are first inserted into the STC and period-
ically merged into the LTC using the transfer buffer,
followed by an RQRMI training.

called Long-Term Cache (LTC). The former may use any ex-
isting cache, whereas the latter uses RQRMI. All the L2P
updates are absorbed in the STC and then periodically trans-
ferred to the LTC. The lookup first checks the LTC, and if
missed, continues to the STC.

During the transfer of the ranges from the STC to the LTC
(§4.5), the merged array that aggregates the contents of both
caches is temporarily stored in a transfer buffer. This array is
used to train a new RQRMI model. The retrained model that
incorporates the new ranges is placed in LTC, atomically
replacing the old one.

The old LTC mappings stay available during the transfer
process. The training uses a dedicated embedded core, so the
lookup latency is not affected. The core can be repurposed
for other tasks when write intensity is low (§7.4).

We now describe the cache structure in detail.

4.3 Short-Term Cache (STC)
The STC may use any existing FTL. We chose SFTL [18] for
its small memory footprint and simplicity. A single cache
line in the STC is a single Translation Page (TP). The cache
is managed in a hashtable.

Each cache line keeps an AVL tree of ranges and a bitmap
that encodes the ranges’ stating LPN and length efficiently.

We note that the size of the STC changes dynamically de-
pending on the STC-to-LTC partitioning §4.7. However, since
the STC is designed to store the minority of the mappings in
the L2P cache, the overall overhead of its data structures is
relatively small. Each cache line in the STC has a dirty bit
reflecting that the translation page on flash must be updated.
Caching individual ranges. SSD writes create new L2P
mappings as they are performed out-of-place. Typically, the
relevant translation page is fetched from the flash to be
merged with the updated mappings and thus is cached in
its entirety in the L2P cache. However, the STC only stores
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the individual updates, which we call patches, and the ac-
tual merge occurs only upon patch eviction. This technique
further reduces the memory requirements of the STC.
STC cache policy. The small size of the STC allows us to
maintain a precise LRU replacement policy at the granular-
ity of a single translation page. Note that STC is managed
independently of the replacement policy of the LTC. The
LRU list is updated on every lookup.
Insertion. We define two types of insertions: read-insertion
and write-insertion, due to SSD reads and writes respectively.
Upon read-insertion, a whole translation page is fetched from
the flash and stored in the STC cache line. The cache evicts
one translation page entry according to the LRU policy.
Upon write-insertion, if a translation page is already

present in the STC, a new patch for that range is inserted,
and the translation page is marked dirty. In addition, if the
LPNs of the inserted range are found in any ranges already
cached in the LTC, those ranges are invalidated in the LTC
to ensure that the lookups return the most recent updated
range (recall that upon the lookup the LTC is queried first).
Eviction.A translation pagewithout dirty ranges is removed
from the cache without further actions. A dirty translation
page is written to flash. If the STC holds only a subset of
the mappings in a translation page, the translation page is
first read from flash to merge the updates and only then is
written back.

4.4 Long-Term Cache (LTC)
The LTC is maintained in an RQRMI data structure. Specifi-
cally, RQFTL stores LPN ranges in a range array, sorted by
the starting LPN. Each range is represented using 9 Bytes: 4
bytes for the starting LPN, 4 bytes for the starting PPN, and
1 byte for the range length. Ranges are limited to at most
255 pages as we found that larger ranges are rarely created.
An RQRMI model is trained on that range array (§2.1).
LTC cache policy. As the size of the LTC is quite large,
we approximate the LRU behavior using a well-known one-
handed CLOCK algorithm [3]. Each range has an “accessed”
bit, updated upon a cache hit.When ranges need to be evicted,
we run through the range array, marking for eviction the
ranges with the cleared access bit, otherwise clearing it.
Range invalidation. The LTC maintains a validity bitmap
of the size of the ranges array. As mentioned earlier, when a
range is inserted into the STC, a prior version of the map-
pings in that range may already have been cached in one or
more ranges in the LTC. These LTC ranges must be invali-
dated. To do so, the relevant ranges are found by performing
RQRMI inference for all the newly inserted LPNs. The match-
ing ranges are marked as invalid and eventually evicted.
Eviction. Evictions are performed as part of the process that
merges between the STC and the LTC (see below). Note that

there are no dirty ranges in the LTC as they are all handled
by the STC, so the evicted ranges are simply removed from
the range array.

