FlowPulse: Catching Network Failures in ML Clusters

Jakob Krebs

Technion
Haifa, Israel

Shir Landau Feibish

University of Haifa
Haifa, Israel

ABSTRACT

Network hardware faults are inevitable in massive scale-out
ML training clusters. Networks in such systems are inher-
ently designed for resiliency, routing around faulty compo-
nents as long as a fault is detected. Unfortunately, some silent
faults evade detection. Notably, the effects of silent faults
are amplified in modern production networks that deploy
per-packet load balancing, because packets of a single flow
traverse many network paths, making such faults particu-
larly hard to localize.

We present FlowPulse, the first system for rapid, low-
overhead detection of silent network faults in per-packet
spraying networks. Our key insight is that distributed train-
ing workloads induce predictable traffic patterns in the switch
ports we refer to as a temporal symmetry. This symmetry
emerges even in the presence of known faults, and can be
modeled analytically or learned from the traffic. FlowPulse
detects new network faults of training tasks by identifying
subtle deviations from the expected temporal symmetry on
each switch during collective communications, all without
any inter-switch coordination or probing overheads. Our pre-
liminary results show that FlowPulse is effective in detecting
silent faults in a variety of realistic settings, topologies and
fault patterns. For example, FlowPulse identifies a single
faulty link with 1.5% corruption rate by checking temporal
symmetry in a full two-level fat tree topology with 32 leaf
switches while performing Ring-AllReduce on all nodes.

CCS CONCEPTS

« Networks — Error detection and error correction;
Network performance modeling.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

HotNets °25, November 17-18, 2025, College Park, MD, USA

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2280-6/2025/11
https://doi.org/10.1145/3772356.3772384

Dimitry Gavrilenko
Technion
Haifa, Israel

Daniel Amir
Technion
Haifa, Israel

Mark Silberstein

Technion
Haifa, Israel

KEYWORDS

Network Debugging, Measurement and Telemetry, Networks
for Machine Learning

ACM Reference Format:

Jakob Krebs, Dimitry Gavrilenko, Daniel Amir, Shir Landau Feibish,
and Mark Silberstein. 2025. FlowPulse: Catching Network Failures
in ML Clusters. In The 24th ACM Workshop on Hot Topics in Net-
works (HotNets °25), November 17-18, 2025, College Park, MD, USA.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3772356.
3772384

1 INTRODUCTION

Backend networks dedicated to inter-GPU communications
have reached unprecedented scales [14, 43], supporting large-
scale distributed tasks on hundreds of thousands of nodes.
The sheer number of components in a system of such scale
makes networking hardware faults the norm. Faults include
link flaps, bit corruption errors, NIC and switch malfunc-
tions. All result in unexpected packet drops and the con-
sequent degradation of network performance [14, 32]. Un-
fortunately, the bulk-synchronous nature of training work-
loads [14, 15, 27] makes them highly susceptible to network
faults, as individual flows affected by faults dictate the per-
formance of the entire application [20, 45].

At the same time, traditional data center networks using
Equal Cost Multi Path (ECMP) flow-level load balancing [19,
40] perform poorly for distributed training due to low flow
entropy and flow collisions [14]. This issue brought renewed
interest in adaptive per-packet spraying (APS) load balancing
strategies where switches forward or spray packets across
all available upstream paths toward the destination leaf [8].
A spraying algorithm may forward to random ports [12]
or employ more sophisticated adaptive strategies, such as
selecting the least congested port [16].

APS in non-blocking Clos topologies has near-optimal
performance with low latency under high demand [4, 16, 25,
29]. It has long been the design choice for Infiniband net-
works [42], and recently for the Cornelis Omni-Path Express
networking solution [30]. Nowadays, APS is increasingly
deployed in Ethernet backend networks by NVIDIA [9, 34],
Cisco [22], and Broadcom [24].

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3772356.3772384
https://doi.org/10.1145/3772356.3772384
https://doi.org/10.1145/3772356.3772384

HotNets "25, November 17-18, 2025, College Park, MD, USA

When it comes to network faults, however, APS is a double-
edged sword: even one faulty link affects many network
flows. For example, consider a full 2-level non-blocking fat
tree with switches of radix 64. A single noisy spine-to-leaf
link (0.05% of all links) affects all sizable flows forwarded to
that leaf, corrupting about 3% of packets in each flow which
dramatically increases their completion times.

It is thus critical to quickly detect, localize, and disable
faulty components by excluding them from routing. Faulty
links are routinely removed by the switch OS [13] when a
port signals the fault, or when it is reflected in switch coun-
ters [31]. Unfortunately, some faults are silent. Thus, they
cause sudden performance degradation without any clear
sign in switch telemetry counters. Moreover, the counters
themselves might be incorrect because of a hardware fault.
For example, switch memory corruption of the FIB [21, 46]
can create a transient routing black hole where all packets
are silently dropped.

Existing techniques to detect silent faults are not suit-
able for large-scale APS networks. Each fault affects many
flows, and each flow traverses many paths. Debugging a
slowdown requires to trace packets across all paths to figure
out which specific path had the fault. End-to-end probes,
as in Pingmesh [18], indeed check all paths in the network.
However, hardware faults often appear only under high load
(common during ML communication), and executing a large
number of probes in a loaded network imposes prohibitively
large overheads. Alternatively, there are proposals to ag-
gregate switch counters at a central location to detect in-
consistencies across switches to cope with unreliable coun-
ters [35, 46]. Centralized aggregation, however, comes with
significant communication and synchronization overheads
proportional to the frequency of updates and network size,
thus it is slow to react and does not scale.

APS networks have a unique property that brings faults to
the surface. Without network faults, these networks exhibit
spatial symmetry: non-leaf switches should have nearly equal
load. Hence, unequal load among a leaf switch’s downstream
links from spines is a sign of a fault. Unfortunately, real large-
scale networks always have some disabled links: links can fail
at any time and are only replaced at specific maintenance
windows [41]. As a result, pre-existing faulty links break
spatial symmetry, diminishing the utility of this strategy in
detecting new faults.

