In Link We Trust: BFT at the Speed of CFT using Switches

Lior Zeno Naama Ben-David Mark Silberstein

Technion — Israel Institute of Technology

Abstract

We introduce SwitchBFT, a novel BFT consensus protocol
for data centers that matches the performance and fault toler-
ance guarantees of the fastest Crash Fault Tolerance (CFT)
protocols. We take advantage of several unique properties of
the trusted network that have emerged in modern data centers.
SwitchBFT leverages packet source authentication to elimi-
nate the overheads of cryptographic signatures, thus speeding
up the fault-free scenario, and utilizes network switch pro-
grammability to enforce agreement decisions and to verify
that safety is not violated, thereby offering robust performance
even when some replicas are faulty. Designing a practical
BFT that makes the most of these properties requires solving
several challenges, such as packet losses and switch crash
faults, all within the tight switch resource budget. We show
that SwitchBFT outperforms state-of-the-art BFTs in scala-
bility and performance, attaining the speed of NOPaxos, an
in-switch CFT implementation.

1 Introduction

Byzantine Fault Tolerant (BFT) consensus protocols are a
fundamental building block of modern data center systems.
They are broadly used in traditional State Machine Repli-
cation [7, 10,34, 35,43], as well as in emerging blockchain
applications [4,42]. Moreover, resilience to Byzantine fail-
ures is an appealing approach to a system design, not only for
defending against an active adversary but also for surviving
complex failures.

Handling Byzantine failures is known to be inherently more
costly than crash failures, however. In general, BFT consensus
tolerating f failures can be solved with 3 f + 1 replicas, i.e.,
about 50% more than 2f + 1 for the crash-only case, and
imposes significant communication overheads. Furthermore,
for many BFT protocols, even a single faulty replica might
cause a dramatic performance drop compared to a normal
(good-case) execution [13]. Thus, achieving BFT consensus
at the cost of Crash Fault Tolerant (CFT) consensus is an
unsolved challenge.

BFT protocols that assume the presence of trusted compo-
nents [5,9,16,19,20,35] make significant steps toward that
goal. Such components can run simple code or maintain a
limited state outside of the reach of an adversary, and can be
either collocated with each replica (e.g., Trlnc [16], A2M [9]),
or centralized, e.g., in a network switch (NeoBFT [20]). A
key advantage of trusted components is that they can prevent
Byzantine parties from equivocating, i.e., sending conflicting
messages, thereby allowing BFT solutions that, like CFT, only
require 2 f + 1 replicas.

However, many such protocols still suffer from low perfor-
mance in the presence of faults, where a single faulty replica
triggers a costly recovery mode (slow path), leading to dras-
tic performance degradation. Most popular BFT protocols
suffer from this phenomenon, and others give up fast-path
performance to avoid it [13].

Additionally, all protocols with trusted components employ
costly cryptographic primitives, such as signatures. These
are used to provide the powerful transferable authentication
property, allowing parties to verify that a message originates
from a known source. This property together with a non-
equivocation mechanism were proven to be necessary to reach
CFT-level fault tolerance of N < 3 f replicas [12].

The signature verification, however, is a well-known obsta-
cle to achieving high performance even in the fault-free fast
path [3,10,35] due to its computational cost. We measured that
verifying a 64-byte ECDSA signature is up to 3x longer than
the network round-trip. These overheads are hard to avoid.
Batching improves throughput but affects latency [10, 19,43].
The recent uBFT [35] protocol removes verification from the
critical path, but pays in latency for an extra communication
round to commit. NeoBFT [20] gains speed via hardware
acceleration but relaxes security guarantees.

In this paper, we introduce SwitchBFT, a practical BFT
consensus protocol for data centers that achieves the perfor-
mance of CFT: it obviates the need for cryptographic sig-
natures, tolerates f failures among 2 f + 1 replicas, and of-
fers robust performance in the presence of failures. While
SwitchBFT might seem to contradict the aforementioned im-

possibility result of Clement et al. [12], we claim that achiev-
ing these benefits is possible due to unique properties of mod-
ern data center networks which can be harnessed to improve
the performance of BFT protocols.

First, we propose to use programmable switches [39] to
verify BFT participants’ behavior and enforce consensus de-
cisions entirely in the data plane. This extends the trusted
switch model from prior work beyond packet routing [35] or
sequencers [20] to full data plane programs. A trusted switch
that verifies and enforces participants’ decisions in the data
plane significantly simplifies the BFT protocol without in-
troducing performance bottlenecks, as switch programs can
operate at line rate. While a switch may fail due to hardware
malfunctions, we believe it can be trusted to securely run data
plane programs because they cannot be hijacked via the data
plane, ensuring strong isolation from network adversaries
such as data center tenants. Furthermore, switch programs
can be further secured against control-plane modifications, en-
suring execution integrity even in the presence of a privileged
adversary (we explain our trust model in §2).

Second, we seek to leverage the inexpensive source au-
thentication for every packet naturally provided in modern
networks. This hinges on the fact that production networks
prevent spoofing, that is, injecting packets with a forged source
address.' Anti-spoofing has been shown to provide source
authentication before [26], but we are the first to use it in
the BFT context. Thus, a switch and replicas can verify the
origin of a message by relying on the network links instead of
cryptography.

Building a fast BFT using a trusted switch and in-network
source authentication might seem trivial: A switch would
store all the messages from the clients, and forward them to
the replicas in order (i.e., as in [20]) for redundancy. The
replicas then verify that the switch is the source, and recover
any missed messages from the switch.

This solution is obviously impractical, however, as it would
require a switch to have very large memory to store the mes-
sages. In reality, the switch memory is too small, and the
switch program cannot access more than the first 160 bytes in
a packet without costly recirculation [48]. Instead, SwitchBFT
design is guided by the following principles:

Switch as a trusted leader. The trusted switch plays a cen-
tral role in coordinating agreement. It executes the protocol
entirely in the data plane to maintain trust.

Minimal in-switch computations. We restrict the protocol on
the switch to perform only simple operations without costly
cryptographic hashes [20] which otherwise require special
hardware or offer weaker security guarantees.

Minimal in-switch state. We limit the state stored on the
switch. In particular, the switch does not store the client mes-
sages, and the in-switch state does not grow indefinitely as
the execution progresses.

IThis applies to both physical and virtual networks, as discussed in §7.

Packet loss as a first-class concern. Packet losses are han-
dled explicitly in the protocol. While in most BFT protocols
packet loss is assumed to be rare, or handled by the transport
protocol, switches do not run transport protocols and do not
buffer packets for retransmission. Relying on a lossless link
layer would constrain our deployment options.

Resiliency to switch failures. To ensure uninterrupted oper-
ation in the face of crash failures, the switch state must be
replicated among multiple trusted switches. The replication
protocol runs entirely in the data plane.

SwitchBFT upholds all of these design principles to yield
a BFT protocol that is as fast as CFT. A switch maintains a
global centralized view of the protocol decisions, preventing
rollbacks of committed decisions. It sequences and relays
messages between the participants, while maintaining a log of
client-provided collision-resistant hashes [44] of every mes-
sage. This allows replicas to retrieve missed messages from
other replicas and verify their integrity. The log is periodically
trimmed, keeping only a digest of the message history. Packet
losses are handled in one additional round-trip, and only for a
small subset of messages initiated by the switch. Clients and
replicas use retransmissions as they can buffer the messages.
With our design, a faulty replica does not affect the progress
of non-faulty replicas. Last, we employ the ChainPaxos repli-
cation protocol [17] among multiple trusted switches entirely
in the data plane [15,27,32] to withstand switch failures. A
switch failure may invoke the ‘slow path’ in the BFT, but we
show this to impose minimal overheads.

We formally prove that SwitchBFT is correct (§6), and
implement it in P4 for Intel Tofino switches (1800 LOC), as
well as the client and replica library in Rust. We run on up to
four switches to evaluate crash fault tolerance among them.

We compare SwitchBFT with multiple state-of-the-art BFT
protocols, as well as one of the fastest in-switch CFT consen-
sus implementations, NOPaxos [31].

SwitchBFT matches the throughput and latency of
NOPaxos for messages of up to 256 bytes and is within 14%
of its throughput for larger messages, while supporting the
same proportion of faulty replicas. Compared to NeoBFT [20],
which also relies on a trusted switch, SwitchBFT achieves
6.6x lower tail latency (5.3x lower average) at the same
throughput, and 10% higher overall throughput, despite
NeoBFT using an FPGA-equipped switch. Compared to the
less-secure HMAC-based version of NeoBFT, SwitchBFT
achieves 3x lower tail latency (1.9x lower average) at the
same throughput, with 10% higher overall throughput, all
while supporting more faulty replicas. Under packet loss,
SwitchBFT maintains the throughput of a loss-free execution
for the realistic loss rate of up to 0.01%, and then gradually
degrades by up to 33% and 27% at an extreme 1% loss rate
with 2 and 3 non-faulty replicas, respectively. Finally, we an-
alyze SwitchBFT’s scalability, showing it can fully utilize
the switch capacity, achieving 300Mop/sec request rate and
scaling to replica groups as large as 8K.

2 Trust Model

SwitchBFT assumes that the switch may serve as a trusted
component in the BFT protocol. While switches are not fail-
proof, we believe they are a useful trust boundary. This is
in line with several prior works: NeoBFT [20] explicitly as-
sumes that switches and their data-plane programs are trusted.
uBFT [35] implicitly trusts switches to not alter unsigned
messages.

SwitchBFT further extends this assumption to trust data
plane programs executed by the switch. Specifically, in a
practical threat model that assumes adversarial data center
tenants connected via network, data plane programs running
in switches are harder to subvert than host software and of-
fer protection against such an adversary, thus enabling the
execution of trusted BFT logic.

“Air-gapped” control-plane network. Data-plane programs
can only be installed via control plane operations. Notably,
SwitchBFT participants are data center tenants that do not
have access to the control plane. Moreover, the control plane
network is isolated from the tenant network traffic, effectively
creating an “air-gapped” in-switch execution environment to
run trusted switch programs.

Firmware locking for trusted in-switch programs. To guar-
antee that the switch runs only authorized programs, data
plane programs as well as switch firmware can be secured
and locked by vendors. They require vendor authorization
and/or physical access for updates.

Data plane vulnerabilities are difficult to exploit. We are
unaware of attacks that engineer network traffic to adversar-
ially modify in-switch data or cause control flow integrity
violations in data plane programs. Data plane packets cannot
modify in-switch tables or hijack the match-action pipeline
executing data plane programs, as the code and data are seg-
regated, and there are no potentially exploitable elements
like stacks or branches. Thus, SwitchBFT data plane logic is
protected from the protocol participants (clients and replicas).

We follow the common assumption that the trusted BFT
components are implemented correctly, but we make no such
assumption about the software running on replicas or clients.
In addition, beyond the switches running SwitchBFT, we
assume that ToR switches are trusted, as they are essential for
source authentication.

3 Switch Programming Constraints

SwitchBFT uses protocol-independent switch architecture
(PISA) switches. PISA switches are programmed using the
P4 language [50], which provides access to switch memory
through tables and stateful objects such as registers, meters,
and counters. Registers are particularly powerful in P4 as they
support both read and update operations (via RMW actions)
in the data plane. But, each packet program is limited to one

access to each register array. With recirculation, packets can
traverse the pipeline multiple times, albeit with lower through-
put reduced proportionally to the number of recirculations.

These constraints put significant restrictions on the pro-
grammer. First, the switch is incapable of executing complex
cryptographic operations. For instance, even generating four
low-security HalfSipHash HMACs [24] requires 12 pipeline
passes [20]. Second, due to its restricted memory and inability
to access the entire packet payload (Intel Tofino is limited
to 160 bytes without recirculation [48]), storing complete
messages in the data plane is not an option.

4 Design

We first discuss the main protocol assuming no switch failures,
and then explain how to handle them in §4.8.

4.1 Overview

There are three main actors in SwitchBFT: clients, replicas,
and a trusted switch. We assume that all communication goes
through the switch and that up to f < n/2 replicas, and any
number of clients, may be Byzantine. The actors and their
communication links are shown in Figure 1. We assume a par-
tially synchronous model with message losses. Clients initiate
their operations by sending their message to the switch. The
switch then assigns a sequence number to the message and dis-
tributes it to all replicas. Replicas store the received messages
in a log, and then execute them in the order of their sequence
numbers, eliminating the need for inter-replica communica-
tion. Once executed, the replica issues an acknowledgment to
the client, including the response from the application.

However, the protocol is more subtle due to the possibility
of packet loss. Sequence numbers allow replicas to recog-
nize when they have missed a message, but do not help them
to recover the lost message’s contents. It is therefore pos-
sible that some replica has a gap in its message log, while
another received all messages, leading to divergence in ap-
plication state. Since we cannot prevent message loss, we
must implement a way for replicas to recover lost messages,
or agree on log gaps. We therefore allow replicas to execute
speculatively, and, upon detecting inconsistencies, roll back
their state, re-execute diverging operations, and send a new
acknowledgment to the client. The client then considers an
operation committed once it receives f + 1 acknowledgments
with an identical application response.