4.5 Transferring from the STC to LTC
New mappings in the STC are periodically transferred to the
LTC. The maximum frequency at which these transfers can
be performed is upper-bounded by the maximum training
rate of the RQRMI model. It does not depend on the number
of new ranges, but rather, on the size of the range array. A
transfer process starts once the previous one has finished
unless there are no newmappings to be transferred. We show
the impact of the transfer rate on the performance in §7.3.

The transfer process comprises the following steps:
(1) Selection of the STC ranges. Unmarked STC ranges

are moved to a temporary array in the transfer buffer
(Figure 3) and get marked by a dedicated bit per TP
in the STC. Updates that occur during the transfer
process clear the mark bit for their relevant TPs.

(2) LTC eviction. Invalid LTC entries and valid entries
of TPs marked in the STC are removed from the LTC.
If the transfer buffer contains more ranges than the
LTC can accommodate, the LTC eviction process (see
above) is invoked.

(3) Merge sort. The LTC entries are merged with the
ones in the transfer buffer. The temporary array is
then sorted.

(4) Training. The RQRMI model is trained on the tempo-
rary range array.

(5) LTC update. The new model and the updated array
are atomically replaced with the ones in the LTC. The
access bits of all new ranges are raised to avoid prema-
ture eviction.

4.6 Putting it all together
The following describes a step-by-step example of RQFTL
L2P cache operation (illustrated in Figure 4):
At t0, the STC is empty and the LTC contains the map-

pings of two translation pages (TPs): #99 and #101. At t1,
a read of an LPN in TP#100 causes a miss in both LTC and
STC; therefore, TP #100 in its entirety is fetched from flash
into the STC. At t2, the new mappings from TP #100 are
transferred from the STC to the LTC. At t3, a new RQRMI
model is trained on the new mappings. The version column
(v) in the LTC is changed from 0 to 1. TP#100 is held by both
the STC and the LTC and will eventually be evicted from the
STC (t4). At t5, an LPN in TP#100 is accessed and causes
an LTC hit. At t6, write events to LPNs 100-120 and 200-300
cause a patch in the STC and an invalidation of the respective
ranges in the LTC. At t7, TP#100 gets evicted from the STC.
At t8, LPN 800 from TP#100 gets accessed and hits the LTC
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Figure 4: RQFTL example (see §4.6)

since it is marked as valid. At t9, a read of LPN 250 in TP#100
occurs and causes a miss in both the LTC (marked as invalid)
and the STC (not covered). This leads to read-insertion and
the entire TP is fetched into the STC. Last, at t10-t11 the
new mappings are transferred from the STC to the LTC. This
results in purging the invalid entries in the LTC, merging
the rest with the STC, and training a new RQRMI model.

4.7 Optimizations
Dynamic memory partitioning between the STC and
LTC. The STC and LTC share the same memory space: in-
creasing the size of one comes at the expense of the size of
the other.

The partitioning primarily depends on the access pattern.
For example, a read-only workload with a large working set
would benefit from a larger LTC, whereas a write-intensive
workload with read-after-write reuse would work better with
a larger STC. Another factor that affects the partitioning is
the RQRMI training rate, which determines the freshness of
the LTC. We discuss the impact of the training rate in §5.