We present FlowPulse, a novel system for rapid, low-
overhead detection of silent faults in APS networks. Our
key insight is that when running distributed ML training,
APS networks exhibit another form of symmetry: per-port
temporal symmetry. ML training has repetitive communica-
tion pattern, e.g., running an identical AllReduce collective
at each training iteration. Assume the collective runs exclu-
sively in a non-blocking lossless network.

Jakob Krebs, Dimitry Gavrilenko, Daniel Amir, Shir Landau Feibish, and Mark Silberstein

Then, the total amount of packets traversing via downstream
leaf switch ports from the spines in each AllReduce instance
should be nearly the same, as long as no new faults occur in
the network (§4). Thus, we use temporal symmetry to detect
new faults even in a network with preexisting faults: each
new fault changes the flow distribution through the links. Im-
portantly, temporal symmetry is not sensitive to jitter among
participating nodes for linear ring topologies. Moreover, it
can be checked within switches, without coordination, or
centralized aggregation.

We make the following contributions:
Per-Link Load Model: FlowPulse builds a per-link load
model that estimates the expected amount of data received
via each spine-to-leaf downstream port during AllReduce
or similar reduction collective executed on a given set of
nodes. This model takes into account both the known net-
work faults obtained from each switch’s routing table and the
observed traffic matrix from initial training iterations. We
explore multiple prediction methods, including analytical,
simulation-based and learning.
A System for Continuous Monitoring of Silent Faults:
FlowPulse continuously monitors the network for silent link
faults using the per-link load model defined above. Each leaf
switch collects the amount of data received by a leaf from
the spines during the specifically marked and prioritized
collective, and detects deviations from the model predictions
independently of other switches.
Simulation and Evaluation: We evaluate FlowPulse in
a 2-level non-blocking fat-tree topology with 16 spine and
32 leaf switches, running a 31-stage Ring-AllReduce in a
lossless Ethernet network. FlowPulse reliably detects both
full and partial link faults, even when a fault affects as little
as 1% of the link’s traffic. We evaluate a range of conditions,
including varying switch radixes, initial fault counts, and
collective sizes, and show that FlowPulse achieves precise,
instantaneous detection without injecting additional traffic
or relying on centralized telemetry collection.

2 BACKGROUND

Backend ML training networks. We focus on scale-out back-
end networks connecting 10k — 100k GPUs [14], optimized
for distributed ML training tasks spanning a large portion of
the nodes [3].

There are many approaches to build backend networks [14,
32, 48]. In this paper we focus on the Ethernet architecture
used in large-scale deployments in some of the largest ML
training clusters by NVIDIA [37], and increasingly adopted
by other hardware vendors [22, 24]. It shares many traits
with other Ethernet deployments, but differs in its use of
APS as we summarize below.

FlowPulse: Catching Network Failures in ML Clusters

e Topology: Non-blocking two- or three-level fat tree. Non-
blocking topology [32, 34, 48] is often used for flexible al-
locations of compute resources while guaranteeing nearly
identical network performance in any allocation.

e Linklayer: Load balancing via Adaptive Per-packet Spray-
ing (APS) over upstream topology links, selecting the least
loaded switch port. Downstream paths are not sprayed.
Switches use lossless queues with the link-layer Priority
Flow Control (PFC) [8].

e Transport: RoCE with out-of-order writes. Some deploy-
ments disable congestion control [14, 48], relying on the
congestion-aware collectives and a link-layer PFC.

e Workloads: Each NIC is associated with a single GPU
running a single task, communicating predominantly via
collective operations, such as AllReduce. Collectives are
co-optimized with hardware, network topology and con-
gestion control [11].

Scale-out in ML training. Data-parallel execution is com-
monly used to scale training tasks to tens of thousands of
nodes. It requires aggregation of gradients across all replicas
in each iteration, and thus exhibits highly repetitive traffic
patterns. Other types of parallelism split the execution of
individual replicas across multiple nodes, but each such node
also participates in its own data-parallel collective.

Reduction collectives, such as AllReduce and ReduceScat-
ter, are the main communication primitives of data-parallel
training implemented in libraries such as NCCL [11]. They
are optimized for different topologies and scales. In particu-
lar, they are often implemented as a pipeline over a virtual
ring, thus achieving optimal communication bandwidth.

3 RELATED WORK

Existing fault detection systems use path probing [18, 23,
39, 44, 47], rely on the control-plane for information [1, 2,
33], or centralized data aggregation [28, 38, 46]. While these
methods are effective for detecting certain classes of faults,
they struggle to detect silent faults.

Path probing techniques can detect silently failed links
and black holes [18, 39], yet they introduce additional load
on the network. Faults typically impact traffic during peak
usage periods, when there is no bandwidth available for
probe traffic [32]. Additionally, elevated bit error rates are
more likely to affect large flows, making such faults difficult
to detect using small probe packets [44].

Control-plane-based systems focus on verifying configu-
ration correctness [1, 2, 33], but cannot detect hardware or
software faults in transceivers or switches, which are often
sporadic and not reflected in configuration state. Silent faults
are challenging, as they typically do not manifest in switch
counters [46]. Some systems address this by comparing be-
havior across switches or sampling counters synchronously

HotNets "25, November 17-18, 2025, College Park, MD, USA

to detect inconsistencies [38]. As such faults impact applica-
tion performance, some approaches leverage end-host met-
rics to detect and localize performance-impacting issues [35].
This method identifies network asymmetries and treats them
as a fault indication. However, in large networks faults are
always present. This persistent background noise makes it
difficult to distinguish meaningful signals. As a result, this
approach does not scale well to such environments.

FlowPulse overcomes these limitations by using switches
to monitor patterns in the existing traffic without additional
probes. By comparing the observed traffic distribution with
the expected patterns of ML training workloads, FlowPulse
can detect subtle performance anomalies. We leverage tem-
poral symmetry as described next.

4 TEMPORAL SYMMETRY

ML training workloads are highly repetitive. Specifically,
in large-scale parallel training with data parallelism, a re-
duction collective such as AllReduce must be run in each
training iteration to compute and distribute the gradients.
This AllReduce can span thousands of nodes, and can be tens
to hundreds of megabytes [14], or even gigabytes per layer
in the case of recent large language models [17]. During each
iteration of AllReduce, the set of communicating nodes, as
well as the amount of data transferred between each pair, is
the same.