We present the protocol in two parts; in the first, we define
a new primitive, we call Verifiable Unreliable Authenticated
Broadcast (VUAB), which ensures that replicas receive client
messages in order, though possibly with some gaps, and al-
lows them to check whether a message value was received by
some replica in a given log slot. This helps prevent Byzantine
actors from inventing fake client messages.

Trusted
Switch
DCN
ToR ToR ToR ToR
Replica Replica Client o Client

Figure 1: SwitchBFT deployment model: SwitchBFT is ex-
ecuted on any switch(es). ToRs provide packet source au-
thentication. The switch processes all protocol messages. It
broadcasts client requests to all replicas (purple), and unicasts
acknowledgments to the requestor (green).

The second part of the protocol builds on VUAB and allows
replicas that lost messages to recover message values (which
they can then verify using VUAB), or agree that a certain log
slot will be left blank in all replicas.

4.2 Verifiable Unreliable Atomic Broadcast

VUAB consists of three operations, broadcast(m), deliver(),
and verify(m, k), intuitively allowing a client to broadcast
a message to all replicas, a replica to deliver that message,
and a replica to check whether the message m was the kth
message to be delivered by other replicas. More specifically,
the following properties define VUAB:

« Validity: In executions without message loss and mes-
sage reordering, if a non-faulty client broadcasts a mes-
sage m, then all non-faulty replicas deliver m.

* Integrity: For any broadcast message m, every non-
faulty replica delivers m at most once.

¢ Lossy Total Ordering: For any two non-faulty replicas,
if the k-th deliver () invocation returns a message, it
is the same message.

* Loss Detection: If a message m is broadcast by a correct
client then either (1) none of the correct replicas delivers
m or L or (2) every correct replica delivers m or L.

¢ Verifiability: verify(m, k) returns true if some non-
faulty replica delivered m as its k-th delivery. Further-
more, if verify(m,k) returns true, then no non-faulty
replica can ever deliver any non-L message other than
m in its kth delivery.

Unlike reliable broadcast, VUAB does not ensure the even-
tual delivery of messages from correct clients. Instead, VUAB
delivers L to signify message loss and guarantees that if at
least one correct replica detects a message loss, all non-faulty
replicas either receive the message or detect its loss.

The VUAB protocol. Just like the rest of our BFT protocol,
the VUAB protocol relies on a trusted switch through which
all messages are routed. Its pseudocode is presented in Ap-
pendix B. At a high level, the switch’s job is to (a) assign a
sequence number to each message that is broadcast, (b) store
a collision-resistant digest [44] attached to each message to
facilitate later verification, and (c) broadcast the message with
its sequence number and digest to all replicas. Notably, the
switch never computes the digest by itself, and never stores
the entire broadcast message.

To broadcast a message, a client first calculates a digest, D
of its message m, by using a hash function i#(m) = D. It then
sends a combined message M = (m, D), containing both the
original message and its digest, to the switch.

Once the switch receives M, it stores the digest of the mes-
sage and its assigned sequence number, S, in a local digests
array, before sending (M, S) to all replicas. Each replica, upon
receiving M from the switch, stores the message in a pending
buffer, to be used for delivery. Before placing a message in
the buffer, the replica compares its sequence number to the
last sequence number it has seen, and appends L messages to
the buffer if it observes a gap. The replica also keeps track of
the number of messages it has already delivered, and corrects
the pending buffer if it received an out-of-order message and
has not yet delivered a L for that sequence number.

Before delivering, a replica first calculates the digest D’ =
h(m), and compares it to the received digest D to ensure its
validity. If the digests do not match, the replica discards the
message and delivers L; otherwise, it delivers m.

To verify that a message m was the k-th message to be
delivered by some replica, a replica retrieves the digest of
the message with that sequence number from the switch, and
checks if the digest of m matches the provided one.

4.3 Normal Operation Mode

Figure 2 shows SwitchBFT’s fast path. The client uses VUAB
to broadcast its messages, and replicas maintain a log with
the messages they delivered through VUAB, in the order they
delivered them. Once a replica delivers a client message, it
executes the operation on the application, and sends back an
acknowledgment to the client, along with the resulting appli-
cation state. If a client receives f + 1 acknowledgments with
the same application state, it can consider its operation to be
committed. Note that this solves BFT SMR if packets cannot
be lost. This highlights the power of the VUAB primitive, and
in turn, the power of a trusted central switch.

To handle packet loss, our protocol also keeps track of the
protocol execution even during normal operation. In particu-
lar, the switch tracks the number of acknowledgments from
different replicas for each message, and replicas report the
number of missing messages in their log when they send an
acknowledgment. This information is used to ensure consis-
tency when packets are lost, as we explain next.

@Send (m,D) @Wait for f +1 identical responses

Client
\QBroadcast (m,D,S) QValidat/
Switch
OS5 =seq+1, Store D\ /
Replica

@ Verify, execute and send (ACK, S, res, Nyop)
Figure 2: The flow of a client request (fast path).

4.4 Handling Packet Loss

When considering packet loss, we focus on one type of mes-
sage: those forwarded by the switch from the client to the
replicas. These messages pose a unique problem; since the
switch has limited memory and cannot store the contents of
such messages, it also cannot retransmit them in case of packet
loss. We therefore implement a recovery protocol that allows
replicas to agree on the content of log entries for which some
(but maybe not all) replicas have not received the client mes-
sage forwarded by the switch. We note that all other messages
transmitted in our protocol can be stored and retransmitted,
because their senders have a larger memory capacity.

If a replica delivers L for some sequence number S, it trig-
gers the recovery protocol (Figures 3 and 4) to try to retrieve
the missing message. The replica buffers all other messages
while executing the recovery protocol, deferring the process-
ing of messages with larger sequence numbers until the miss-
ing message is resolved. Since the switch does not store any
client messages, the recovery request, denoted (RECOVER, S),
is sent to all replicas. Upon receiving a (RECOVER, S) mes-
sage, a replica replies with a (RECOVER, S,NOP/m) message,
sending its own value for the requested sequence number:
either the message m if it received it, or NOP otherwise. In
principle, if the initiating replica receives at least one copy of
a non-NOP message, then it can verify its authenticity using
the verify operation of VUAB, and if valid, adopt that mes-
sage. Otherwise, it waits to hear at least f + 1 NOP replies, and
then adopts a NOP value for that sequence number.

However, the protocol is in fact more complex, since we
must ensure that all replicas agree on the same value (either
NOP or the client’s original message), despite asynchrony and
potential equivocation. For this purpose, we rely on the switch,
through which all messages are routed, to maintain transient
state for the recovery protocol of each sequence number.

More specifically, the state maintained by the switch is
used for two key purposes, outside of the state maintained
for VUAB:; first, it prevents equivocation by tracking which
replicas have already replied to each request, and secondly,
it stores the outcome of the recovery of each message and
prevents any replica from deciding differently in the future.

Note that the equivocation is prevented in a lazy manner,
i.e., the replica will succeed in sending an incorrect message,
but it will not affect the protocol execution, making it more
resilient in the presence of faulty replicas.

@ Validate & broadcast@Update metadata &
(RECOVER, S) append D (S)

Switch /\ \ / \
Replicay
/ ©Send (RECOVER, S, m) \
Replica;

@Send (RECOVER, S) @ Verify & execute
Figure 3: The flow for recovering a message #S.

@ Validate & broadcast @Update metadata
(RECOVER, S) & mark NOP

VAN
Replicay

©Send (RECOVER, S, NOP)

Replica;
@Send (RECOVER, S) ©Set S =nop
Figure 4: The flow for deciding a NOP.

We now discuss each of these in more detail. The pseu-
docode of the protocol is found in Appendix B.

Mitigating equivocation and enforcing decisions. At a high
level, to mitigate equivocation, the switch stores, for each
replica r and message m, whether r has already replied to m,
and if so, it drops any further replies to the same message
m from the same replica r. More specifically, we consider
three types of messages; client requests, recovery requests,
and commit requests (which will be described in the next
subsection). These are the messages for which the switch
stores non-equivocation metadata.

In particular, for each client message m with sequence num-
ber S, the switch maintains a bit per replica, indicating which
replicas sent an acknowledgment to the client for m. Once
the switch sees at least f + 1 acknowledgments from differ-
ent replicas, it sets a flag indicating that the message with
sequence number S has been decided, and that its decision is
not NOP. The decision flag is stored in a History array, indexed
by sequence number. Once such a decision is reached, if any
replica initiates a recovery protocol for sequence number S,
the switch drops any recovery-response messages with a NOP
value; that is, the only possible outcome of the recovery is
for the initiating replica to discover the value of the original
message. This is guaranteed to eventually happen since there
must have been at least one non-faulty replica that acknowl-
edged the message, and that replica will eventually respond
to the recovery request with the correct message.

Recovery messages are handled similarly, but require
three states for each replica; no-reply, NOP-reply, or message-
reply, with the latter two corresponding to whether the
(RECOVER, S, *) message from replica r contained a NOP or
a non-NOP message, respectively. The state of all replicas
starts as no-reply, and can only change once. Once f +1 repli-
cas have sent a NOP response (are in the NOP-reply state) for

the recovery of sequence number S, the switch marks a NOP
decision for that sequence number in the History array. Any
further recovery request for that sequence number will receive
a reply from the switch indicating the NOP decision, without
forwarding the request to other replicas. It is possible that
some replica r manages to recover the original message and
completes its recovery operation, but in the meantime, the
switch receives f + 1 NOP responses and marks a NOP decision.
This means that r will have an incorrect value in its log; how-
ever, this value will be corrected later, when r verifies its log’s
consistency, either when sending its next acknowledgment to
the client, or when executing a log commit as described next.
NOP decision delays. Since packets can take time to arrive,
initiating and replying to a recovery operation immediately af-
ter delivering a L in the VUAB protocol may lead to many NOP
decisions even without many packet drops. Thus, we add a
timeout mechanism that prevents replicas from initiating or re-
sponding to a (RECOVER, S) operation before a certain amount
of time has elapsed since they delivered sequence number
S. Furthermore, replicas do not respond to (RECOVER, S) re-
quests if they have not received either message S or message
S+ 1. This is important for liveness for executions in which
all messages arrive within a A delay.

4.5 Verifying Log Consistency

If a replica does not observe a dropped packet (never delivers
a 1 in the VUAB protocol), it never triggers the recovery pro-
tocol. It is thus possible that this replica has a message in slot
S, whereas the other replicas agreed on a NOP in S (i.e., there
were at least f+1 (RECOVER, S,NOP) messages from different
replicas). Such a case is not prevented because we rely on a
simple majority to make decisions. The same problem may
occur if the replica successfully recovered a message, but the
final recovery decision was still NOP, as discussed above. As
a result, the application state will diverge from the others,
leading to incorrect responses to the client.

To prevent such outcomes, we implement a simple log con-
sistency verification protocol. To verify its log’s consistency,
a replica sends a message to the switch indicating the number,
Nyop, of NOP decisions it is aware of so far in its log since the
last trimming (discussed below). Note that the switch records
all NOP decisions, and therefore the NOP decisions any replica
is aware of is a subset of the NOP decisions on the switch.
Thus, if the size of the set of NOP decisions is the same on
the switch and the replica, the sets themselves are the same.
Thus, if Nyor matches the number of NOP decisions recorded
in the switch, then the replica’s log is consistent. Otherwise,
the switch replies with the list of slots for which there have
been NOP decisions, allowing the replica to correct its log, roll
back and reapply operations on its application.

Client acknowledgments with log verification. To ensure
that the client receives correct responses from the replicas,
and that once it receives f + 1 acknowledgments with identi-

@ Validate & broadcast @Update metadata &
(COMMIT, S, H, Nyop) log trim

N S\
/

©Send (COMMIT, S, H, Nyop)

Replica;
@Send (COMMIT, S, H, Nyop) @Store H
Figure 5: The message flow of the commitment protocol.

cal state, its operation is committed and the response will not
change, we must ensure that non-faulty replicas only acknowl-
edge client messages if their logs are consistent. We thus pig-
gyback log verification on acknowledgment messages; when
sending an acknowledgment to a client message, a replica r
also sends the number, Nygp, of NOP decisions it is aware of.
The switch only forwards the acknowledgment to the client
if r’s log is consistent. Otherwise, if Nyop does not match
the number of NOP decisions on the switch, the switch drops
r’s acknowledgment to the client, and instead sends a log-
consistency-verification reply to r.

Furthermore, if replica r sends an acknowledgment for
the message with sequence number k, the switch considers
this to be an acknowledgment for all messages with smaller
sequence numbers for which a NOP decision has not yet been
reached. It updates all acknowledgment counts of messages
with smaller sequence numbers accordingly, and, if any reach
f +1 acknowledgments, updates the decision to non-NOP.