In contrast, bad partitioning might lead to a severe perfor-
mance drop. Since updates are performed in the STC it needs
to be large enough to avoid thrashing, otherwise leading to
slow SSD performance and shorter lifespan.
These observations highlight the inherently workload-

dependent nature of the partitioning. Therefore, RQFTL takes
an elastic approach where the STC size is determined by

the intensity of L2P updates. RQFTL keeps a counter of the
number of updated translation pages occurred between the
LTC-to-STC transfers. Thus, the counter offers an estimate
of the necessary space in the STC. We use a short-term run-
ning average of the history of the counter values to avoid
abrupt changes. The remaining space is used for the LTC. The
size of the STC is limited to 512 translation pages we found
empirically to work well with the partitioning heuristic.

Note that adjusting the partition size causes eviction from
the cache part whose size gets reduced.
Reducing the transfer buffer size. The L2P cache must op-
erate correctly during the STC-to-LTC transfers. Therefore,
while training the new RQRMI model on the transfer buffer,
the LTC with its old RQRMI model and its respective range
array must be kept intact. This way, the effective memory
footprint of the LTC is doubled, which is unacceptable.
To reduce the space requirements of the transfer buffer,

we randomly partition the original range array into multiple
disjoint arrays we call fractions. Each fraction holds a subset
of the ranges in LTC, and is indexed with its own (smaller)
RQRMI model. Thus, for 𝐹 fractions, the size of the transfer
buffer is 1/𝐹+1 of the total SRAM capacity. We use a simple
hash function to find the fraction that holds the mappings
of a specific LPN. The STC-to-LTC transfers are performed
for each fraction at a time in a round-robin manner.
Coalescing multiple ranges. RQFTL uses the write buffer
to aggregate writes. When the buffer is full, it is written to
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the flash. Before writing, the data pages are sorted according
to their linear addresses. This process allows us to coalesce
adjacent ranges thus allowing the creation of larger ranges.

4.8 End-to-end memory footprint analysis
The translation pages in the STC are indexed by a hash table,
with a load factor of 0.5, and entry size of 10B, exactly as
we assumed for the LeaFTL analysis (§3). However, since
we limit the STC to 512 translation pages, the hash table
overhead for RQFTL is at most 512 × 10𝐵 = 5 KB.

The space overhead in the LTC has two factors: the trans-
fer buffer, and the RQRMI models. Assuming 𝐹 = 12, the size
of the transfer buffer is 1/13 of the LTC size, which is less
than 20KB for a 256KB L2P cache. The 12 RQRMI models
have a memory footprint of 6KB in total. Together, the LTC
space overhead is no more than 26KB. Thus, the total space
overhead of RQFTL is at most 31KB, and it is independent of
the total capacity of the L2P cache.

5 DISCUSSION
Read-optimized FTL design. Our L2P design deliberately
optimizes for read-skewed workloads with short read I/Os,
low spatial locality, and large reuse distance, which is com-
mon in mobile I/O-heavy apps that motivated this work (§3).
This is because RQFTL allocates the largest part of the cache
to the LTC that serves SSD reads, whereas the range updates
due to SSD writes are stored in the small STC. As a result,
RQFTL performs well in a workload with read reuse. Yet, it
is on par with the state-of-the-art in workloads with read-
after-write reuse pattern, as corroborated by the evaluation.
Training time and end-to-end cache behavior. Note that
the transfer of new mappings from the STC to the LTC is not
synchronized with the cache metadata management. Such a
design ensures that the training process is not in the critical
path of the cache updates.
However, the cache performance may suffer due to slow

RQRMI training. In one extreme, if the training is slow and
STC-to-LTC transfers happen infrequently, the LTC will
not reflect the actual working set of the cache, whereas the
STC will likely start thrashing. On the other extreme, if the
training time is short, the STC and the LTC are no longer
separate.
We evaluate the impact of the training time on the end-

to-end performance in §7.3.
Crash consistency. RQFTL relies on the standard capacitor-
based approach to crash consistency of mappings. When the
power goes down, the dirty translation pages are written to
flash. Importantly, only the STC contains dirty mappings, so
the LTC can be shut down without consuming power.