When combined with APS load balancing, and under the
same network faults, this periodic workload creates temporal
symmetry in the amount of data traversing each link. Namely,
APS ensures that, in an empty network, the collective will
have its packets distributed across all valid paths, resulting in
nearly the same per-switch-port load during every training
iteration. Note that temporal symmetry applies individually
to each link over time, and is thus different from spatial sym-
metry. Links from two different spines to the same leaf node
may see different traffic levels due to pre-existing faults in
the network. Still, as long as the set of faults does not change,
and the workload is precisely the same, each individual link is
traversed by the same volume of traffic during each instance
of the collective in every iteration.

Because temporal symmetry relies on an identical work-
load during each iteration, care must be taken to address
jitter. Prior to each collective, some nodes may experience
longer computation times, resulting in straggler nodes that
begin the collective after other nodes. Different nodes may
become stragglers during different iterations, creating slight
temporal variations in the workload.

First, we note that the metric of the total volume of traffic
traversing each port over the course of each collective itera-
tion is more resilient to jitter than, e.g., maximum through-
put, so the symmetry is defined in terms of the data volume.

HotNets "25, November 17-18, 2025, College Park, MD, USA

Second, we observe that when each leaf switch hosts a
single source and/or destination node, jitter does not affect
the traffic distribution across spines because the spraying is
performed in the leaf. Thus, consistent measurements can
be performed in the presence of jitter if this condition is met.
This single-source/single-destination per leaf condition holds
for Ring-AllReduce collectives. However we also discuss how
to support more general communication patterns.

5 DESIGN

FlowPulse leverages temporal symmetry to achieve in-switch,
coordination-free detection of network faults. Specifically,
it verifies temporal symmetry at the leaf switches, on the
ingress ports from spines. These links are chosen because
they are late in the path, meaning that they will reflect faults
along almost the entire path. Further, in a 2-level fat tree
these link can only be reached via a single path from each
sender, meaning that they can be used to help localize faults.

As an ML training task begins, FlowPulse predicts the
data volume that should traverse each of these ports during
each iteration of the reduction collective. Deviation from this
prediction beyond a detection threshold indicates that a fault
has occurred in the network. Leaf switches autonomously
detect the communication topology used for the collective,
detect the beginning and end of each iteration of the col-
lective, and compare the flow observed at each port to the
prediction to detect faults, as discussed in detail below. This
is accomplished using programmable switches, which have
become prevalent in training clusters [7].

There are three major components to FlowPulse’s de-
sign: measuring the traffic during each iteration of the data-
parallel all-reduce, predicting the amount of traffic traversing
each leaf ingress port over the course of the collective, and
detecting faults based on deviations from the prediction.

5.1 Measuring a collective

To measure the traffic volume traversing each port during a
collective, network switches must be able to detect when the
collective is running, and determine which packets belong
to the collective. This can be accomplished through minor
modifications to the communications library, for example
the NVIDIA Common Collectives Library (NCCL) [11]. We
propose to tag the packets of the AllReduce collective with
a flow_id that combines a sentinel value with the iteration
number. This provides switches with precise information
about which traffic to measure without any additional com-
munication overhead or messaging via the control plane [6].
It also allows switches to detect when the first iteration of
a new training task has started, allowing baseline measure-
ments to be taken as part of the load prediction computations.

Jakob Krebs, Dimitry Gavrilenko, Daniel Amir, Shir Landau Feibish, and Mark Silberstein

Handling background traffic, stragglers and jitter. Flow-
Pulse only measures a single collective per iteration. To en-
sure that the packet spraying logic is not influenced by back-
ground network traffic, we prioritize the target flows in the
network, by assigning higher traffic priority to the packets of
the collective used for the measurements. This prioritization
isolates the collective while maintaining the original load
experienced during training by switch hardware units. This
is necessary, as background flows impose additional, unac-
counted, load on the switch and naturally alter the packet
spraying pattern of the previous instance of the collective.

The temporal symmetry assumption holds when aggregat-
ing traffic volumes over a collective even when the senders
are not perfectly synchronized, e.g., in the case of stragglers.
FlowPulse is oblivious to stragglers. It considers a collective
as finished at the start of the next iteration. All communica-
tions of the prior training iteration must be completed at this
point by construction of synchronous data-parallel training.

Another challenge emerges in an asymmetric network
when senders at the same leaf switch target multiple non-
local destinations, i.e., destinations outside of that switch. If
there is jitter in the start of the collective by each sender, and
it is inconsistent across iterations, the switch uplink queues
may experience different occupancy across asymmetric net-
work paths, As a result, the load distribution across these
ports will differ between iterations, breaking FlowPulse’s
core assumptions.

FlowPulse only measures the behavior of a single non-
local flow leaving the leaf switch to cope with this problem.
In practice, the Ring-AllReduce collective which we use as
the basis for our measurements often naturally has this single
non-local destination per leaf per collective property. This is
because collectives are optimized for network topology to
ensure local communications within the leaf if possible; local
communications in the nodes under the same leaf are not
forwarded to the spine; and in a ring, only one node outside
the leaf serves as a source and another node as a destination.

We believe, this approach can be extended beyond Ring-
AllReduce. For example, we may select a subset of flows from
the collective representing each leaf switch once as a sender,
and once as a receiver. These flows are run at a high priority
and are the only flows used for verifying temporal symmetry.

5.2 Load prediction

We consider three methods for load prediction: an analytical
model, network simulations, and load observation.

Analytical prediction. The analytical model uses applica-
tion level knowledge about the collective size and imple-
mentation to calculate the per-port load in an optimally
load-balanced network. The application knows which nodes
will communicate over the course of the collective, as well as

FlowPulse: Catching Network Failures in ML Clusters

HotNets "25, November 17-18, 2025, College Park, MD, USA

Demang D Collective Compare against
MB Count packets ends Expected link load
] - t
Analytical/Learned per po)
Communication Switch Coupy,
Model S ey S
a
C@J topology 00 Load Model Life Cycle iy éc;/vud(,e
K Expected E ; -
oot =Xp! E (per Collective S
:‘opo\ogv linkload O O O Leaf, starts Coug;t:);r:gtghes N Ajgyy
Port) \ E /
eS
_'\\'\\‘Sxa\

Reset Counter

Figure 1: FlowPulse overview: we use the network connectivity and the collective’s demand to predict per-link
data volume in the downstream leaf-spine link at each leaf(§5.2). Leaf switches record the actual data volume and
compare with the predicted values (§5.3). Deviation beyond a threshold is considered a fault.