Together, the log-consistency-verification and acknowledg-
ment updates ensure that if a client receives f + 1 identical
acknowledgments for some message with sequence number
k, all messages with smaller sequence numbers have been
decided, and therefore the log will not be rolled back.

4.6 Commitment and Log Trimming

As described so far, the protocol requires the switch to main-
tain state for every client message in the whole execution
history, which can quickly become unsustainable. We now de-
scribe a simple way to allow the switch to trim its log, called
the commitment protocol, which replicas execute periodically.
The flow of the commitment protocol is shown in Figure 5.
Once a replica has filled &k log entries since its last commit
(or since the beginning of the execution), reaching sequence
number S, a replica r initiates the commit protocol. Intuitively,
the replica does two things simultaneously: first, it verifies
the consistency of its log, and secondly, it calculates a digest
of its entire log to allow storing it more compactly. In more
detail, when initiating the commit protocol, r calculates the
digest of its history of messages up to S, H, and the number
of NOPs, Nyop, in the last k slots (since its last commit), and
sends a (COMMIT, S, H, Nyop) to the switch. The switch first
verifies that Nyop matches the number of NOP decisions it has
logged in its History array in the entries S — k... S, and if

so, forwards the commit message to all replicas. Otherwise,
it sends r the log-consistency-verification reply; it sends a
message to r indicating that its commit is rejected, with the
sequence numbers at which there is a NOP decision.

Upon receiving a commit message (COMMIT, S, H, Nyop),
each replica independently calculates the digest of its own
history, and if in agreement (i.e., its own history digest
matches H), sends a (COMMIT, S, H, Nyop) back to the switch.
Note that if the history digests match, then necessarily the
number of NOP entries matches as well. Upon receiving
matching (COMMIT,S, H, Nyor) messages from f + 1 differ-
ent replicas, the switch replaces its History array for all en-
tries up to S with the history digest H, and broadcasts this
(COMMIT, S, H, Nyop) message to all replicas. Upon receiving
a (COMMIT, S, H, Nyo) message from the switch, a replica
checks whether H matches its log’s digest up to S. If not, the
replica queries the switch for the indices of the NOP decisions
it missed, and executes a recovery protocol for any message
it missed. For any recovery protocol triggered for some se-
quence number S’ < § at any point after the switch trims its
log, the responding replicas send their entire log history,” and
the switch sends the digest of the entire history H to verify
the log’s validity. Replicas can also query the switch to find
the locations of NOP decisions that have been trimmed and the
latest committed sequence number.

4.7 Optimizations

The protocol as presented so far solves BFT SMR using a
central trusted switch despite packet drops. We now present a
couple of optimizations that we implemented on top of it.
Overwrite messages. To minimize log divergences among
the replicas, the switch can announce when a NOP decision is
made for a certain sequence number. That is, it can send an
‘overwrite (S)’ message to all replicas, letting them know
that sequence number S should be overwritten to a NOP. Addi-
tionally, when a non-NOP (RECOVER, S,m) is received by the
switch, it can forward it, along with that message’s digest,
not only to the replica that initiated the recovery, but to all
replicas. If the digest matches the message itself, this gives all
replicas another chance to hear it. Furthermore, the replicas
can then reply with an acknowledgment, speeding up the time
until the message is committed, and reducing the chance that
a NOP decision will be made.

Acknowledgment tracking. One of the main limitations of
a P4 switch is that a P4 register can only be accessed once
per packet. Therefore, accessing multiple indices of the same
P4 register requires recirculation which leads to significant
overhead, since they cannot be executed at line rate. In our
protocol, all the calculations and updates that the switch ex-
ecutes only involve one update, and are therefore fast. The

2There are various ways to reduce the size of such messages, including
sending the history just starting at the sequence number being recovered, or
sending the number of NOP decisions in the history.

only exception is that, when processing an acknowledgment
from a replica r to a client for sequence number S, the switch
must update the state of all messages with sequence numbers
smaller than S. However, this can be implemented in one
memory update by keeping track of the maximum sequence
number for which r sent an acknowledgment.

4.8 Handling Switch Failures

As the switch is trusted, it is not susceptible to Byzantine
failures; however, it may crash and lose its state. To address
this, we replicate the protocol state in the switch using chain
replication [52] across multiple trusted switches arranged in a
chain and reconfigure the chain via Paxos upon switch failures
similar to ChainPaxos [17]. The inter-switch replication and
reconfiguration are implemented entirely in the data plane.

Packets that modify the state are directed to the head of
the chain and subsequently propagated through the chain to
the tail. Packets that read the state, access it from the tail
switch. This approach ensures linearizability, i.e., any state
update externalized (i.e., reaching clients or replicas) is fully
replicated across all switches in the chain. While the switches
in the chain may be in different states at a given time, this
discrepancy does not violate safety because only the state of
the tail switch is known to clients or replicas. Furthermore, all
the switches in the chain possess the state of the tail switch
plus some new updates that have not yet reached it.

SwitchBFT implements chain replication and Paxos
entirely in the data plane, following the approach of
NetChain [27], SwiSh [32], and P4xos [15], as follows. All
the messages from the replicas and clients are sent to the head
switch, they traverse through the chain and update the state in
each switch, and then the tail switch sends them to their des-
tination. This design allows for seamless failover to another
switch replica in case of a head switch failure, without any
loss of state, at the expense of slightly increased per-request
latency as we show in the evaluation.

Chain reconfiguration is done via Paxos. Each switch mon-
itors its successor in the chain through timeouts. When a
failure is suspected, the monitoring switch sends a reconfig-
uration request to the head switch, which coordinates agree-
ment among all switches on the new chain configuration. In
the event of a head switch failure, the switches first run a
leader election phase before reconfiguring the chain.

Note that reconfiguration can also be done via an external
coordination service run by switches that are not part of the
chain. When the chain self-reconfigures, 2 f; + 1 switches
are needed to tolerate f; switch crash failures, where f; is
the switch failure and is unrelated to the number f of faulty
replicas participating in the BFT protocol.

Adding switches to the chain is also performed in data
plane and done similarly to prior work [17,32]. Switches can
rejoin the chain by sending a reconfiguration request to the
leader. Once the new configuration is decided, the switch is

added to the tail of the chain, where it requests the history
from the previous switch. During synchronization time, the
switch can participate and forward replication requests.

5 Analysis

Why source authentication is necessary. We rely on packet
source authentication to establish mutual trust between the
switch and replicas. Without this key primitive, Byzantine
replicas may forge messages on behalf of other replicas or a
switch. Thus, it allows replicas and the switch to authenticate
the source of messages before they act on them. Note that
anti-spoofing is not semantically different from any other
authenticated BFT protocol, which is usually provided via
digital signatures or MACs. In particular, it does not weaken
or limit Byzantine behavior such as equivocation.

In-switch space and compute requirements. The switch
only performs lightweight computations and never executes
cryptographic primitives. Specifically, it only compares or
performs simple arithmetic on integers.

The switch maintains two distinct types of state: the mes-
sage digest history and the recovery/commit state. We give
the breakdown of the size of the state, using the following
variables:

e D —size of the digest (bits),

* R —number of replicas,

* Hj — history length before trimming (messages),

* § — sequence number or NOP count size.

The total history datais (D+ R+ 1)Hy + (D +S). The first
factor is the number of bits required to store the digest and the
bitset for each sequence number, plus a single bit for the NOP
flag. The second factor is for the latest digest of the message
history with the latest committed sequence number. We can
reduce this further to: (D +1)Hp + (D +S) + RS by replac-
ing bitsets with per-replica message counters. For recovery
and commit states, we require a tristate array of size R, the
sequence number to commit/recover, the NOP count and the
commit block digest. This sums up to: 3R+ D +28S.

The total space is expressed as: (D+1)Hyp+(D+S)+RS+
3R+ D +2S For the following values Hy = 64K, D =256,
R = 8K, S =32, the total space requirement is: ~16Mbits.
This fits within the switch data plane (§9.2).

The dominant factor here is the message digest history. We
choose Hy, such that it is big enough to hide the commitment
latency, i.e., replicas always have requests to process during
log trimming. This is because when replicas cannot finish the
commit procedure and the switch runs out of space, it stops
accepting requests as switches do not support dynamic alloca-
tions. In our experiments, we achieved full system throughput
with a message digest history of size Hy =512.

Scalability. A single Tofino switch pipeline can handle up to
1.2 billion packets per second [21], surpassing the throughput
of a commodity CPU by several orders of magnitude. There-

fore, SwitchBFT is designed to run on a single switch pipeline.
The switch becomes a scalability bottleneck only with ex-
tremely large replica groups, where space or bandwidth con-
straints become the limiting factor. For instance, achieving
such bottleneck conditions would necessitate a replica group
of about 5K replicas if each processes packets at a rate of
220Kop/sec as we measure in our evaluation.

Replicas process a linear number of messages for commit-
ments and recoveries, but handle only one packet in the fast
path, regardless of the number of replicas. Further, the switch
strives to reduce the message burden by aggregating responses
during the recovery and commit phases, e.g., a replica only
hears from the switch after f + 1 NOP votes.

Read operations. SwitchBFT does not use cryptographic
signatures, and therefore arbitrary reads need to be performed
as quorum reads as outlined in §4.3. Reads may be optimized
further by utilizing the switch, but we do not explore it in this
work.

Slow path behavior. In SwitchBFT, the slow path can be
seen as the need to recover lost packets, since that increases a
replica’s time to commitment by a round trip. However, only
the replica that lost the packet is affected. The recovery takes
a little longer if many non-faulty replicas all lost the same
message, in which case the switch needs to wait to aggregate
enough NOP votes before the recovery completes. Even in this
scenario, this process is significantly faster than the multi-
round view change protocols [10,43], or even the message
recovery protocol in other BFT algorithms [20].

Effect of Byzantine replicas. Byzantine replicas in
SwitchBFT cannot trigger the slow path. Their only recourse
is to attempt to diminish system throughput by consistently
voting for NOP during recoveries. However, this tactic is equiv-
alent to a Denial-of-Service attack, from which BFT protocols
do not protect today. Fortunately, these irregularities may be
readily identifiable by the switch, which can swiftly mitigate
suspected malicious behavior from any replica.

Interplay between switch failures and BFT performance.
When a non-head switch fails, replicas may face extra work
post-recovery due to gaps in sequence numbers. These num-
bers continue to get increased by the chain head, but packets
are not forwarded to the replicas during the failure. As a result,
replicas would have to agree on many NOPs. To minimize this
overhead, we propose two optimizations. First, reducing the
message digest history length can limit the number of NOPs
replicas must agree on. The minimal length of the message
digest history is 512, which translates into about 33msec to
recover the protocol in the worst case assuming 65us per NOP
decision. We measure the NOP decision latency in §9.2. In
addition, the recovery protocol could be extended to support
sequence number ranges, allowing replicas to batch recovery
messages. This is left for future work.

6 Correctness Proof Sketch

In this section, we briefly sketch the correctness argument for
our protocol. The full proof is in Appendix C.

Theorem 1 (Safety (Informal)). Once a client receives f+1
identical acknowledgments, (1) the acknowledgment value
represents the application state immediately after executing
its most recent operation (2) the application will never be
rolled back beyond this state.

We begin by arguing that our VUAB protocol is correct.
Lemma 1. The VUAB implementation is correct.

Sketch. Since the switch is correct by assumption, it always
forwards the message it receives from the broadcaster, with
a unique sequence number and having stored the digest that
the broadcaster sent. Note that non-faulty processes only de-
liver non-L values that were received from the switch and
whose digest matches their locally computed hash. Further-
more, a correct broadcaster always sends its message with a
correctly calculated digest that corresponds to the message’s
hash. Therefore, validity and integrity are maintained. Due
to the way the switch assigns sequence numbers, loss detec-
tion and lossy total ordering are maintained as well. Finally,
due to digest verification before delivering each message, the
verification property is also guaranteed. O

Note that a non-faulty replica r’s acknowledgement for
a message with sequence number S contains the result of
applying the message in r’s S’th log slot to the application.
By the correctness of VUAB, the message that r applied to the
application is the client’s original message. Since the client
waits for f + 1 identical acknowledgments, at least one of
them must be from a non-faulty replica. Therefore, part (1) of
the safety property holds.

To see why part (2) holds, consider the state of each mes-
sage with < § in the switch, after a client receives f + 1 iden-
tical acknowledgements for S. We define a message m with
sequence number S to be decided if the switch has seen ei-
ther (a) at least '+ 1 acknowledgments for m from differ-
ent replicas (called message-decision) or (b) at least f + 1
(RECOVER, S, NOP) replies (NOP-decision). Note that once a
message is decided, its decision cannot be reversed, and any
replica that either tries to recover it or executes a log consis-
tency verification will discover its decided value.

Recall that an acknowledgment for S is considered by the
switch as an acknowledgment for every message before S.
Thus, at the time at which the client receives f + 1 identical
acknowledgments, all messages with sequence number < §
have been decided (potentially a NOP-decision). Recall also
that when acknowledging a message, replicas also execute
a log-consistency verification, and the acknowledgment is
dropped if the verification fails. Therefore, at least one of the
f+1 acknowledgments received by a client must have arrived

from a non-faulty replica with a consistent log, and therefore
no message before S will be rolled back in that replica’s log.