Other core FTL functions. RQFTL focuses only on the
L2P cache and does not introduce changes to the core FTL
functions, such as a Garbage Collector.

6 IMPLEMENTATION
We implement RQFTL in WiscSim [14], a well-established
trace-driven SSD simulator. We use the same version of the
simulator as the most recent LeaFTL [44] project, thereby
allowing fair comparison with LeaFTL.
Our implementation follows the description in §4, and is

enclosed in the L2P cache logic.
We inherit the extensions introduced by LeaFTL [44], and

further enhance the simulator as follows 2:
PPN allocation scheme. Upon write buffer eviction, the
simulator allocates PPNs for the flushed data pages. The PPNs
are allocated sequentially, to allow the creation of ranges.
However, in the original simulator, sequential PPNs were
stored in the same flash block, on the same flash die. Since
flash dies can only perform one operation at a time, such an
allocation policy did not exploit the inter-die parallelism and
harmed the write performance.
To remedy this, we changed the constant mappings be-

tween PPNs and the location in the physical flash hierarchy.
In the new mapping, sequential PPNs are striped into differ-
ent flash dies. In other words, instead of numbering pages
from the same block as sequential PPNs, we number pages
from the same stripe as sequential PPNs. This concept was
presented in [48]. It is worth noting that the new numbering
scheme is static and does not introduce additional lookups.
Grouping of translation pages. Recall that the GTD holds
the physical locations of the translation pages. Consequently,
the number of consecutive TPs per GTD entry dictates its
total size. Therefore, it is common to group several TPs to-
gether to reduce the GTD size. For example, a 1TB SSD with
4K pages supports an overall of 256K TPs. Thus, if the TPs
are not grouped, the GTD would take 1MB of SRAM (256K
TPs with 4B per PPN). Instead, we use groups of eight TPs
so the GTD size is reduced by 8. Naturally, every rewrite of
a TP requires modification to the whole group.
RQRMI.We use the open-source implementation of RQRMI
inference [39] and re-implement the fast training tech-
nique [40] without SIMD acceleration.

7 EVALUATION
We seek to answer the following questions:

(1) How does RQFTL compare to state-of-the-art FTLs on
different workloads?

(2) What is the effect of the design parameters on the
performance?

(3) What are the resource overheads?
2We intend to open-source our changes upon acceptance.
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7.1 Methodology
Baselines.We compare RQFTL with three page-based on-
demand FTLs: DFTL [13] that is commonly used in practice,
SFTL [18] that employs per-TP range compression, and the
most recent LeaFTL [44] that uses advanced L2P compression.
We implement SFTL andDFTL inWiscSim, and use the public
version of LeaFTL [44]. For a fair comparison, we include the
memory footprint overheads (§3) for all FTLs. We consider
a variation of DFTL which caches entire translation pages
instead of individual LPNs.
Configuration of the simulated SSD. Unless stated other-
wise, we configure the capacity to 1TB and allocate 128KB for
the write buffer, 128KB for the Global Translation Directory,
and 256KB for the L2P cache. Hence, the total SRAM size
is 512KB. These numbers match the typical sizes of mobile
UFS SSDs [20]. We use 4KB data pages. In terms of parallel
resources, the number of planes in the SSD is configured to
512, which is similar to [12] considering the SSD capacity.
The flash read latency is 200𝜇s per page, and the flash write
latency is 1200𝜇s per page. We set the queue depth to 32
as configured in the Pixel 6a phone we use for collecting
the traces. We configure the L2P cache line size as a single
translation page in all FTLs. We note that LeaFTL originally
used a 4X smaller cache line size, which is impractical un-
der the memory constraints of DRAM-less SSD because the
cache index overhead would be too big. Note that garbage
collection wasn’t triggered for any of the FTLs.
Real-world traces.We collect I/O traces from several pop-
ular mobile applications using a Pixel 6a mobile phone 3.
For the trace collection, we instrumented the Android Linux
Kernel using a special eBPF function that recorded all the
accesses to the storage devices on the phone, on the block
level. We made sure HPB is disabled.
The main characteristics of all the collected traces are

shown in Table 2. Among the apps we used, we specifically
included a subset of the most popular games, with the largest
storage footprint that could fit on our phone: Pubg, Call of
Duty, Diablo Immortal, and Genshin Impact 4.
In addition, we collect the traces of several representa-

tive storage-heavy applications from other popular app cate-
gories such as social media (Telegram), picture collections
(F-Stop gallery), and video editing (YouCut video editor).