[Simulation

—~@- Analytical Prediction

_cz_n | new recover | new

221 ifailure failure ‘failure
A !

2 == Prediction

=1

2 s Actual

%]

S —»%— Detected failure
Fo :

o
g 325 /’,é
§ 30.0 /,&J
S -
%275 =
< -
22501 - =
z e
S225| -E="
0 1 2 3 4 5

Number of Failed Links

Figure 2: Analytical prediction matches the simulation
for a single flow.

how much data each pair will send. This anticipated demand
is shared with the network switches, or measured directly
in the first iterations. The switches compute the predictions
in the control plane.

In a fault-free network, the traffic sent by each source-
destination pair will be evenly load-balanced across all spine
switches. However, if a preexisting fault affects the link be-
tween the source and a given spine, or between the destina-
tion and a given spine, then that spine will not be used by that
source-destination pair. Instead, the traffic will be balanced
across the remaining spines. If a given source-destination
pair is expected to send d bytes, f spines have failed links
to either the source or destination, and there are s total
spines, then each remaining spine is traversed by d/(s — f)
bytes. This data also traverses the links between these spines
and the leaf switch corresponding to the destination node.
Adding up the contributions from each source-destination
pair whose destination corresponds to a given leaf switch
is all that is needed to predict the load on each of the leaf
switch’s ingress ports from spines.

Fig. 2 shows close agreement between the load predicted
by our analytical model and the actual load observed in a
network simulated in ns-3 [5]. The setup is described in §6.

Simulation-based model. To achieve higher prediction fi-
delity, the expected per-port load can be taken from a sim-
ulation of the network. This allows FlowPulse to exactly
incorporate knowledge about known faults (including gray
faults), the exact load-balancing algorithms used, and other

2

3 4

Collective Iteration

Figure 3: Learning-based prediction model update.
FlowPulse learns an improved baseline after transient
fault recovery.

implementation details about the network into the predic-
tion. While a simulation yields the highest fidelity, significant
time and computation resources must be spent running the
simulation before every training job.

Learning. It is also possible to learn the expected load on
each port by simply measuring the load during the first iter-
ations of the collective. One caveat is that a transient fault
may exist during the first iterations, but disappear thereafter.
When a fault heals, the load observed on all ports re-balances
more evenly. When FlowPulse observes this behavior, it re-
places the baseline measurement with a new measurement
reflecting the improved network state. Fig. 3 shows how this
correction occurs when the expected load after a fault is
recovered.

5.3 Identifying faults

Detection. Every leaf switch counts the data volume re-
ceived at each ingress port from spines during each collective
iteration. At the end of each iteration (i.e., at the beginning
of a new one following our detection technique), the switch
compares the observations against the model prediction. If
the discrepancy exceeds a predefined threshold, the switch
declares a fault and alert the network operator.

FlowPulse uses a detection threshold of 1%. We observe (§6)
that this threshold is high enough to avoid false positives
due to variations in packet spraying, but low enough to still
detect intermittent faults.

HotNets "25, November 17-18, 2025, College Park, MD, USA

Figure 4: Faults can be localized by comparing data
from two sending leaves. When traffic from a sender is
received on one link, but not the other, the receiving
switch infers a failure on the remote link to the sender.

Localization. Once a fault is detected, FlowPulse attempts
to localize it. Reduced traffic at a given ingress port can
indicate either a fault on the local link between that port
and the corresponding spine switch, or a fault on a remote
link between a different leaf switch and the spine switch.
To distinguish these cases, FlowPulse compares the traffic
volumes received from different senders over the given port.
If traffic from all senders is equally affected, the local link
is marked as failed. However, if only one sender is affected,
the link between the spine switch and the leaf switch of the
sender is marked as failed.

For example, in Fig. 4, the link between L1 and S1 is failed,
and L2 detects reduced traffic in the ingress port from S1.
Since it still receives the expected amount of traffic from L3
through this port, it can deduce that the failed link is the
remote link between L1 and S1, rather than the local link
between L2 and S1.

6 EVALUATION

We evaluate FlowPulse’s accuracy in several network and
workload conditions using NS-3 [5] simulations. We vary
collective sizes, fault probability, switch radix, and numbers
of pre-existing faults.

Experimental setup. Unless stated otherwise, we use
a non-blocking 2-level fat tree with 32 leaf and 16 spine
switches. We implement a simple transport tolerant to re-
ordering, mimicking the current RoCE NICs [6], without con-
gestion control. The network is lossless, but packet losses due
to injected faults are detected via a retransmission timeout of
5pusec. To inject new faults, we configure a single leaf-spine
link to drop packets at a set rate. The links with pre-existing
faults are disconnected. We report false positive/negative
rates when using the analytical model for predictions §5.2.

We run a single Ring-AllReduce collective, where each
leaf is connected to a single end-host that serves as both a
receiver and a sender. The traffic is non-blocking.

Setting the classification threshold. Fig. 5(a) shows the
Residual Operating Curve (RoC) of the classifier for different
fault detection thresholds and various packet drop rates on
the faulty link. We observe that FlowPulse achieves perfect
accuracy with a detection threshold of 1% for > 1.5% packets

Jakob Krebs, Dimitry Gavrilenko, Daniel Amir, Shir Landau Feibish, and Mark Silberstein

dropped per link. For lower drop rates the classifier becomes
less effective. We note that the threshold is set empirically
in a given network when calibrating the system, but intend
providing an analytical way to configure it in the future.

Varying switch radix. Networks with higher switch
radix balance the traffic across more paths, so the fault im-
pact on each flow is amortized across all of them. As a result,
detecting faults becomes more challenging as the deviations
from the expected values are smaller. For example, Fig. 5(b)
shows that FlowPulse cannot detect the fault with the drop
rate of 0.8% for radix 32, but works well for radix 16. However,
it also means that the application performance in higher-
radix networks is impacted less by such faults, so detecting
them becomes less critical.