Theorem 2 (Liveness (Informal)). If no packets are dropped
and all replicas receive a client message m within a timeout
A, then m will be committed.

The liveness of the protocol stems from the way that the
recovery protocol is implemented. In particular, if no mes-
sages are lost and all arrive within A timeout, no non-faulty
replica will initiate a recovery operation for any message, and
any non-faulty replica that responds to a recovery operation
for any sequence number S will send the message value (non-
NOP). Thus, at most f NOP responses can be collected for any
recovery, and therefore no NOP decision will be reached.

7 Discussion

Deployment model. As depicted in Figure 1, SwitchBFT
does not assume replicas are physically connected to the
switch(es) running SwitchBFT. It only requires observing
all protocol traffic among the replicas, and between them and
the clients. This is enforced via source authentication, because
replicas reject the protocol messages not originating at the
SwitchBFT switch. Thus, network-wide anti-spoofing ensures
that the switch address is unique and cannot be forged.

For the design of network-wide source authentication,” we
take a similar approach to that proposed in previous work [47,
57]. Given that the physical topology within the datacenter
changes infrequently [46], we maintain an accurate mapping
between ingress ports and corresponding server IP addresses
at each ToR switch. When a packet arrives with an IP address
that does not match the mapped server, the switch discards it,
effectively preventing packet spoofing across the network.

Since SwitchBFT does not rely on reliable broadcast, the
VUAB mechanism can be realized entirely by the switch’s
multicast engine. VUAB is scalable due to its best-effort
nature, with no packet delivery guarantees. From the control
plane perspective, the switch can maintain large multicast
groups and large number of such groups (up to 64K) [22].
From the data plane perspective, VUAB is unreliable and as
discussed in §5, lost messages only stall a specific replica,
while the slow path is triggered only if many replicas lose the
same message.

Virtualized environments. SwitchBFT will function without
modifications in virtualized environments but requires several
minor additions to the system for correct operation.

To work properly, SwitchBFT poses the following addi-
tional requirements. First, the physical switch should imple-
ment anti-spoofing at the virtual network layer, as the hyper-
visor is untrusted. Second, the switch must expose a virtual IP
to be accessible to the VMs. Last, each physical machine may

3 Anti-spoofing mechanisms are part of modern L3 switches [11,41].

Hardware capability

Platform
Deep parsing Packet replication ~ Stateful operations
Intel Tofino [21] 160B Yes Yes
NVIDIA Spectrum [40] 512B Yes Yes (needs locking)
Juniper Trio [56] 200B Yes Yes (needs locking)
Xsight Labs X2 [54] 256B Yes Yes (needs locking)

Table 1: Comparison of switch platforms by support for
SwitchBFT’s key data plane features.

only run a single SwitchBFT replica, as a Byzantine hypervi-
sor may compromise the network among the VMs, turning the
replicas on the same host to Byzantine all at once. In fact, this
requirement also applies to CFT, since co-locating replicas on
the same physical resources does not improve fault tolerance.
Accelerating signatures on SmartNICs. Accelerating signa-
ture logic is challenging due the inherently sequential com-
putations. While it is possible to trade power and area for
additional throughput, lowering the latency of modern x86
CPUs running at high clock frequencies is hard [2, 18]. A
recent effort, TNIC [18], proposes a trusted NIC architecture
that supports HMAC offload and implements a BFT consen-
sus protocol. However, the latency of HMAC computation on
TNIC is 2% higher than an x86 implementation. Even with
further optimization, the TNIC protocol still requires cross-
replica communication to commit messages and remains vul-
nerable to Byzantine behavior due to its leader-based design.

Comparison to NOPaxos. The key design differences be-
tween SwitchBFT and NOPaxos stem from the failure model.
In NOPaxos, replicas are assumed correct, so a lost message
can be retrieved directly from a replica without additional
verification. In contrast, because replicas in SwitchBFT may
be Byzantine, their responses cannot be trusted without val-
idation. To ensure correctness, we introduce the verifiable
property to our VUAB protocol. Furthermore, since replicas
may equivocate and we do not rely on signatures, the trusted
switch orchestrates the recovery protocol. Finally, because the
switch maintains digests of client messages, a log trimming
mechanism is required. To this end, we introduce the commit-
ment protocol, which is executed periodically by replicas and
enables the switch to trim its log while preserving correctness.
SwitchBFT on other switch architectures. SwitchBFT’s
data plane requires three key hardware capabilities: (1) deep
packet parsing and header modification, (2) stateful memory
operations, (3) packet replication for multicast. To under-
stand how these requirements map to other platforms, we
analyze several switch architectures, including NVIDIA Spec-
trum [40], Juniper Trio [56], and Xsight Labs X2 [54]. The
capabilities of each platform, as relevant to SwitchBFT, are
summarized in Table 1.

All analyzed platforms support deep packet parsing and
multicast replication. For example, the Xsight Labs X2 switch
can parse up to 256B of headers and replicate a packet up to
8K times [53].

ACK Forward to client
ACK o
/ Monitor .
Packet Commit, e for]
i Commit | yeri and)
in,, | Sequence Recovery Verify P log trim i
M > and v Bt »(Routing
Number
Recovery Digest

Store | Multicast
to replicas

Client request

Figure 6: Logical pipeline view of the SwitchBFT P4 imple-
mentation.

Stateful operations are also supported on all switches, but
performance may vary due to memory locking. In SwitchBFT,
the most critical flow involves incrementing the sequence
number, which requires a read-modify-write on the same
memory location per client request. Yet, this operation runs
at the rate that is determined by a single replica performance,
which in our system is approximately 220Kop/sec. This rate
is rather low for a switch increment operation even with lock-
ing, therefore unlikely to become a bottleneck. Updates to the
digest store can be parallelized, since they involve indepen-
dent writes to different memory locations distributed across
different memory banks. The recovery and commit protocols
execute at relatively low rates and do not impose significant
load on the switch.

8 Implementation

We prototype SwitchBFT’s switch, packet source authentica-
tion and all the optimizations from Appendix §4.7, on a Tofino
programmable switch in P4¢ [S0] (~1800 LOC). The client
and replicas are implemented in Rust by extending NeoBFT’s
publicly available code [20]. We replicate the switch’s state
using chain replication and Paxos for reconfigurations, with
no control plane involvement, as demonstrated by previous
work [15,27,32]. Additionally, we implement NOPaxos [31]
in P4, and the client and replica code in Rust.

The implementation presents challenges due to several
factors, including the significant register footprint of storing
256-bit digests on the switch, which consumes a third of the
available stages, and the extended data dependencies between
protocol messages.

Our implementation avoids blocking during the COMMIT
procedure. Specifically, when initiated by a replica, we opt
not to block recoveries for sequence numbers within the com-
mitted digest block. Instead, we validate the initial state of
the COMMIT procedure at decision time. For instance, if a NOP
decision was made for a sequence number before commit com-
pletion, the commit fails upon receiving the f+1th COMMIT by
the switch. This optimization not only facilitates implemen-
tation but also prevents Byzantine replicas from obstructing
recovery procedures by issuing spurious COMMITS.

P4 implementation details. As shown in Figure 6, the core
data structure is the digest store, comprising of 8 register

2x Intel Xeon Silver 4216 CPU @ 2.10GHz
CPU

(16 cores per socket)
NIC 2% Intel E810 100Gbps NIC
Switch 2x EdgeCore Wedge 100BF-32X (Intel Tofino 1)
OS/Kernel Ubuntu Server 20.04 LTS / 5.4.0-131-generic

Table 2: Hardware and software details of the testbed.

ffffffffffffffffffff

: SwitchBFT R ~' SwitchBFT R, >—~—~—>: SwitchBFT R3 >—>: SwitchBFT Ry
)))

,,,,,,,, o2

ffffffffffffffffffff

Server

Figure 7: Testbed topology.

arrays, each with 32-bit elements. This width is the maximum
that can be read and written in a single stateful ALU operation.
The digest store can hold up to 64K entries, distributed across
four pipeline stages—double the size of the commit block.
We logically divide the register store into two windows: one
stores the digests of incoming client requests, while the other
is used for commitment by the replicas. If the digest store
becomes full, the switch blocks new client requests. Upon
completion of the commit protocol, the windows are swapped.

To address the dependency between commit and sequence
number allocation, since each register can be accessed once by
each packet, the final commit packet is recirculated to update
the latest committed sequence number, which is stored at the
beginning of the pipeline.

Each client request is assigned the next available sequence

number, and its digest is stored in the digest store at the corre-
sponding indexed entry. The request is then sent via multicast
to all replicas using the switch’s multicast engine. Finally,
generated packets are updated with per-replica routing infor-
mation in the egress pipeline.
Switch resource utilization. We report the switch resource
utilization of our prototype on a Tofino switch in Appendix A.
Limitations. The current prototype supports up to 8K replicas,
a digest store size of up to 64K, and digests of up to 256 bits.
In addition, for simplicity, we assume FIFO ACK delivery
from replicas, so we replace bitsets with a single counter
per-replica to track unique ACKSs from replicas.

9 Evaluation

Setup. Table 2 and Figure 7 summarize the hardware and
network topology used in the experiments. We run all the
replicas and clients on a single machine, each in its own net-
work namespace, while forcing all communications through
the switch.* Each replica is pinned to two physical cores on
the server. There are two physical switches, each with two

4Each namespace has a MACVLAN interface in VEPA mode [30].

independent processing pipes, thus each acts as two switches.
The switches are configured to form a replication chain. Since
in the topology, the head switch is the only one connected
to the clients and replicas, each packet traverses it twice, the
first time running SwitchBFT logic, and the second only to
forward to the destination.

Unless stated otherwise, we configure the system to tolerate

the failure of a single switch. To achieve this, we use two pipes
from the first switch and one pipe from the second switch as
three independent switches. In total, the system operates with
three switch replicas in a self-reconfiguring chain.
Baselines. We compare SwitchBFT against the follow-
ing baselines: Unreplicated (a single replica), PBFT [10],
Zyzzyva [43], Zyzzyva with one Byzantine replica (Zyzzyva-
F), MinBFT [19] (with emulated SGX overhead, as done
in NeoBFT [20]), HotStuff [34], and Neo-HM (with a low-
security HMAC) and Neo-PK (that requires an FPGA in a
switch) which run code in a switch [20]. Since we do not have
the switch with an FPGA necessary to run Neo-PK, we use a
fixed signature for every client request, let replicas verify it
to emulate the associated CPU overhead, but always assume
a success. Batching is supported by all baselines, except for
Neo-HM and Unreplicated. Unless stated otherwise, we run
all protocols using the minimum number of replicas to tolerate
a single Byzantine failure.
SwitchBFT configuration. We set the commit block size
to 32K. Thus, a single experiment at the maximum message
rate encounters about 7 in-switch digest log trimming/sec.
Trimming is performed in all the experiments.

9.1 End-to-end Performance

Protocol performance. We run a replicated Echo server
where each replica sends back the message received from the
client, thus highlighting the performance without application-
related CPU load.

Figure 8 shows the throughput vs. 99th percentile la-
tency. SwitchBFT reaches the same maximum throughput
as NOPaxos. Its latency is within the measurement error
(19%) compared to NOPaxos when approaching the maxi-
mum throughput at 213Kop/sec, and about 3% higher at low
load. This is expected: it adds digest verification per message
and the overhead of switch replication, both only a few usec.

Compared to Neo-HM, SwitchBFT has 20% lower latency
under light load, as Neo-HM requires packet recirculations
for computing HMAC in a switch. This also translates to 10%
higher throughput at the latency at which SwitchBFT reaches
~220Kreq/sec. We note that Neo-HM uses a low-security
hash function and requires 3 f + 1 replicas.

Neo-PK incurs much higher latency because it buffers mul-
tiple messages before processing them. Without batching,
verifying every request would limit the maximum throughput
to ~15Kop/sec given the 2 CPU cores we allocate for each
replica. Zyzzyva and MinBFT also use batching to offset the

g SwitchBFT —— NOPaxos HotStuff Zyzzyva
—=— Unreplicated MinBFT PBFT —— Neo-PK

Zyzzyva-F
—<— Neo-HM

5000 ‘l
4000
o /
Q
a
= 3000
>
3
2
)
T 2000 [—H
5
& ' /
s |
1000 |— ‘ > ///
"’ R
o ‘ | | o
0K 50K 100K 150K 200K

Throughput (ops/sec)
Figure 8: 99p Latency-throughput of all evaluated systems for
the replicated Echo server. SwitchBFT outperforms all BFT
baselines, and matches the performance of NOPaxos.

mmm Unreplicated mmm NOPaxos mmm Neo-PK Zyzzyva HotStuff
s SwitchBFT mmm Neo-HM MinBFT PBFT Zyzzyva-F
200K

175K

—
%
=}
~

125K

100K

~
v
~

Throughput [ops/sec]

106K ;00K

v
=]
~

62K 60K
45K

N
v
~

oK
Protocol

Figure 9: The maximum throughput of a replicated KV store.

signature overhead. Finally, HotStuff, PBFT, and Zyzzyva-F
are much slower, as they require more communication rounds
in the fast path and incur signature-related overheads.
Key-Value store. We run a BTree-based Key-Value (KV)
store as in NeoBFT [20], with 32B/128B keys/values, 1:1
GET to SET ratio, and 100K distinct keys. As shown in Fig-
ure 9, SwitchBFT’s throughput is the same as NOPaxos, and
only 1% lower than Unreplicated. Neo-HM and Neo-PK out-
perform the other baselines, but the rest are slower because
batching is less effective for larger payloads.