The traces were collected while actively using the apps for
several hours. As a result, the traces also include the I/O ac-
tivity of other processes concurrently running on the phone
in the background. To ensure that the trace represents the
app being used, we explicitly checked that the vast majority
(over 95%) of the I/O requests originate from that app.

3The traces and the tools used to collect them will be published upon
acceptance.
4According to https://www.thegamer.com/.

We note that the phone has been extensively used before
the experiments, exhausting the SSD capacity and subse-
quently erasing data. Thus, we believe the traces feature a
realistic fragmentation of the LPN space on a disk. This is
further corroborated by the large span of accessed LPNs all
over the LPN address space of a 120GB SSD.
For completeness, we also evaluate RQFTL on the enter-

prise workloads taken from Microsoft Research Cambridge
(MSR) and Florida International University (FIU) [23, 33].
Trace initialization and replay. Each trace comprises two
parts: write I/O during the installation of the app on the
phone, and the actual app execution trace. We first replay
the installation I/O trace to initialize the FTL to create correct
L2Pmappings, withoutmeasuring system performance. Next,
we replay the execution I/O trace and report its performance
here. The simulator automatically pre-writes all the LPNs
that are read but do not have the matching write in the trace.

Unless stated otherwise, we obtain the performance results
by replaying the traces without their I/O timestamps, i.e.,
maintaining full SSD queues at maximum I/O rate. This is a
common practice in prior works [44].
RQRMI configuration. All RQFTL end-to-end measure-
ments use the RQRMI performance characteristics collected
from a single ARM Cortex A72 core @ 2GHz using the real-
world mobile traces mentioned above. We use small two-
layer RQRMI models with 4 NNs and train them using 16K
samples. The overall memory footprint used by RQRMI mod-
els is about 6KB. RQRMI training latency was set according
to our experiments §7.4.

The LTC fraction count (𝐹 ) was configured to 12.

7.2 End-to-end Results
Mobile traces. Figure 5 shows the end-to-end performance
of DFTL, SFTL and RQFTL. To put these results in context,
we also show the performance of an ideal L2P cache with
unlimited size. RQFTL achieves an average end-to-end miss
rate reduction of 65%, 24%, and 25% compared to DFTL, SFTL,
and LeaFTL, respectively, which translates into 15%, 4%, and
4% average read latency speedup. In specific applications,
such as Call of Duty (CD), RQFTL achieves 54% lower miss
rate compared to the second best SFTL, which results in 9%
improvement in read latency.
When taking writes into account, the overall I/O latency

improvement is lower. In addition, in write-skewed applica-
tions, SFTL and LeaFTL performance is on par or slightly
better than RQFTL. This is an acceptable result, as RQFTL is
specifically optimized for read-skewed workloads, but does
not cause performance degradation otherwise.
Server-grade traces.We run the server-grade storage traces
and observe similar performance as LeaFTL. More details
can be found in §11.

https://www.thegamer.com/
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Length
[cmds]

TP Reuse Distance
[cmds]

Write req size
[Pages]

Read req size
[Pages] LPN span

[GB] Read Ratio Workset Size
[GB]