Varying collective size. Fig. 5(c) shows the effect of the
size of the collective on FlowPulse accuracy. Larger collec-
tives send more packets, resulting in higher Signal-to-Noise
ratio when measuring the per-port load and better accuracy.
Fortunately, a typical AllReduce collectives in large LLMs
reach GBs in size [17], well beyond the amount needed for
FlowPulse to achieve high accuracy.

Effect of pre-existing faults. FlowPulse detects new
faults even when known faults already exist. As the model
takes these faults into account, we observe perfect classifica-
tion for new faults that drop > 2.5% of packets or more.

7 DISCUSSION AND FUTURE WORK

FlowPulse makes assumptions about network and workload.
While some are inherent to the design, others may be allevi-
ated to generalize the solution.

Inherent Limitations. FlowPulse leverages temporal sym-
metry, which arises from the combination of APS and regular
collectives found in ML training. It cannot generalize to con-
texts which do not exhibit this symmetry. In particular, it is
a poor fit for classical datacenter networks, where the traffic
matrix is unpredictable and packet spraying is rarely used.

Network Topology. We currently focus on non-blocking
two-level Clos topologies. FlowPulse could extend to other
topologies by deploying FlowPulse at both leaf and spine
levels to monitor spine-leaf and core-spine links respectively.
We leave this to be explored in future work.

Blocking Networks. While the topology may be non-blocking,
permanent faults can cause congestion. FlowPulse mitigates
this by prioritizing the measured collective, as a single data-
parallel AllReduce under-utilizes the network [14, 36]. Flow-
Pulse supports blocking networks if the prioritized, measured
workload does not experience queuing, but future work will
consider congestion control as well.

FlowPulse: Catching Network Failures in ML Clusters

—

—— 0.08% drop rate
0.16% drop rate

1001 %

—— FPR

HotNets "25, November 17-18, 2025, College Park, MD, USA

9]

o

©

-4

o —_

2 —— 0.24%d S S
2050 j .24% drop rate [N

3 =7 —— 0.32% drop rate g 50 \\
o —— 1.5% drop rate s ~
20.25 - Random Guessing

= -4 1% threshold 0

©
o
)

0.0 0.2 0.4

0.6 0.8

1.0

32

Switch Radix

False Positive Rate

(a) Residual Operating Curve (ROC) for different
packet drop rates on a faulty link. A 1% threshold
is a perfect classifier for drop rates > 1.5%.

(b) FPR/FNR for different switch radixes with
drop rate 0.8% per link. Higher radixes are more
challenging. Lower is better.

—— FNR <10.0% —#— FPR == FNR 25.0%
- FNR FNR 15.0%
100
x
o 50
T
&
0
16 8 100 1000 10000

Collective Size [Packets]

(c) FPR/FNR for different collective sizes with
different faulty link drop rates (% in the legend).
Smaller collectives are more noisy. Lower is better.

Figure 5: FlowPulse accuracy analysis. FPR/FNR - False Positive/Negative Rate

Parallel Jobs. Clusters are rarely utilized by a single job.
Instead, multiple independent jobs are scheduled simulta-
neously, sharing the network [26]. Parallel jobs may use
different collective sizes and communicate between differ-
ent nodes, complicating the predication of the traffic matrix.
However, limiting the traffic accounting to a single collective
and prioritizing it in the network for performance isolation,
allows FlowPulse to be used in multi-job clusters.

Parallel Links. Networks often use parallel links between
switches to increase bandwidth [10]. A single failed parallel
link reduces bandwidth, but remaining links can still reach
the same set of hosts. Thus, FlowPulse treats these links
as independent, effectively splitting the spine into virtual
switches if traffic is evenly balanced. Alternatively, the model
could be extended to support per-link weights.

Fault Types. While we evaluated only transient link faults
and packet loss, we believe that FlowPulse can detect most
gray faults. These faults often manifest as drops, which is
exactly the metric FlowPulse detects. Corrupted packets are
dropped in the switches if the bit error cannot be corrected;
black holes affect only specific paths. Faults that are too short
or that impact less than 1.5% of packets traversing a given
path are still undetectable with FlowPulse. Abnormal but
correctable bit errors are also undetectable by FlowPulse, as
they do not cause packet drops, yet they typically do appear
in switch error counters.

Stragglers and Jitter. Our current handling of inconsistent
jitter between senders in a collective (§5.1) forces us to only
consider one non-local sender per a leaf switch. While in
practice it is not a significant limitation for locality-optimized
ring-based collectives, we seek to alleviate it in the future. In
fact, in our initial experiments we observed that jitter did not
have measurable effect on the expected load balance across
egress ports because of the large number of available paths.
More investigation is necessary to estimate the effect of the
jitter on the precision of our fault detector.

Beyond reduction collectives. FlowPulse relies on the knowl-
edge of the demand matrix to compute the expected switch
traffic volume. This requirement is easily satisfiable for the
AllReduce collectives run as part of data parallel execution.
In this case, the demand matrix is the same across all iter-
ations, thus allowing computation of the expected traffic
volume in advance. We plan to extend FlowPulse to support
other collectives such as AlltoAll with a dynamic demand
matrix, to be able to monitor failures in more complex com-
munication patterns used in other types of parallelism such
as expert parallelism. This requires extracting the demand
matrix, recomputing the expected load for the new demand,
and updating the switches with the new set of thresholds.
Doing this in a scalable and resource-efficient way is our
ongoing work.

8 CONCLUSIONS

FlowPulse passively detects network fault in ML training
clusters. It leverages temporal symmetry in packet-sprayed
networks periodically running distributed collectives. Our
preliminary results show that a packet drop rate of 1% in a
single link suffice to detect silent faults with a high accuracy.

ACKNOWLEDGMENTS

We thank our shepherd Costin Raiciu and the reviewers for
their helpful comments and feedback. This work was sup-
ported by the Israel Science Foundation (grants 1998/22 and
980/21), and by the Zuckerman STEM Leadership Program.

REFERENCES

[1] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya
Akella. Tiramisu: Fast multilayer network verification. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
20), pages 201-219, 2020.

[2] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. A gen-
eral approach to network configuration verification. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communica-
tion, pages 155-168, 2017.