9.2 Analysis

Scalability. The scalability of a BFT system is typically eval-
uated along two dimensions: increasing the number of clients
and their request rates, and increasing the replica group size.
The former highlights the maximum throughput of the BFT
core mechanisms, and the latter demonstrates the efficiency
of the I/O substrate. Ideally, we would like to characterize
how SwitchBFT behaves across both dimensions. However, a
full end-to-end scaling experiment cannot sufficiently stress
the switch hardware, since the maximum throughput is inher-
ently limited by the single-threaded CPU performance of an
individual replica. As we show below, saturating the switch

would require thousands of CPU replicas.

Therefore, to evaluate SwitchBFT under stress, we im-
plement replicas directly on the switch. In this experiment,
SwitchBFT logic is unchanged, but replicas are implemented
in P4 and execute a simple Echo server on a switch. This setup
allows us to measure the maximum throughput SwitchBFT
can reach with unrealistically fast replicas. One switch
pipeline executes the SwitchBFT protocol, while the other
pipeline runs the replicas. The client is executed on the switch
too, by sending requests using the switch’s packet genera-
tor. It transmits minimum-sized requests (78B) at line rate
(100Gbps). We use another switch to double the request rate.

The switch has a fixed processing capacity, which is shared
among client requests, per-replica requests, and their acknowl-
edgments. This creates a tradeoff: allocating bandwidth to
maximize the client request rate requires fewer replicas,
whereas increasing the replica group size stresses the multi-
cast engine but reduces the achievable request rate.

To explore both dimensions, we evaluate two configura-
tions: (1) 3 replicas, the minimum for BFT with one fail-
ure, and (2) 8K replicas, the maximum supported by our
prototype. In the 3-replica experiment, two clients gener-
ate load while each replica receives requests through four
distinct ingress ports. This setup introduces out-of-order ar-
rivals, and to stress-test SwitchBFT’s in-switch logic, we con-
figure replicas to acknowledge requests without necessarily
processing all preceding ones, while still enforcing in-order
commit triggers. This design makes replicas respond faster,
thereby increasing the load on SwitchBFT. Under this work-
load, SwitchBFT reaches a throughput of 300Mop/sec, fully
utilizing the switch’s packet-processing capacity.

In the 8K-replica experiment, SwitchBFT also saturates the
switch’s processing capacity, achieving the throughput of 135
Kops/sec. This experiment shows that SwitchBFT can easily
scale to such large replica group sizes, and is constrained by
the available in-switch bandwidth alone.

Finally, we validate our scalability analysis (§5) by fixing
the request rate at 220Kop/sec and measuring the maximum
replica group size the switch can sustain without packet loss.
We find that the system supports up to SK replicas, match-
ing our analysis, and the throughput degradation observed
when scaling to 8K replicas follows the expected linear trend,
consistent with the bandwidth tradeoff discussed above.
Performance vs. message size. We measure performance
while varying client message sizes, and also evaluate the
performance impact of different hash functions for produc-
ing the message digest. These include 2 SHA256 imple-
mentations — the standard SHA256 [51], and an optimized
SHA256 implementation utilizing AVX instructions — as well
as BLAKE3 [23, 45]. The results are shown in Figure 10.
For messages under 256B, all the implementations achieve
similar throughput. However, for larger messages, SwitchBFT
is up to 14% slower than NOPaxos with the fastest BLAKE3
hash function. This highlights that SwitchBFT works with any

=e— SwitchBFT-SHA256 === SwitchBFT-SHA256AVX
mte SwitchBFT-BLAKE3 —— NOPaxos
250K

200K

o AN

Throughput [ops/sec]

%
=)
=

0K
2 8 32 128 512 2048
Message Size [log, Bytes]
Figure 10: Throughput vs. message size for different hash
algorithms to compute message digest. Higher is better.

#switches 1 2 3 4
Latency [usec] (90/95/99p) 56/60/72 58/62/72 60/63/73 62/66/76

Table 3: Client-observable latency for a different number of
switches in the data plane state replication chain. Adding
three switches to the chain adds only 6 usec.

hash function as switches do not execute one, unlike NeoBFT.
Latency overhead of multi-switch state replication. We
vary the number of switches in the data plane state replication
chain from 1 (no redundancy) to 4 and measure the latency of
a single client request. To achieve strong consistency, all the
messages from the clients and replicas traverse all switches
in the chain from the head to the tail, and only then reach
their destination. Table 3 shows that each switch in the chain
introduces an additional latency of 2usec at 90p.
Performance under switch failure. We run a chain with 4
switches and measure the performance when the head switch
fails. Recovering from a leader switch failure requires electing
anew leader and running Paxos to agree on the new chain con-
figuration. We set the heartbeat timeout between the switches
to 50msec and the client retransmission timeout to 10msec.

We start with four active switches in the chain. We run
SwitchBFT at maximum throughput, and then simulate a
failure by reconfiguring the head switch to function solely
as a forwarding switch. The results are shown in Figure 11.
When the head switch fails, throughput immediately drops to
zero, as expected. After the timeout, the tail switch detects
the failure, and the switches run the leader election protocol
and agree on the new chain configuration. During this period,
client requests are not forwarded to replicas by the chain. The
recovery process completes right after the failure is detected.
We validate this result by rerunning the experiment with a
30msec heartbeat timeout between the switches.

We also evaluate the worst-case scenario where the head
switch fails after a middle switch failure. In this simulation,
the failed head switch continues to increment sequence num-
bers, leading to gaps that require replicas to agree on NOPs
after recovery. This added overhead doubles the duration of

—#— 30msec —=— 50msec —e— 30msec w/ NOPs
250
150 * ‘
100
50 \\\

0 10 20 30 40 50 60 70 80
Time [msec]

Throughput [ops/sec]

Figure 11: SwitchBFT’s worst-case throughput under the
chain head or middle switch failure for different timeout val-
ues.

=o— SwitchBFT-2R —— Neo-PK
SwitchBFT-3R —<— Neo-HM

250K

200K \
150K \

~

100K

Throughput [ops/sec]

50K

oK
0.001% 0.01% 0.1% 1%
Packet Drop Probability [log]

Figure 12: Throughput vs. packet drop probability, with two
and three replicas in SwitchBFT compared to NeoBFT.

zero client-observable throughput. Replicas had to agree on
535 NOPs, taking 35ms (averaging 65us per NOP agreement).
This occurs because the process is fully serial, and can be
reduced by batching recovery requests.

Resilience to packet drops. We vary the drop probability
from 0.001% to 1% and report the throughput with one
or two failures, denoted as SwitchBFT-2R (2 replicas), and
SwitchBFT-3R (3 replicas).

The results are shown in Figure 12. SwitchBFT maintains
consistent throughput irrespective of the replica group size.
It retains ~93% of its throughput even at drop probabilities
as high as 1:1000. However, at a drop ratio of 1:200, the
throughput is reduced by approximately 20%. In addition, as
expected, SwitchBFT-3R performs better at larger drop rates,
because with more replicas, the probability of losing the same
message in all replicas is lower, so the are fewer periods in
which replicas are blocked while deciding on NOP.

Neo-HM’s throughput cannot be measured beyond the drop
probability of 1:1000, as the requests were dropped by all
replicas and deemed unrecoverable due to the lack of the
consensus recovery protocol in the author’s implementation.

At a drop ratio of 1:1000, Neo-HM throughput suffers a 12%
decline. In contrast, Neo-PK exhibits significant throughput
degradation with more drops because replicas need to verify
the signatures of lost messages before resuming operation.

10 Related Work

BFT consensus with trusted components. Utilizing trusted
components to mitigate equivocation has been a longstanding
line of research [5,6, 8, 16, 18-20,28, 33,36, 55]. TrInc [16]
and MinBFT [19] utilize trusted counters for message se-
quencing, A2M [9] utilizes append-only logs, TNIC [18] uti-
lizes trusted NICs for message authentication. NeoBFT [20]
and uBFT [35] leverage central trusted components, using
a network switch and disaggregated memory respectively.
However, none of the above reach the performance of CFT
protocols in the fast path, and all suffer from a significant
performance drop in the slow path.

Comparison with in-switch BFT. NeoBFT relies on a trusted
network switch similar to SwitchBFT. It has two versions:
a less secure one with a low-security HMAC computed in
the switch, and a secure one with a trusted FPGA for com-
puting signatures. The following table shows the benefits of
SwitchBFT, in particular, support for more failures, faster NOP
agreement, and no verification costs. Further, SwitchBFT is
more resilient to Byzantine failures because it has no leader
replica hence no costly view changes.

NeoBFT [20] SwitchBFT
Replicas 3f+1 2f+1
NOP agreement PBFT 2 message rounds
Crypto-based authentication Yes No
Fast-path com. rounds 1 1
. . Switch failure
View change triggered by No

Byzantine leader

BFT without signatures. PBFT [10] proposed an optimiza-
tion for their protocol that uses authenticators, HMACs vec-
tors, instead of signatures. Still, it requires more replicas and
communication rounds than SwitchBFT to commit a request.
Other works have studied the information-theoretic setting,
in which no cryptography is used at all [1,14,38]. Most remain
theoretical and require 3 f + 1 replicas to tolerate f failures.
Clement et al. [13] showed that both signatures and equiv-
ocation prevention are needed to solve BFT agreement with
2f +1 replicas. However, it only considers local trusted com-
ponents. SwitchBFT shows that neither is necessary with a
central trusted component, even with limited resources.
Accelerating the slow path. Aardvark [13] proposed a design
for BFT protocols by avoiding optimizations that decrease
the slow-path performance. There has been a recent surge
of interest in leaderless protocols that avoid the slowdown
due to leader failure [29, 37, 49, 58]. SwitchBFT achieves
similar robust performance by relying on the trusted switch
to coordinate agreement, without a leader. Thus, Byzantine
failures do not affect the system’s performance. Despite using

a switch as a lightweight leader, the switch failover time is
extremely quick.

In-network primitives. Strengthening network guarantees
through in-network primitives has been extensively studied.
For instance, NOPaxos [31] and Eris [25] demonstrated the ef-
ficacy of in-network sequencing in developing faster CFT and
distributed transaction systems. Additionally, NeoBFT [20]
illustrated the integration of in-network sequencing with mes-
sage authentication. SwitchBFT builds upon this line of work
and leverages another in-network primitive, packet source
authentication, in its design.

11 Conclusions

SwitchBFT achieves performance that matches the state-of-
the-art CFT protocols while tolerating Byzantine faults. By
leveraging trusted switches and in-network packet source
authentication, largely overlooked in prior BFT protocols,
SwitchBFT offers robustness and efficiency in data center en-
vironments. Formal proofs and extensive evaluations demon-
strate SwitchBFT’s correctness, superior performance, and
resilience to packet loss and switch failures.

Acknowledgments

We thank the anonymous reviewers and our shepherd, Vincent
Liu, for their insightful comments and constructive feedback.
We gratefully acknowledge support from Israel Science Foun-
dation (grants 1998/22 and 3673/25).

References

[1] Ittai Abraham, Naama Ben-David, and Sravya Yan-
damuri. Efficient and Adaptively Secure Asynchronous
Binary Agreement via Binding Crusader Agreement. In
Proceedings of the 2022 ACM Symposium on Principles
of Distributed Computing, pages 381-391, 2022.

[2] Rashmi Agrawal, Ji Yang, and Haris Javaid. Efficient
FPGA-based ECDSA Verification Engine for Permis-
sioned Blockchains. In 2022 IEEE 33rd International
Conference on Application-specific Systems, Architec-
tures and Processors (ASAP), pages 148-155. IEEE,
2022.

[3] Aguilera, Marcos K and Ben-David, Naama and Guer-
raoui, Rachid and Papuc, Dalia and Xygkis, Athanasios
and Zablotchi, Igor. Frugal Byzantine Computing. In
35th International Symposium on Distributed Comput-
ing, 2021.

[4] Amazon. Blockchain on AWS. https://aws.amazon
.com/blockchain/.

https://aws.amazon.com/blockchain/
https://aws.amazon.com/blockchain/

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Johannes Behl, Tobias Distler, and Riidiger Kapitza. Hy-
brids on Steroids: SGX-Based High Performance BFT.
In Proceedings of the Twelfth European Conference on
Computer Systems, pages 222-237, 2017.