Avg. SD Avg. SD Avg. SD

Call of Duty (CD) 2496029 2020.7 9799.3 28.9 60.7 11.3 28.6 117 0.91 5.1
Diablo (DL) 1898152 2417.2 12736.6 4.5 12.6 5.3 17.2 119 0.82 4.3
Genshin Impact (GI) 1022753 1202.6 5181.2 42 56.4 11.8 24.9 118.9 0.94 2.8
Pubg (PB) 658321 737 4031.9 12.4 31.2 6.3 32 119 0.48 2
Slideshow (SS) 4609251 16086.3 51323.2 38.1 31.6 4.3 8.4 119 0.94 1.9
Telegram (TG) 1538672 2304.5 14228.9 4.4 20.1 15.3 61.2 119 0.24 3.9
YouCut (YC) 8167619 2105 13791 80.9 58.2 29.7 7.6 72.4 0.99 10.1

Table 2: Statistics of real-world mobile app traces collected from the Pixel 6a phone.
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Figure 5: Performance on mobile workloads: Call of
Duty (CD), Diablo (DB), Genshin Impact (GI), Pubg (PB),
Slideshow (SS), Telegram (TG), YouCut (YC).
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Figure 6: Miss rate of RQFTL vs. LeaFTL and SFTL with
the cache sizes of 256KB and 512KB.

SRAM savings. To quantity the SRAM saving of RQFTL
over the alternatives, we measured how much more SRAM
would they need to get the same miss rate as RQFTL. As
seen in Fig. 6, LeaFTL needs 2× more SRAM to get the same
average performance. For some traces (Call of Duty and You
Cut), RQFTL gets even higher performance than LeaFTL
with the L2P twice as large. Also, if all FTLs get the enlarged
SRAM, RQFTL gets the lowest miss rate.
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Figure 7: Performance of different SRAM partitioning
methods in RQFTL. Three sizes of the STC (32KB, 64KB,
and 128KB) for the static method are evaluated.

For the total SRAM savings, we should include the GTD
and the write buffer. So all of them together with the L2P
cache occupy 512KB for RQFTL, and 768KB for LeaFTL. Thus
RQFTL saves about one-third of the SRAM capacity needed
to achieve the same performance. If we include the caches
of the on-die CPUs (64KB), then the savings reduce to 30%.

7.3 Detailed Analysis
Dynamic memory partitioning. Figure 7 compares the
performance of SRAM partitioning methods - dynamic (§4.7)
and static, on two representative workloads (Call of Duty and
Diablo Immortal games). It shows that there is no static STC
size that matches both workloads. For Call of Duty, STC size
of 64KB archives the best miss rate and R/W latency; while
for Diablo Immortal, 128KB is best. The dynamic method
gets the highest performance on all traces, without manual
configuration.
Synthetic benchmarks. We simulate the behavior of a
system under stress using synthetic workloads that consist
of two phases: a preconditioning phase, which issues many
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Figure 8: Performance on synthetic workloads for dif-
ferent reads/writes ratios. Ratio=1 - Read-only.

CD DL GI PB SS TG YC

RQFTL (×106 LPNs) 1.4 0.3 0.8 0.3 1.9 0.4 1.8
RQFTL/DFTL (rel. cap.) 26.2 7.5 17.2 13.6 38.3 17.5 30.3
RQFTL/SFTL (rel. cap.) 2.9 1.4 2.0 1.9 3.6 1.9 2.7
RQFTL/LeaFTL (rel. cap.) 3.7 2.0 2.3 1.4 4.7 1.6 3.9

Table 3: The effective L2P capacity for mobile traces.
RQFTL row: actual LPN capacity. Other rows: relative
capacity of RQFTL compared to other methods.

random write commands and results in a sequential PPN
page allocation, followed by a test phase, which issues a
configurable mix of read and write commands. We chose
such a workload because it is conceptually similar to the
contiguous-write-random-read access pattern in real traces.