HotNets "25, November 17-18, 2025, College Park, MD, USA

(3]

(4]

[10

[t

(11

—

[12

=

(13

[t

(14

=

[15

=

[16

=

(17]

Maciej Besta, Jens Domke, Marcel Schneider, Marek Konieczny, Salva-
tore Di Girolamo, Timo Schneider, Ankit Singla, and Torsten Hoefler.
High-performance routing with multipathing and path diversity in eth-
ernet and HPC networks. IEEE Transactions on Parallel and Distributed
Systems, 32(4):943-959, 2020.

Jiaxin Cao, Rui Xia, Pengkun Yang, Chuanxiong Guo, Guohan Lu,
Lihua Yuan, Yixin Zheng, Haitao Wu, Yongqiang Xiong, and Dave
Maltz. Per-packet load-balanced, low-latency routing for clos-based
data center networks. In Proceedings of the ninth ACM conference on
Emerging networking experiments and technologies, pages 49-60, 2013.
NS3 Contributors and Maintainers. NS-3 Network Simulator.
https://www.nsnam.org/, 2025.

NVIDIA Corporation. MLNX_OFED Features Verbs and Capabili-
ties. https://docs.nvidia.com/networking/display/rdmacore50/mlnx_
ofed+features+verbs+and+capabilities, 2023.

NVIDIA Corporation. NVIDIA Spectrum SN5000 Series Switches.
https://nvdam.widen.net/s/mmvbnpk8qk/networking-ethernet-
switches-sn5000-datasheet-us, 2024.

NVIDIA Corporation. NVIDIA Spectrum-X Network Platform Archi-
tecture. https://resources.nvidia.com/en-us-accelerated-networking-
resource-library/nvidia-spectrum-x, 2024.

NVIDIA Corporation. NVIDIA Supercharges Ethernet Network-
ing for Generative AL https://nvidianews.nvidia.com/news/nvidia-
supercharges-ethernet-networking-for-generative-ai, 2024.

NVIDIA Corporation. NVIDIA DGX SuperPOD: Next Generation Scal-
able Infrastructure for Al Leadership Reference Architecture Featuring
NVDIA DGX H100. https://docs.nvidia.com/dgx-superpod/reference-
architecture-scalable-infrastructure-h100/latest/network-
fabrics.html, 2025.

NVIDIA Corporation. NVIDIA NCCL Source Code. https://github.
com/NVIDIA/nccl, 2025.

Adpvait Dixit, Pawan Prakash, Y Charlie Hu, and Ramana Rao Kompella.
On the impact of packet spraying in data center networks. In 2013
Proceedings IEEE INFOCOM, pages 2130-2138. IEEE, 2013.

Linux Foundation. Software for Open Networking in the Cloud
(SONIC). https://sonicfoundation.dev/, 2023.

Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu,
Guilherme Goes, Hany Morsy, Rohit Puri, Mohammad Riftadi,
Ashmitha Jeevaraj Shetty, Jingyi Yang, et al. Rdma over ethernet for
distributed training at meta scale. In Proceedings of the ACM SIGCOMM
2024 Conference, pages 57-70, 2024.

Alexandru M Gherghescu, Vlad-Andrei Badoiu, Alexandru Agache,
Mihai-Valentin Dumitru, Iuliu Vasilescu, Radu Mantu, and Costin
Raiciu. I've Got 99 Problems But FLOPS Ain’t One. In Proceedings
of the 23rd ACM Workshop on Hot Topics in Networks, pages 195-204,
2024.

Soudeh Ghorbani, Zibin Yang, P Brighten Godfrey, Yashar Ganjali, and
Amin Firoozshahian. Drill: Micro load balancing for low-latency data
center networks. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication, pages 225-238, 2017.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav
Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil
Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravanku-
mar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Au-
relien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya
Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Fer-
rer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz,
Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv
Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor

Jakob Krebs, Dimitry Gavrilenko, Daniel Amir, Shir Landau Feibish, and Mark Silberstein

Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Francisco Guzman, Frank Zhang, Gabriel Syn-
naeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme
Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arri-
eta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny
Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu,
Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik,
Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary,
Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis
Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat,
Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh,
Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Old-
ham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis,
Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning
Zhang, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik
Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He,
Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer,
Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Mah-
eswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro,
Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun So-
nia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Ra-
parthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Si-
mon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla,
Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Her-
man, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom,
Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj
Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Wei-
wei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet,
Xiaodong Wang, Xiaofang Wang, Xiaoging Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey,
Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie
Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, An-
drei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong,
Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan,
Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth
Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina
Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester
Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichten-
hofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel
Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi
Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin
Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora
Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng

https://docs.nvidia.com/networking/display/rdmacore50/mlnx_ofed+features+verbs+and+capabilities
https://docs.nvidia.com/networking/display/rdmacore50/mlnx_ofed+features+verbs+and+capabilities
https://nvdam.widen.net/s/mmvbnpk8qk/networking-ethernet-switches-sn5000-datasheet-us
https://nvdam.widen.net/s/mmvbnpk8qk/networking-ethernet-switches-sn5000-datasheet-us
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/nvidia-spectrum-x
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/nvidia-spectrum-x
https://nvidianews.nvidia.com/news/nvidia-supercharges-ethernet-networking-for-generative-ai
https://nvidianews.nvidia.com/news/nvidia-supercharges-ethernet-networking-for-generative-ai
https://docs.nvidia.com/dgx-superpod/reference-architecture-scalable-infrastructure-h100/latest/network-fabrics.html
https://docs.nvidia.com/dgx-superpod/reference-architecture-scalable-infrastructure-h100/latest/network-fabrics.html
https://docs.nvidia.com/dgx-superpod/reference-architecture-scalable-infrastructure-h100/latest/network-fabrics.html
https://github.com/NVIDIA/nccl
https://github.com/NVIDIA/nccl
https://sonicfoundation.dev/

FlowPulse: Catching Network Failures in ML Clusters

[18

(19

—

[

Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid
Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb,
Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman,
Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Il-
ias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya,
Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizen-
stein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cum-
mings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres,
Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kar-
tikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veer-
araghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender
A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani,
Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan
Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo,
Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike
Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Moham-
mad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks,
Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas
Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman
Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli,
Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner,
Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant
Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
driguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra,
Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin
Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sar-
gun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh
Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun
Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil,
Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha
Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit
Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian,
Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria
Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal
Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir
Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will
Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu,
Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li,
Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito,
Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu
Ma. The Llama 3 Herd of Models, 2024.

Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, et al.
Pingmesh: A large-scale system for data center network latency mea-
surement and analysis. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, pages 139-152, 2015.
Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter,
and Aditya Akella. Presto: Edge-based load balancing for fast data-
center networks. ACM SIGCOMM Computer Communication Review,
45(4):465-478, 2015.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

HotNets "25, November 17-18, 2025, College Park, MD, USA

Qinghao Hu, Zhisheng Ye, Zerui Wang, Guoteng Wang, Meng Zhang,
Qiaoling Chen, Peng Sun, Dahua Lin, Xiaolin Wang, Yingwei Luo,
et al. Characterization of large language model development in the
datacenter. In 21st USENIX Symposium on Networked Systems Design
and Implementation (NSDI 24), pages 709-729, 2024.

Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R Lorch, Yingnong
Dang, Murali Chintalapati, and Randolph Yao. Gray failure: The
achilles’ heel of cloud-scale systems. In Proceedings of the 16th Work-
shop on Hot Topics in Operating Systems, pages 150-155, 2017.

Cisco Systems Inc. Cisco Nexus 9000 Series NX-OS Uni-
cast Routing Configuration Guide, Configure Dynamic Load
Balancing. https://www.cisco.com/c/en/us/td/docs/decn/nx-
0s/nexus9000/105x/unicast-routing-configuration/cisco-nexus-9000-
series-nx-os-unicast-routing-configuration- guide/m- configure-
dynamic-load-balancing.html, 2025.

Chenhao Jia, Tian Pan, Zizheng Bian, Xingchen Lin, Enge Song, Cheng
Xu, Tao Huang, and Yunjie Liu. Rapid detection and localization of
gray failures in data centers via in-band network telemetry. In NOMS
2020-2020 IEEE/IFIP Network Operations and Management Symposium,
pages 1-9. IEEE, 2020.

Mohan Kalkunte, Niranjan Vaidya, and Pete Del Vecchio.
Cognitive routing in the Tomahawk 5 data center switch.
https://www.broadcom.com/blog/cognitive-routing-in-the-
tomahawk-5-data-center-switch, 2023.

John Kim, William J. Dally, and Dennis Abts. Adaptive routing in high-
radix clos network. In Proceedings of the 2006 ACM/IEEE Conference
on Supercomputing, SC ’06, page 92—es, New York, NY, USA, 2006.
Association for Computing Machinery.

Apostolos Kokolis, Michael Kuchnik, John Hoffman, Adithya Kumar,
Parth Malani, Faye Ma, Zachary DeVito, Shubho Sengupta, Kalyan Sal-
adi, and Carole-Jean Wu. Revisiting Reliability in Large-Scale Machine
Learning Research Clusters. In 2025 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pages 1259-1274.
IEEE, 2025.

Wenxue Li, Xiangzhou Liu, Yuxuan Li, Yilun Jin, Han Tian, Zhizhen
Zhong, Guyue Liu, Ying Zhang, and Kai Chen. Understanding com-
munication characteristics of distributed training. In Proceedings of
the 8th Asia-Pacific Workshop on Networking, pages 1-8, 2024.
Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. LossRadar: Fast
detection of lost packets in data center networks. In Proceedings of the
12th International on Conference on emerging Networking EXperiments
and Technologies, pages 481-495, 2016.

Michael Mitzenmacher. The power of two choices in randomized
load balancing. IEEE transactions on parallel and distributed systems,
12(10):1094-1104, 2002.

Cornelis Networks. Cornelis Omni-Path Express Edge Switches.
https://www.cornelisnetworks.com/product/cornelis-omni-path-
express-edge-switches, 2025.

Ming Prince. Troubleshoot Switch Port and Interface Prob-
lems. https://www.cisco.com/c/en/us/support/docs/switches/catalyst-
6500-series-switches/12027-53.html, 2023.

Kun Qian, Yongqing Xi, Jiamin Cao, Jiaqi Gao, Yichi Xu, Yu Guan,
Binzhang Fu, Xuemei Shi, Fangbo Zhu, Rui Miao, et al. Alibaba hpn: A
data center network for large language model training. In Proceedings
of the ACM SIGCOMM 2024 Conference, pages 691-706, 2024.
Sundararajan Renganathan, Benny Rubin, Hyojoon Kim, Pier Luigi
Ventre, Carmelo Cascone, Daniele Moro, Charles Chan, Nick McKeown,
and Nate Foster. Hydra: Effective Runtime Network Verification. In
Proceedings of the ACM SIGCOMM 2023 Conference, pages 182-194,
2023.

Peter Rizk. Turbocharging Generative Al
with NVIDIA Spectrum-X Networking Platform.

Workloads
https:

https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/105x/unicast-routing-configuration/cisco-nexus-9000-series-nx-os-unicast-routing-configuration-guide/m-configure-dynamic-load-balancing.html
https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/105x/unicast-routing-configuration/cisco-nexus-9000-series-nx-os-unicast-routing-configuration-guide/m-configure-dynamic-load-balancing.html
https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/105x/unicast-routing-configuration/cisco-nexus-9000-series-nx-os-unicast-routing-configuration-guide/m-configure-dynamic-load-balancing.html
https://www.cisco.com/c/en/us/td/docs/dcn/nx-os/nexus9000/105x/unicast-routing-configuration/cisco-nexus-9000-series-nx-os-unicast-routing-configuration-guide/m-configure-dynamic-load-balancing.html
https://www.broadcom.com/blog/cognitive-routing-in-the-tomahawk-5-data-center-switch
https://www.broadcom.com/blog/cognitive-routing-in-the-tomahawk-5-data-center-switch
https://www.cornelisnetworks.com/product/cornelis-omni-path-express-edge-switches
https://www.cornelisnetworks.com/product/cornelis-omni-path-express-edge-switches
https://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/12027-53.html
https://www.cisco.com/c/en/us/support/docs/switches/catalyst-6500-series-switches/12027-53.html
https://developer.nvidia.com/blog/turbocharging-ai-workloads-with-nvidia-spectrum-x-networking-platform/
https://developer.nvidia.com/blog/turbocharging-ai-workloads-with-nvidia-spectrum-x-networking-platform/

HotNets "25, November 17-18, 2025, College Park, MD, USA

(35

=

(36

—

(37]

(38

—

(39

—

(40]

(41

—

[42]

//developer.nvidia.com/blog/turbocharging-ai-workloads-with-
nvidia-spectrum-x-networking-platform/, 2023.