Naama Ben-David and Kartik Nayak. Brief Announce-
ment: Classifying Trusted Hardware via Unidirectional
Communication. In Proceedings of the 2021 ACM Sym-
posium on Principles of Distributed Computing, pages
191-194, 2021.

Alysson Bessani, Jodo Sousa, and Eduardo EP Alchieri.
State machine replication for the masses with bft-smart.
In 2014 44th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks, pages 355—
362. IEEE, 2014.

Alysson Neves Bessani, Miguel Correia, Joni
da Silva Fraga, and Lau Cheuk Lung. Sharing Memory
between Byzantine Processes using Policy-Enforced
Tuple Spaces. I[EEE Transactions on Parallel and
Distributed Systems, 20(3):419-432, 2008.

Byung-Gon Chun, Petros Maniatis, Scott Shenker, and
John Kubiatowicz. Attested Append-Only Memory:
Making Adversaries Stick to their Word. ACM SIGOPS
Operating Systems Review, 41(6):189-204, 2007.

Miguel Castro and Barbara Liskov. Practical Byzantine
Fault Tolerance and Proactive Recovery. ACM Trans-
actions on Computer Systems (TOCS), 20(4):398-461,
2002.

Cisco. Port ACLs (PACLs) and VLAN ACLs (VACLs).
https://www.cisco.com/c/en/us/td/docs/swit
ches/lan/catalyst6500/i0s/12-2SX/configura
tion/qguide/book/vacl.html, 2023.

Allen Clement, Flavio Junqueira, Aniket Kate, and Ro-
drigo Rodrigues. On the (Limited) Power of Non-
Equivocation. In Proceedings of the 2012 ACM sym-
posium on Principles of distributed computing, pages
301-308, 2012.

Allen Clement, Edmund Wong, Lorenzo Alvisi, and
Mirco Marchetti. Making byzantine fault tolerant sys-
tems tolerate byzantine faults. In 6¢th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 09). USENIX Association, April 2009.

Tyler Crain. Two more algorithms for randomized
signature-free asynchronous binary byzantine consen-
sus with # < n/3 and o(n?) messages and o(1) round
expected termination. arXiv preprint arXiv:2002.08765,
2020.

H. T. Dang, P. Bressana, H. Wang, K. S. Lee, N. Zil-
berman, H. Weatherspoon, M. Canini, F. Pedone, and

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

R. Soulé. P4xos: Consensus as a Network Service.
IEEE/ACM Transactions on Networking, pages 1-13,
2020.

Dave Levin, John R. Douceur, Jacob R. Lorch, and
Thomas Moscibroda. TrInc: Small trusted hardware for
large distributed systems. In 6th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
09), Boston, MA, April 2009. USENIX Association.

Pedro Fouto, Nuno Preguiga, and Joao Leitdo. High
Throughput Replication with Integrated Membership
Management. In 2022 USENIX Annual Technical Con-
ference (USENIX ATC 22), pages 575592, Carlsbad,
CA, July 2022. USENIX Association.

Dimitra Giantsidi, Julian Pritzi, Felix Gust, Antonios
Katsarakis, Atsushi Koshiba, and Pramod Bhatotia.
TNIC: A Trusted NIC Architecture. In Proceedings
of the 30th ACM International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems, Volume 2, ASPLOS ’25, page 1282-1301,
New York, NY, USA, 2025. Association for Computing
Machinery.

Giuliana Santos Veronese, Miguel Correia, Alysson
Neves Bessani, Lau Cheuk Lung, and Paulo Verissimo.
Efficient Byzantine Fault Tolerance. IEEE Transactions
on Computers, 62(1):16-30, 2011.

Guangda Sun, Mingliang Jiang, Xin Zhe Khooi, Yunfan
Li, and Jialin Li. NeoBFT: Accelerating Byzantine Fault
Tolerance Using Authenticated In-Network Ordering. In
Proceedings of the ACM SIGCOMM 2023 Conference,
pages 239-254, 2023.

Intel. Tofino. https://www.intel.com/content/ww
w/us/en/products/network-io/programmable-e
thernet-switch/tofino-series/tofino.html.

Intel. Tofino Native Architecture. https://github.c
om/barefootnetworks/Open-Tofino.

Jack O’Connor, Jean-Philippe Aumasson, Samuel
Neves, Zooko Wilcox-O’Hearn. BLAKE3. https:
//github.com/BLAKE3-team/BLAKE3.

Jean-Philippe Aumasson and Daniel J. Bernstein.
SipHash: A Fast Short-Input PRF. In International
Conference on Cryptology in India, pages 489-508.
Springer, 2012.

Jialin Li, Ellis Michael, and Dan R. K. Ports. Eris:
Coordination-Free Consistent Transactions Using In-
Network Concurrency Control. In Proceedings of the

26th Symposium on Operating Systems Principles, pages
104-120, 2017.

https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst6500/ios/12-2SX/configuration/guide/book/vacl.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst6500/ios/12-2SX/configuration/guide/book/vacl.html
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst6500/ios/12-2SX/configuration/guide/book/vacl.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series/tofino.html
https://github.com/barefootnetworks/Open-Tofino
https://github.com/barefootnetworks/Open-Tofino
https://github.com/BLAKE3-team/BLAKE3
https://github.com/BLAKE3-team/BLAKE3

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Jiarong Xing, Kuo-Feng Hsu, Yiming Qiu, Ziyang Yang,
Hongyi Liu, and Ang Chen. Bedrock: Programmable
Network Support for Secure RDMA Systems. In 31s¢
USENIX Security Symposium (USENIX Security 22),
pages 2585-2600, 2022.

Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. NetChain: Scale-Free Sub-RTT Coordination. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 35-49, Renton,
WA, April 2018. USENIX Association.

Riidiger Kapitza, Johannes Behl, Christian Cachin,
Tobias Distler, Simon Kuhnle, Seyed Vahid Moham-
madi, Wolfgang Schroder-Preikschat, and Klaus Sten-
gel. CheapBFT: Resource-efficient Byzantine Fault
Tolerance. In Proceedings of the 7th ACM european
conference on Computer Systems, pages 295-308, 2012.

Karolos Antoniadis, Julien Benhaim, Antoine Des-
jardins, Poroma Elias, Vincent Gramoli, Rachid Guer-
raoui, Gauthier Voron, and Igor Zablotchi. Leaderless
consensus. Journal of Parallel and Distributed Comput-
ing, 176:95-113, 2023.

kernel.org. IPVLAN Driver HOWTO. https://docs
.kernel.org/networking/ipvlan.html.

Jialin Li, Ellis Michael, Adriana Szekeres, Naveen Kr.
Sharma, and Dan R. K. Ports. Just Say NO to Paxos
Overhead: Replacing Consensus with Network Order-
ing. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
’16), Savannah, GA, USA, November 2016. USENIX.

Lior Zeno, Dan R. K. Ports, Jacob Nelson, Daehyeok
Kim, Shir Landau-Feibish, Idit Keidar, Arik Rinberg,
Alon Rashelbach, Igor De-Paula, and Mark Silberstein.
SwiSh: Distributed Shared State Abstractions for Pro-
grammable Switches. In 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
22), pages 171-191, 2022.

Dahlia Malkhi, Michael Merritt, Michael K Reiter, and
Gadi Taubenfeld. Objects shared by Byzantine pro-
cesses. Distributed Computing, 16:37-48, 2003.

Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy
Golan Gueta, and Ittai Abraham. HotStuff: BFT Con-
sensus with Linearity and Responsiveness. In Proceed-
ings of the 2019 ACM Symposium on Principles of Dis-
tributed Computing, pages 347-356, 2019.

Marcos K Aguilera, Naama Ben-David, Rachid Guer-
raoui, Antoine Murat, Athanasios Xygkis, and Igor

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

Zablotchi. uBFT: Microsecond-Scale BFT using Dis-

aggregated Memory. In Proceedings of the 28th ACM
International Conference on Architectural Support for

Programming Languages and Operating Systems, Vol-
ume 2, pages 862-877, 2023.

Miguel Correia, Nuno Ferreira Neves, and Paulo Veris-
simo. How to Tolerate Half Less One Byzantine Nodes
in Practical Distributed Systems. In Proceedings of the
23rd IEEE International Symposium on Reliable Dis-
tributed Systems, 2004., pages 174—183. IEEE, 2004.

Tulian Moraru, David G Andersen, and Michael Kamin-
sky. There Is More Consensus in Egalitarian Parlia-
ments. In Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, pages 358—
372,2013.

Achour Mostéfaoui, Hamouma Moumen, and Michel
Raynal. Signature-Free Asynchronous Binary Byzan-
tine Consensus with # < n/3, O(n?) Messages, and O (1)
Expected Time. J. ACM, 62(4), September 2015.

NextPlatform. Hyperscalers ready to run barefoot in the
datacenter. https://www.nextplatform.com/2017/
01/30/hyperscalers-ready-run-barefoot-dat
acenter.

NVIDIA. NVIDIA Spectrum-4. https://nvdam.wi
den.net/s/pjlcwnrdbn/ethernet-switches-spe
ctrum-4-asic-datasheet-us.

NVIDIA. HowTo Configure Filtering Rules on Mel-
lanox Ethernet Switches (ACLs, IP Filtering). https:
//enterprise-support.nvidia.com/s/article/
howto-configure-filtering-rules-on-mellano
x-ethernet-switches--acls--ip-filtering-x,
2022.

Ji Qi, Xusheng Chen, Yunpeng Jiang, Jianyu Jiang,
Tianxiang Shen, Shixiong Zhao, Sen Wang, Gong
Zhang, Li Chen, Man Ho Au, and Heming Cui.
Bidl: A High-throughput, Low-latency Permissioned
Blockchain Framework for Datacenter Networks. In
Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 18-34,
New York, NY, USA, 2021. Association for Computing
Machinery.

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: Speculative
Byzantine Fault Tolerance. In Proceedings of twenty-
first ACM SIGOPS symposium on Operating systems
principles, pages 45-58, 2007.

https://docs.kernel.org/networking/ipvlan.html
https://docs.kernel.org/networking/ipvlan.html
https://www.nextplatform.com/2017/01/30/hyperscalers-ready-run-barefoot-datacenter
https://www.nextplatform.com/2017/01/30/hyperscalers-ready-run-barefoot-datacenter
https://www.nextplatform.com/2017/01/30/hyperscalers-ready-run-barefoot-datacenter
https://nvdam.widen.net/s/pjlcwnrdbn/ethernet-switches-spectrum-4-asic-datasheet-us
https://nvdam.widen.net/s/pjlcwnrdbn/ethernet-switches-spectrum-4-asic-datasheet-us
https://nvdam.widen.net/s/pjlcwnrdbn/ethernet-switches-spectrum-4-asic-datasheet-us
https://enterprise-support.nvidia.com/s/article/howto-configure-filtering-rules-on-mellanox-ethernet-switches--acls--ip-filtering-x
https://enterprise-support.nvidia.com/s/article/howto-configure-filtering-rules-on-mellanox-ethernet-switches--acls--ip-filtering-x
https://enterprise-support.nvidia.com/s/article/howto-configure-filtering-rules-on-mellanox-ethernet-switches--acls--ip-filtering-x
https://enterprise-support.nvidia.com/s/article/howto-configure-filtering-rules-on-mellanox-ethernet-switches--acls--ip-filtering-x

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Phillip Rogaway and Thomas Shrimpton. Cryptographic
Hash-Function Basics: Definitions, Implications, and
Separations for Preimage Resistance, Second-Preimage
Resistance, and Collision Resistance. In Fast Software
Encryption: 11th International Workshop, FSE 2004,
Delhi, India, February 5-7, 2004. Revised Papers 11,
pages 371-388. Springer, 2004.

Markku-Juhani O. Saarinen and Jean-Philippe Aumas-
son. The BLAKE2 Cryptographic Hash and Message
Authentication Code (MAC). RFC 7693, November
2015.

Alan Shieh, Srikanth Kandula, Albert Greenberg,
Changhoon Kim, and Bikas Saha. Sharing the Data
Center Network. In 8th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 11),
2011.

Alan Shieh, Srikanth Kandula, and Emin Gun Sirer.
SideCar: Building Programmable Datacenter Networks
without Programmable Switches. In Proceedings of
the 9th ACM SIGCOMM Workshop on Hot Topics in
Networks, Hotnets-IX, New York, NY, USA, 2010. As-
sociation for Computing Machinery.

Swati Goswami, Nodir Kodirov, Craig Mustard, Ivan
Beschastnikh, and Margo Seltzer. Parking Packet Pay-
load with P4. In Proceedings of the 16th International
Conference on Emerging Networking EXperiments and
Technologies, pages 274-281, 2020.

Adriana Szekeres, Michael Whittaker, Jialin Li,
Naveen Kr Sharma, Arvind Krishnamurthy, Dan R. K.
Ports, and Irene Zhang. Meerkat: Multicore-scalable
replicated transactions following the zero-coordination
principle. In Proceedings of the Fifteenth European
Conference on Computer Systems, pages 1-14, 2020.