Workload generation is as follows. We define an LPN span
that contains logical page addresses (e.g., 0-16GB), and ran-
domly select a set of pages on which the workload would
operate. This set of pages, called the workset, is not necessar-
ily contiguous and may be smaller than the LPN span (e.g.,
4GB). All writes are of the same size (e.g., 32 pages) and are
aligned accordingly.
Figure 8 depicts the end-to-end performance of RQFTL

compared to the alternatives, as a function of the read ratio
(the total pages read divided by the total pages accessed).
RQFTL achieves up to 3.6×, 2.7×, and 2× lower miss rate
compared to DFTL, SFTL, and LeaFTL, respectively. These
results demonstrate that RQFTL can adapt to write-intensive
workloads and highlight its superior performance in read-
only scenarios.
Cache capacity. We compared the average total number of
LPNs cached by each FTL onmobile app traces. Table 3 shows
that RQFTL may effectively cache over a million translations
in a 256KB L2P cache, which is significantly higher than any
other FTL approach.
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Figure 9: The average size of ranges in the L2P cache
over time during Genshin Impact execution.

Range size. Figure 9 depicts the average range size in the
L2P cache over the execution of a representative application
(Genshin Impact). We notice that the size varies between 25
pages to 75 pages. Thus, encoding the range size with 1 Byte
is indeed enough. RQFTL and SFTL get higher range sizes
than LeaFTL by merging adjacent ranges where possible.
Write amplification. Write amplification (WAF) is defined
as the ratio between the total flash writes to the actual writes
issued by the user. WAF is expected to be high in cases where
writes exhibit highmiss rate. For example, reoccurring writes
to the same translation page might cause several flash write
events in case the translation page was evicted between the
writes. Thanks to the elastic design of RQFTL, the write miss
rate experienced in RQFTL is on-par with that of LeaFTL,
and the WAF is similar to all other FTL schemes.
Additional experiments. RQFTL shows little sensitivity to
the flash access latency, and also handles large LPN spans
better than the alternatives. See §11 for the graphs.

7.4 RQRMI performance and power
overheads

Lookup latency. We measure the RQRMI inference latency
on the same ARM core and obtain the average of 170ns, less
than 0.1% of the time it takes to read a flash page.
Training time. Wemeasure the CDF of the RQRMI training
time on the real-world mobile traces using a single ARM
Cortex A72 core @ 2GHz. We use this as a performance
estimate for training on a power-efficient core on a storage
controller. We note that the same code takes about 1ms to run
on the modern Intel AlderLake X86 core. The median latency
is 7.5ms, and the 90𝑡ℎ percentile is 8.8ms. These values dictate
the maximum rate at which the LTC will be updated.

The training latency is lower than [39] because the range
array is smaller, and the model is smaller too.

Next, we evaluate themaximumRQFTL performance if the
training would take zero time (RQFTL* in Figure 10). These
results indicate a relatively small miss rate reduction for
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Figure 10: The effect of a hypothetical zero RQRMI
training latency (marked as RQFTL*) over the read
miss rate, compared to RQFTL.

RQFTL* (8 miss rate percentage points on average), implying
that the current training rate is acceptable.
Power and execution overheads. By taking timestamps
from I/O traces into account, we find that RQRMI training
is a rare event. In all of the mobile-grade traces, training
takes place in 1% to 3% of the execution time. Therefore,
the dedicated core can be landed for other usages most of
the time. Alternatively, the training does not require any
additional cores and can be executed on one of the device’s
existing CPU cores.