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, and Alex C. Snoeren. Passive
Realtime Datacenter Fault Detection and Localization. In 14th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
17), pages 595-612, Boston, MA, March 2017. USENIX Association.
Peter Sanders, Jochen Speck, and Jesper Larsson Triff. Two-tree al-
gorithms for full bandwidth broadcast, reduction and scan. Parallel
Computing, 35(12):581-594, 2009.

Alex Shapiro. NVIDIA Ethernet Networking Accelerates World’s
Largest Al Supercomputer, Built by xAL https://nvidianews.nvidia.
com/news/spectrum-x-ethernet-networking-xai-colossus, 2024.
Xuemei Shi and Surendra Anubolu. The Challenges and Practices of
Network Stability in Alibabas Large Scale Computing Clusters. https:
/[www.youtube.com/watch?v=-3qZL_DOWACc, 2024. OCP Global Sum-
mit 2024.

Olivier Tilmans, Tobias Biihler, Ingmar Poese, Stefano Vissicchio, and
Laurent Vanbever. Stroboscope: Declarative network monitoring on a
budget. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18), pages 467-482, 2018.

Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom
Edsall. Let it flow: Resilient asymmetric load balancing with flowlet
switching. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), pages 407-420, 2017.

Saranyan A. Vigraham and Benjamin Leonhardi. Maintaining large-
scale Al capacity at Meta. https://engineering.fb.com/2024/06/12/
production-engineering/maintaining-large-scale-ai-capacity-meta/,
2024.

Koushnir Vladimir. Recommended Topologies for Imple-
menting an HPC Cluster with NVIDIA Quantum InfiniBand
Solutions - Part 2 - Adaptive routing, HBF and SHIELD.

[43]

[44]

[45]

[46]

[47]

[48]

Jakob Krebs, Dimitry Gavrilenko, Daniel Amir, Shir Landau Feibish, and Mark Silberstein

https://enterprise-support.nvidia.com/s/article/Recommended-
Topologies-for-Implementing-an-HPC-Cluster-with-NVIDIA-
Quantum-InfiniBand-Solutions-Part-2, 2024.

Weiyang Wang, Manya Ghobadi, Kayvon Shakeri, Ying Zhang, and
Naader Hasani. How to build low-cost networks for large language
models (without sacrificing performance)? arXiv e-prints, pages arXiv—
2307, 2023.

Yifan Xiong, Yuting Jiang, Ziyue Yang, Lei Qu, Guoshuai Zhao,
Shuguang Liu, Dong Zhong, Boris Pinzur, Jie Zhang, Yang Wang, et al.
{SuperBench}: Improving Cloud {AlI} Infrastructure Reliability with
Proactive Validation. In 2024 USENIX Annual Technical Conference
(USENIX ATC 24), pages 835-850, 2024.

Zhiyi Yao, Pengbo Hu, Congcong Miao, Xuya Jia, Zuning Liang, Yue-
dong Xu, Chunzhi He, Hao Lu, Mingzhuo Chen, Xiang Li, et al. Holmes:
Localizing Irregularities in {LLM} Training with Mega-scale { GPU}
Clusters. In 22nd USENLX Symposium on Networked Systems Design
and Implementation (NSDI 25), pages 523-540, 2025.

Zhu Yibo, Kang Nanxi, Cao Jiaxin, et al. Packet-level telemetry in large
datacenter networks. In Proc of the 2015 ACM Conference on Special
Interest Group on Data Communication. New York: ACM Press, pages
479-491, 2015.

Kuichao Zhang, Wei Su, Huiling Shi, Kai Zhang, and Wei Zhang.
GrayINT-Detection and Localization of Gray Failures via Hybrid In-
band Network Telemetry. In 2023 24st Asia-Pacific Network Operations
and Management Symposium (APNOMS), pages 405-408. IEEE, 2023.
Chenggang Zhao, Chengqi Deng, Chong Ruan, Damai Dai, Huazuo
Gao, Jiashi Li, Liyue Zhang, Panpan Huang, Shangyan Zhou, Shi-
rong Ma, et al. Insights into DeepSeek-V3: Scaling Challenges
and Reflections on Hardware for Al Architectures. arXiv preprint
arXiv:2505.09343, 2025.

https://developer.nvidia.com/blog/turbocharging-ai-workloads-with-nvidia-spectrum-x-networking-platform/
https://developer.nvidia.com/blog/turbocharging-ai-workloads-with-nvidia-spectrum-x-networking-platform/
https://nvidianews.nvidia.com/news/spectrum-x-ethernet-networking-xai-colossus
https://nvidianews.nvidia.com/news/spectrum-x-ethernet-networking-xai-colossus
https://www.youtube.com/watch?v=-3qZL_DOWAc
https://www.youtube.com/watch?v=-3qZL_DOWAc
https://engineering.fb.com/2024/06/12/production-engineering/maintaining-large-scale-ai-capacity-meta/
https://engineering.fb.com/2024/06/12/production-engineering/maintaining-large-scale-ai-capacity-meta/
https://enterprise-support.nvidia.com/s/article/Recommended-Topologies-for-Implementing-an-HPC-Cluster-with-NVIDIA-Quantum-InfiniBand-Solutions-Part-2
https://enterprise-support.nvidia.com/s/article/Recommended-Topologies-for-Implementing-an-HPC-Cluster-with-NVIDIA-Quantum-InfiniBand-Solutions-Part-2
https://enterprise-support.nvidia.com/s/article/Recommended-Topologies-for-Implementing-an-HPC-Cluster-with-NVIDIA-Quantum-InfiniBand-Solutions-Part-2

	Abstract
	1 Introduction
	2 Background
	3 Related work
	4 Temporal Symmetry
	5 Design
	5.1 Measuring a collective
	5.2 Load prediction
	5.3 Identifying faults

	6 Evaluation
	7 Discussion and Future Work
	8 Conclusions
	Acknowledgments
	References