The P4 Language Consortium. P44 Language Specifi-
cation. https://p4.org/pi-spec/docs/P4-16-v1.
2.0.html.

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

Tony Hansen and Donald E. Eastlake 3rd. US Secure
Hash Algorithms (SHA and SHA-based HMAC and
HKDF). RFC 6234, May 2011.

Robbert van Renesse and Fred B. Schneider. Chain
Replication for Supporting High Throughput and Avail-
ability. In Proceedings of the 6th Conference on Sympo-
sium on Operating Systems Design and Implementation,
OSDI’04, page 7, USA, 2004. USENIX Association.

Xsight Labs. X-Switch ISA (XISA). https://xsig
htlabs.com/wp-content/uploads/2025/03/XISA_
Public-.pdf.

Xsight Labs. X2 Programmable Ethernet Switch. http
s://xsightlabs.com/products/.

Sravya Yandamuri, Ittai Abraham, Kartik Nayak, and
Michael K Reiter. Communication-Efficient BFT Using
Small Trusted Hardware to Tolerate Minority Corrup-
tion. In 26th International Conference on Principles of
Distributed Systems (OPODIS 2022). Schloss-Dagstuhl-
Leibniz Zentrum fiir Informatik, 2023.

Mingran Yang, Alex Baban, Valery Kugel, Jeff Libby,
Scott Mackie, Swamy Sadashivaiah Renu Kananda,
Chang-Hong Wu, and Manya Ghobadi. Using Trio -
Juniper Networks’ Programmable Chipset - for Emerg-
ing In-Network Applications. In Proceedings of the
ACM SIGCOMM 2022 Conference, SIGCOMM ’22,
page 633-648, New York, NY, USA, 2022. Association
for Computing Machinery.

Lior Zeno, Ang Chen, and Mark Silberstein. In-Network
Address Caching for Virtual Networks. In Proceedings
of the ACM SIGCOMM 2024 Conference, ACM SIG-
COMM 24, page 735-749, New York, NY, USA, 2024.
Association for Computing Machinery.

Irene Zhang, Naveen Kr Sharma, Adriana Szekeres,
Arvind Krishnamurthy, and Dan R. K. Ports. Build-
ing Consistent Transactions with Inconsistent Replica-
tion. ACM Transactions on Computer Systems (TOCS),
35(4):1-37, 2018.

https://p4.org/p4-spec/docs/P4-16-v1.2.0. html
https://p4.org/p4-spec/docs/P4-16-v1.2.0. html
https://xsightlabs.com/wp-content/uploads/2025/03/XISA_Public-.pdf
https://xsightlabs.com/wp-content/uploads/2025/03/XISA_Public-.pdf
https://xsightlabs.com/wp-content/uploads/2025/03/XISA_Public-.pdf
https://xsightlabs.com/products/
https://xsightlabs.com/products/

A Switch Resource Utilization

Table 4 summarizes the average per-stage resource utiliza-
tion for the 64K history register size and up to 8K replicas
configuration.

Resource Utilization H Resource Utilization
Match Crossbar 12.76% TCAM 1.74%
Meter ALU 62.50% VLIW Instruction 18.49%
Gateway 35.42% Hash Bits 8.77%
SRAM 27.19%

Table 4: The average per-stage resource utilization with a 64K
register and up to 8K replicas support.

B Pseudocode for SwitchBFT

The pseudocode for VUAB is presented in Algorithm 1, and
the pseudocode for SwitchBFT is provided in Algorithm 2.

C Correctness Proof

In the proof, we refer to the switch as a sequencer to signify
its role in the protocol. We make the following assumptions
for the proofs, all of which have been discussed and justified
in the body of the paper.

(A1) The sequencer is correct and does not fail.

(A2) The hash function used for computing digests is a perfect
hash function.

(A3) Messages are source authenticated by the network, i.e.,
the id of the sender of a message is always known.

(A4) Replicas and clients only receive messages directly from
the sequencer.

Assumption (A1) is made solely for the purpose of the proof.
We explicitly relax this assumption using a well-known state
replication mechanism (chain replication) in §4.8. Assump-
tion (A2) states that the cryptographic hash function is colli-
sion resistant, as is standard in BFT protocols [10,20, 34,431

Note that Assumption (A4) can be enforced by having non-
faulty replicas or clients ignore any message not received
from the sequencer (by Assumption (A3), a receiver knows if
a given message is from the sequencer).

C.1 Correctness of VUAB

We begin by proving the correctness of the VUAB protocol,
with pseudocode provided in Algorithm 1.

5Quoted from PBFT [10]: “We assume that the cryptographic hash func-
tion is collision resistant: the adversary is unable to find two distinct messages

Lemma 2 (Validity). In executions of Algorithm | without
message loss or reordering, if a non-faulty process broadcasts
a message m, then all non-faulty processes deliver m.

Proof. 1f a non-faulty process broadcasts a message m, then it
calculates a correct digest D = h(m) and sends (m, D) to the
sequencer. In an execution in which there is no message loss,
this eventually reaches the sequencer. Since, by assumption,
the sequencer is correct (A1), it adds a new sequence num-
ber, larger than any used before, stores D and sends it to all
processes on line 7. If messages are not lost, all non-faulty pro-
cesses eventually receive this message and handle it on line 42.
The condition of the while loop on line 43 is not met, and,
since last only gets updated to the largest sequence number
ever seen, in execution with no message reordering, (m, seq)
has seq = last+1 on line 46. Therefore, m is appended to the
pending set of each non-faulty process, and since the hash
function is assumed not to generate collisions (A2) and since
messages are unique, m is eventually delivered. O

Lemma 3 (Integrity). For any broadcast message m, every
non-faulty process executing Algorithm [delivers m at most
once.

Proof. Note that since the sequencer is correct (A1), it only
ever forwards each message it receives once. Therefore, each
process receives each broadcast message at most once. When
a process receives a message, it places it in its pending list
at most once, and therefore delivers it at most once. O

Observation 1 (Uniqueness). Ifm;,S andm;,S are messages
received by non-faulty processes, where both have the same
sequence number, then m; =m;.

Proof. By assumptions (A3) and (A4), sequenced messages
are only received from the sequencer. Moreover, since the
sequencer is correct (A1) and assigns monotonically increas-
ing sequence numbers to messages, two different messages
cannot be assigned the same sequence number. O

Lemma 4 (Lossy Total Ordering.). For any two non-faulty
processes executing Algorithm 1, if the k-th deliver invo-
cation returns a message, it is the same message.

Proof. Consider two non-faulty processes p; and p; and as-
sume that p; delivers message m; # L and p; delivers mes-
sage m; # L via the k-th deliver () invocation. Note that
the number of entries in the pending list, and therefore the
number of deliver () invocations, exactly matches the last
variable. Furthermore, a non-_L message is only placed in the
pending list if its sequence number is equal to 1ast. Conse-
quently, both share the same sequence number, k. Therefore,
by line 1, they are the same message. O

m and m’ such that D (m) = D (m’). These assumptions are probabilistic,
but they are believed to hold with high probability for the cryptographic
primitives we use. Therefore, we assume that they hold with probability one
in the rest of the text.”.

Algorithm 1: The VUAB Protocol

1 Sequencer: 3

2 upon Init: 34 defverify(m,seq):

3 seq=0 35 send (VERIFY ,seq) to sequencer
4 digests=1] 36 onreceive (D,seq):

5 37 digest = hash(m)

6 on receive (m,D): 38 if D ==digest:

7 seq=seq+ 1 39 return true

s digests.insert(seq) =D 40 return false

9 send (m, D, seq) to all processes P

10 42 on receive (m, D,seq):

11 on receive (VERIFY ,seq) from p: 43 while seq > last+1:

12 send (digests. find (seq),seq) to p 44 pending.ap pend ({L, L))
13 45 last = last + 1

14 onreceive (query): 46 ifseqg=last+1:

15 return seq 47 pending.ap pend({m,D))
16 48 last = last + 1

17 Replica: 4 elif seq > count:

18 upon Init: 50 pending[seq — count—1] =m
19 last=0; count = 0; pending = [] 51

20 52 periodically:

21 def broadcast (m): 53 send (query) to sequencer on receive (S) from sequencer:
2 D=hash(m) 54 while S > last +1:

23 send (m, D) to sequencer 55 pending.ap pend(L)

24 56 last = last + 1

25 def deliver():

26 count=count+1

27 (m, D) = pending.pop ()
28 digest=hash(m)

29 ifdigest# D||m == 1:

30 return L
31 else:
32 return m

Algorithm 2: Acknowledgement and Recovery

1 Sequencer: 29 58 onreceive (RECOVER, S):
2 upon Init: 30 onreceive (ACK,S,res,N) fromry: 59 while timeout for S not elapsed:
3 states[seq,R] =L 31 if N # Nyop: 60 wait
4 NOP_votes[seq]=0 32 NOP_seqs = {S|decisions[S]| ==Nor} 61 send (RECOVER, S, log[S]) to sequencer
s acks[seq,R]=0 33 send (reject,NOP_seqs) to ry s
é m“g—W)t.eS[S_qu =0 34 63 on receive (RECOVER,S,m,D):
7. recovering =[] 3 else: 64 digest =hash(m)
8 decisions[seq] =1 36 fori=0;i <=S;i++: 65 ~f5~ ot ——).
. X if digest ==D:

9 37 ifacks[i,r;]==0: P log[S]=m
10 on receive (RECOVER, S) from ry: 38 acksli,r] =1 p iflog.length > S+1:
u ifdecisions[S] == Nop: 39 msg_votes++ P re:io(S)
12 send (NOP_Decision, S) to r; 40 if msg_votes > f+1and .
B return . deczivu.)ns[S] == 70 on receive (NOP_Decision,S):
14 recovering[S].add(ry) a1 decisions[S] =msg 7 Nios ++
15 send (RECOVER, S') to all replicas 02 send (ACK, S, res) to client of msg S 7 log[S] = Nop
16 43 73 iflog.length>S+1:
17 on receive (RECOVER, S, X) from ry: 44 Replica: 74 redo(S)
18 ifstates[S,r] # L or (X == NOP and 45 upon Init: 75

decisions[S] ==msg): 4 log=[1]; Ny =0 76 def redo (S):
19 return 47 77 rollback application to log entry S
20 if X ==nNopP: 48 on deliver m with seq num S: 78 fori=S;i <log.length;i++:
21 states[S,r,] =NOP_rep 49 start timer for S 79 application.apply(log[i])
» NOP_votes[S]++ 50 log.append(m) 80 send (ACK,i,res, Nyop)
23 if NOP_votes > f+1: 51 res = application.apply(m)
24 decision[S] =Nop 52 send (ACK,S,res, Nyop) to sequencer
25 send (NOP_Decision, S) to all replicas 53
26 else: 54 on deliver L with seq num S:
27 states[S,r]| =msg_rep 55 start timer for S
28 send (RECOVER, S, X, digests.find(S)) to s6 send (RECOVER, S to sequencer

all replicas in recovering[S|] 57

Lemma 5 (Loss Detection). If a message m is broadcast in
Algorithm I by a non-faulty process, then either (1) none of
the non-faulty processes deliver m or L or (2) every non-faulty
process delivers m or L.

Proof. If m is lost before reaching the sequencer, the se-
quence number remains unchanged. In this situation, none of
the non-faulty processes can detect the loss, resulting in the
non-delivery of the message or L.

On the other hand, if the sequencer processes the message
and assigns it a sequence number S, then eventually, for every
non-faulty process p, p receives a message with sequence
number S’ > §; if p doesn’t receive one, it queries the se-
quencer until it receives a reply. Once p receives a message
with sequence number S’ > S, it appends messages to its
pending list until last == S’. Eventually, p will pop the
S-th message from the list and deliver either a message value
or L.]

Lemma 6 (Verifiability). In Algorithm I, verify (m, k)
returns true when executed by a non-faulty process if some
non-faulty process delivered m as its kth delivery. Further-
more, if verify (m, k) returns true, then no non-faulty pro-
cess delivered any message m' # bot where m’ # m as its kth
delivery.

Proof. Let p be a non-faulty process that delivered m in its
kth delivery. Then in particular, m must have had sequence
number k, since otherwise p would not have put it in the kth
position in its pending list. Furthermore, before delivering,
p computed the digest of m and compared it to the digest
D sent by the sequencer (line 28). Thus, D = h(m) was the
digest stored by the sequencer in line 8 for sequence number
k. Therefore, if any non-faulty process g calls verify (m,
k), this is also the digest that the sequencer replies with in
line 12. g then successfully confirms that the digest is correct
in line 37, and returns true. Furthermore, if g successfully
confirms that D = h(m), no other non-faulty process can ever
deliver a different message in its kth delivery, since all non-
faulty processes also calculate the digest of a message before
delivering it, and by Assumption (A2), no other message will
have the same digest. m|

Theorem 3. Algorithm | is a correct implementation of
VUAB.