8 RELATEDWORK
Address translation for SSDs.A variety of works target the
issue of address translation in flash devices [1, 2, 6, 13, 15, 18,
19, 26, 35, 37, 44]. We focus on the most relevant for our work.
DFTL [13] suggests to use demand-based address translation.
It caches the least recently used mappings by storing the
accessed translation pages in RAM. SFTL [18] introduces
mapping compression by leveraging ranges. It uses bitmaps
and popcnt operations to encode ranges in a TP. LeaFTL [44]
is the state-of-the-art when it comes to employing range
compression for address translation in flash devices. To the
best of our knowledge, no other scheme addresses the unique
constraints of modernmobile storage by using space-efficient
indexing for ranges.
LeaFTL vs. RQFTL. Both LeaFTL and RQFTL use machine
learning techniques to improve the L2P cache performance.
However, whereas LeaFTL uses segmented linear regres-
sion to identify complex L2P patterns, it stores the ranges
in a translation page and suffers from poor space efficiency.
RQFTL, on the other hand, uses RQRMI model-based data
structure to perform range matching, which enables it to
store ranges from all the translation pages in a large dense
array. Thus, in the context of DRAM-less storage, RQFTL
makes better use of the memory resources. Furthermore,
while LeaFTL’s cache line is the entire translation page,
RQFTL can cache subsets of translation pages, preventing
the wasteful caching of unused mappings.
LearnedFTL. LearnedFTL uses segmented linear regression
model, similarly to LeaFTL. It cleverly minimizes flash reads
due to inaccurate model predictions, by using a bitmap filter.

However, it assumes that all the models are cached in RAM
(as part of the GTD), which is not feasible for DRAM-less
mobile drives with a large capacity.
Machine learning for storage. Various works use ML opti-
mizations for storage, such as finding the best SSD hardware
configuration for a given workload [28], reducing garbage
collection overhead [49], cache space reallocation [51], and
cache replacement policy [41]. Yet, none use neural networks
as a core mechanism for address translation in FTLs.
Learned indices. Learned data structures have been applied
to databases, key-value stores, virtual software switches, and
networking hardware [5, 7, 10, 22, 24, 25, 29, 38, 40, 45], and
show performance benefits by trading memory accesses for
ML inference computations. To the best of our knowledge,
RQFTL is the first to apply such data structures in FTLs.
Mobile storage trace collection. Many works deal with
storage trace collection for different applications. Some an-
alyze FS-level traces [11, 17], others deal with deduplica-
tion [31, 32]. [4, 52] analyze the properties of mobile I/O
using short traces. We recorded long traces of mobile storage-
intensive applications at the block level to analyze the appli-
cation behavior in the context of the L2P cache.

9 CONCLUSION
This work presents RQFTL, a new technique that employs
tiny neural networks for boosting the performance of the
address translation caches in mobile storage devices. RQFTL
improves the space-efficiency of the existing techniques and
enables better utilization of the limited SRAM space avail-
able in mobile storage controllers. We show that RQFTL
outperforms the state-of-the-art on a variety of traces of real
I/O-heavy mobile apps.
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Figure 11: Performance on server-grade workloads.

11 APPENDIX
Server-grade traces. Figure 11 depicts the end-to-end re-
sults on the server-grade workloads often used for FTL eval-
uation [23, 33]. The results show relatively similar perfor-
mance of all the FTLs that use range compaction.

Note that the performance of LeaFTL reported here differs
from the one published in [44], because of the DRAM-less
setup of our system. In particular, mobile environments lack
data caches aimed at reducing flash I/O operations as they
would be ineffective given the little available SRAM space.
Moreover, the small write buffer size limits sophisticated L2P
pattern recognition techniques [44].
Insensitivity to flash latencies. Different SSDs (with dif-
ferent technology, manufacturer, form factor, etc.) exhibit dif-
ferent flash latencies. Figure 12 shows that RQFTL speedups
are almost insensitive to the flash write latency, for the repre-
sentative trace Call of Duty. For example, when varying the
flash write latency from 1.2ms to 3ms, the read speedup of
RQFTL over the second-best FTL (SFTL), only slightly varies:
from 9.5% to 9.1%. Similarly, the experiments show RQFTL
speedups are insensitive to read latency, between 150us and
200us.
Performance with a large LPN span. Figure 13 demon-
strates that RQFTL adjusts to the LPN span better than any
other technique. This property stems from its ability to main-
tain sparse mappings in range granularity rather than at the
granularity of a whole translation page.
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Figure 12: Performance under different flash write la-
tency settings for the representative trace Call of Duty.
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Figure 13: End-to-end results for synthetic workloads
under varying the possible logical page number range.
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visible
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