Proof. This follows directly from Lemmas 2, 3, 4, 5, and
6. m|

C.2 The SwitchBFT Protocol’s Safety

The main safety guarantees of an f-resilient BFT SMR algo-
rithm are validity, agreement and finality. To formally define
these, we start by defining what commitment means. For this,
we make use of the notion of a replica r sending a successful
acknowledgement, which means that the sequencer forwarded
r’s acknowledgement to the client.

Definition 1. An operation O is globally committed if a client
has received f + 1 acknowledgement messages with the same
res for that operation.

We say a sequence number S is globally committed if S
is the sequence number associated by the sequencer with a
globally committed operation O.

We say that O (or S) is globally committed due to r if r is
one of the f + 1 replicas that sent the agreeing acknowledge-
ments.

Definition 2. A sequence number S is locally committed
in a non-faulty replica r’s log if r either (1) r received a
(COMMIT,S’,H,+) message from the sequencer for some
S" > S, where H is the digest of r’s log from its last com-
mit up to S’, or (2) for some sequence number S’ > S, S’ is
globally committed due to r or r has sent a successful ac-
knowledgement of S” after S” was globally committed.

We say a value v is locally committed at r if v is the value
written in slot S in r’s log and S is locally committed at r.

We can now define validity, agreement and finality, and
prove the three properties.

* Validity. If a value v is locally committed at some non-
faulty replica, then v is either L or an operation sent by
a client.

¢ Agreement. For any two non-faulty replicas r and r,
for which § is locally committed with values v; and v,
respectively, v = v,.

* Finality. If a sequence number S is globally committed,
then there is some non-faulty replica r for which the
value in all slots §” < S in r’s log will never change.

We prove a validity property not just on locally committed
values, but on all values that are in the log of a non-faulty
replica.

Lemma 7. If a value v is in the log of a non-faulty replica,
then v is either NOP or an operation sent by a client.

Proof. A value v enters the log of a non-faulty replica at
an index S only under one of three conditions: (1) v =m
and replica received a message (m, D, S) from the sequencer
and verified that D = hash(m), (2) v = NOP and the replica
did not receive a message with sequence number S from the
sequencer, and (3) the replica recovered this value in the
recovery protocol. By the correctness of the sequencer, if r
receives (m,D,S) from the sequencer, then the sequencer
received (m,D) from the client. In case r recovered v in
the recovery protocol, either v = NOP or r verified that D =
hash(v) where D is the digest r received from the client in
the (RECOVER, S, v, D) message. By Assumption (A2), since
the digest matched the hash, v must have been the client’s
original message. m}

We now turn to proving agreement. For that, we first prove
a useful lemma that shows why using the number of NOP
decisions is a good way to ensure that a log matches the
sequencer’s known decisions.

Lemma 8. The set of sequence numbers, S, that contribute
to a replica r’s Nyop count is a subset of the set sequence
numbers, S for which the sequencer mad a NOP decision.

Proof. A replica adds S to its local NOP decisions only upon
receiving a NOP-decision message for S from the sequencer,
which only sends such a message if S is decided to be NOP. O

A value can be locally committed for one of two reasons,
and we handle each separately.

Lemma 9. Once a non-faulty replica r receives
a (COMMIT,S,H,N) from the sequencer with
H = hash(r.log|0 — S]) no slot in r’s log can ever
change, and it has NOPs in exactly the sequence numbers in
which NOP decisions have been made by the sequencer:

Proof. For an entry S’ in a non-faulty replica’s log to change,
it must be either (1) r’s last log entry and currently NOP, with
no NOP decision on the sequencer for S’, or (2) non-NOP, where
the sequencer decision for S’ is a NOP.

Consider why the sequencer sent a (COMMIT, S, H, N) mes-
sage. There must have been some replica r’ that initiated a
log commitment, and at least f + 1 replicas that replied with
(COMMIT, S, H, N). Thus, at least one non-faulty replica r’ ver-
ified that its log’s digest up to S is H, and that N equals the
number of NOP decisions r’ is aware of. By Lemma 8, the set
of sequence numbers up to S with NOP decisions on r’ and the
sequencer is therefore the same. Furthermore, »* must have
first ensured that it has no undecided NOP entry before sending
a (COMMIT, S, H,N). Therefore, for every entry S’ < S, §’ is
either a decided NOP or a non-NOP entry in the log of r’ at the
time that H = hash(r’.log[0-S]).

If H equals the hash of 7’s log, by Assumption (A2), it must
be the case that r’s log is the same as r’’s log. In particular,
this means that it has NOP decisions in exactly the same slots
as on the sequencer, and is not missing any values in slots that
are not decided as NOP.

Finally, note that once a (COMMIT, S, *,) is sent by the
sequencer, the sequencer never makes new decisions on any
sequence number < S. O

Lemma 10. The set of NOP decisions on the sequencer for
sequence numbers < S cannot change once S is globally
committed.

Proof. Once S is globally committed, the sequencer must
have executed line 42 at least f + 1 times with messages from
different replicas. Therefore, it must have received acknowl-
edgements for S from at least f + 1 replicas, all of which failed
the check on line 31 and entered the else clause. Therefore,
for all sequence numbers smaller than or equal to S, it must

have collected at least f + 1 message votes, and passed the
check on line 40. Therefore, for all sequence numbers S’ < S,
S’ is decided (i.e. decisions[S] # L).

Note that for any S, decisions[S] never changes once
it is no longer L. Therefore, the set of NOP decisions in the
sequencer for sequence numbers < S cannot change once S is
globally committed. O

Lemma 11 (Agreement). For any two non-faulty replicas r;
and ry for which S is locally committed with values vy and v,
respectively, vi = v,.

Proof. Let S be locally committed at two non-faulty replicas
r1 and ro. We consider the following cases.

Case 1. Replica r| received a (COMMIT, Sy, H}, *) message
from the sequencer for S| > S, and H| is the digest of r;’s
log up to Sy, and similarly, r; received a (COMMIT, Sy, H3, *)
message from the sequencer for S, > S, and H, is the digest
of rp’s log up to S,. Without loss of generality, let S| < 55.
Then by Lemma 9, neither of their logs can change up to Sy,
and the NOPs in their logs up to S are the same. Note that by
the Lossy Total Ordering property of VUAB, they must also
have the same non-NOP entries up to Sy.

Case 2. Both replicas successfully acknowledged a mes-
sage with sequence number > § either after S was globally
committed or S was globally committed due to them. Then
both replicas must have had the same number of NOP decisions
up to S, and by lemma 8, the same set of NOPs. Furthermore,
by the Lossy Total Ordering property of VUAB, they must
also have the same non-NOP entries up to S.

Case 3. One replica locally committed by acknowledge-
ment and the other by log commitment. Then, just like in
case 2, both replicas must have had the same number of NOP
decisions up to S, and by lemma 8, the same set of NOPs. Fur-
thermore, by the Lossy Total Ordering property of VUAB,
they must also have the same non-NOP entries up to S. o

Lemma 12 (Finality.). If a sequence number S is globally
committed, then there is some non-faulty replica r for which
the value in all slots 8" < S in r’s log will never change.

Proof. If S is globally committed, then a client received f + 1
acknowledgements for S’s operation. Clearly, at least one of
them is from a non-faulty replica r. Since, by lemma 10, the
set of NOP decisions for sequence numbers < S will never
change, and r’s local NOP count is the same as the sequencer’s
(since otherwise it would not have sent a successful acknowl-
edgement), r’s NOPs before S will never change. By the cor-
rectness of the VUAB protocol, none of its non-NOP slots can
ever change either. m}

Putting agreement, finality, and validity together, we arrive
at the correctness of the SwitchBFT protocol.

Theorem 4. The SwitchBFT protocol satisfies agreement,
validity, and finality.

C.3 Liveness of SwitchBFT

The liveness property we prove for SwitchBFT is, intuitively,
that in periods in which the network behaves properly, any
non-faulty client’s operation will be committed.

More formally, we define the Global Stabilization Time,
GST to be an a priori unknown point in time after which no
packets are lost and all messages arrive within a timeout A.
Equipped with this definition, we prove the following key
theorem.

Theorem 5. After GST, any operation sent by a non-faulty
client will be committed.

Note that this theorem implies that if a client persists in
retransmitting messages for which it does not receive adequate
acknowledgements after some appropriately chosen timeout,
then eventually its operation will be committed.

To show this theorem, we rely on the correctness of VUAB.
In particular, by the validity of VUAB, in such good execu-
tions, all non-faulty replicas receive the client’s message and
place it in their logs. However, this alone does not suffice; we
must also show that a Byzantine replica cannot force a NOP
decision when all non-faulty replicas received a message.

Lemma 13. If all non-faulty replicas receive a non-faulty
client’s message at sequence number S within A time since
their last received message, then a NOP decision cannot occur
at S.

Proof. Note that since, by Assumption (Al), for a NOP
decision to occur at S, f + 1 replicas must send a
(RECOVER, §,NOP). So, at least one of them must be non-faulty.
Let that replica be r. For r to send a (RECOVER, S,NOP) re-
sponse at time ¢, it must have NOP in its log at . However,
note that r only sends (RECOVER, S, *) after waiting for a time-
out. By assumption, all non-faulty replicas receive a non-NOP
value for S within the timeout. Therefore, » could not have
sent a (RECOVER, S,NOP), and no NOP decision could have
been reached. |

C.4 Log Trimming

We have now proven that the SwitchBFT protocol is correct,
as long as the sequencer is correct and does not lose stored
metadata. We now consider the effects of sequencer log trim-
ming; we show that if the sequencer collects its metadata for
all sequence numbers smaller than S once a log commitment
up to S is complete, this does not harm the correctness of the
protocol.

In particular, note that if all replicas already have all values
at sequence numbers < S locally committed at the time of
the log compaction, then there is clearly no effect on the
protocol. However, it could be the case that some replica has
not committed all sequence numbers < S, and must execute
the recovery protocol after the log compaction has occurred.

We therefore prove that the recovery protocol still works, and
that any such non-faulty replica can later get to a state in
which all its entries before S are locally committed.

Lemma 14. A non-faulty replica r can successfully recover
the value or the NOP decision of a sequence number S even
after S’s metadata is compacted by the sequencer.

Proof. We first recall how a recovery after log compaction
works. A replica r wanting to recover log slot S sends a
(RECOVER, §) message. If S has already been compacted, the
sequencer sends a special post-compaction recovery request
to the replicas, requesting that they reply not with their entry
for S in their (RECOVER, S, *) message, but with their entire
history instead. The sequencer then attaches its digest of the
compacted history, and sends this to the recovering replica r. r
then checks whether the attached digest matches the history’s
digest, and if so, adopts this history as its own, replacing its
log. Since, before a compaction happens, there must have
been at least f + 1 replicas that sent (COMMIT, S, H,N) with
N matching the number of NOP decisions of the sequencer,
there must have been at least one correct replica, r’, that sent
a (COMMIT, S,H,N) message. r’ must have verified that its
history’s digest matches H, and therefore, when r’ sends its
history in the (RECOVER, S, H) message, r will successfully
adopt its history. O

We must also show that if a non-faulty replica r has a non-
NOP entry in a slot S in which a NOP decision was made before
S was compacted by the sequencer, r can correctly discover
which slots have a NOP decision. This can trivially be done
by having r execute a recovery operation on any compacted
slot, and have replicas reply with their entire log. However,
we show that an optimization in which a replica only requests
the NOP locations suffices.

Lemma 15. Once a non-faulty replica r has successfully re-
covered all non-NOP entries in its log up to sequence number
S, it can recover the NOP decisions even after the sequencer
log has been compacted past S.

Proof. Recall that, once r receives a (COMMIT, S, H,N) from
the sequencer in which N does not match its local NOP count,
r sends a request to retrieve the NOP locations, and all replicas
send back their NOP locations. With every received NOP list,
r checks whether replacing those entries with NOP in its log
yields a log whose digest matches H. If not, r rejects the
response, and waits for another. Since there must have been at
least f+1 (COMMIT, S, H, N) messages from different replicas
before the sequencer compacted the log, at least one non-
faulty replica had an up-to-date log (i.e., a log whose digest
matches H). That non-faulty replica will eventually send r its
NOP list, and, since by assumption all of 7’s non-NOP messages
are already up to date, r will then successfully create a log
whose digest matches H. m

	Introduction
	Trust Model
	Switch Programming Constraints
	Design
	Overview
	Verifiable Unreliable Atomic Broadcast
	Normal Operation Mode
	Handling Packet Loss
	Verifying Log Consistency
	Commitment and Log Trimming
	Optimizations
	Handling Switch Failures

	Analysis
	Correctness Proof Sketch
	Discussion
	Implementation
	Evaluation
	End-to-end Performance
	Analysis

	Related Work
	Conclusions
	Switch Resource Utilization
	Pseudocode for SwitchBFT
	Correctness Proof
	Correctness of VUAB
	The SwitchBFT Protocol's Safety
	Liveness of SwitchBFT
	Log Trimming

